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The experimental results of testing structures or structural parts are limited and, sometimes, difficult to interpret. Thus, the development of math-
ematical-numerical models is needed to complement the experimental analysis and allow the generalization of results for different structures and 
types of loading. This article makes two computational studies of reinforced concrete structures problems found in the literature, using the Finite 
Element Method. In these analyses, the concrete is simulated with the damage classical model proposed by Mazars and the steel by a bilinear 
elastoplastic constitutive model. Numerical results show the validity of the application of constitutive models which consider the coupling of theo-
ries with the technique of finite element discretization in the simulation of linear and two-dimensional reinforced concrete structures.

Keywords: damage mechanics, line interface element, fracture, softening, failure criterion.

Os resultados obtidos a partir de ensaios de estruturas ou de peças estruturais em laboratório são limitados e, às vezes, de difícil interpretação. 
Dessa forma, o desenvolvimento de modelos numérico-matemáticos se faz necessário para complementar a análise experimental e possibilitar a 
generalização dos resultados para diferentes estruturas e tipos de carregamento. Este artigo faz dois estudos computacionais de problemas de 
estruturas de concreto armado encontrados na literatura, utilizando o Método dos Elementos Finitos. Nas análises, o concreto é simulado com 
o modelo clássico de dano proposto por Mazars e o aço por um modelo constitutivo elastoplástico bilinear. Os resultados numéricos mostram a 
validade da aplicação de modelos constitutivos que consideram o acoplamento de teorias com a técnica de discretização por elementos finitos 
na simulação do comportamento de estruturas lineares e bi-dimensionais em concreto armado.

Palavras-chave: mecânica do dano, elemento de interface de linha, fratura, amolecimento, critério de falha.
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1.	 Introduction

Concrete has been the most used structural material in the world 
in the past sixty years. It is employed in all types of construction for 
its several advantages: easily malleable, adapting itself to any kind 
of form; fire resistant, resistant to the atmospheric influences and 
to mechanical wear; and it is an economic alternative for it is built 
with low cost raw material.
One of the difficulties in the concrete structures computational mod-
eling is the definition of the constitutive relationships that consider 
the non-linear behavior of the material and, the potential cracking 
and the different responses to tensile and compression stresses. It 
is very difficult to separate the deformation and rupture phenomena 
in the concrete for the microcracks and the hollows that exist even 
before any stress is applied, interfere directly in the initial response 
of the moving material (Lemaitre and Chaboche [8]).
Analyses of reinforced concrete structures based on elastic mate-
rial models (linear or non-linear) are widely used in design offices 
nowadays and the results are employed in the sizing and evalua-
tion of their global behavior. When these structures are subjected 
to loadings that cause the beginning of cracks in the concrete in 
tensile stress, the elastic analyses are not able to properly simulate 
this behavior (Leonel et al. [9]).
The Plasticity, Damage Mechanics and Fracture Mechanics theo-
ries are widely used in structure analysis of reinforced concrete, 
each one of them being appropriate to simulate such phenome-
non. As there is no complete constitutive model for the concrete 
yet, the trend is to employ a set of these theories for representing 
the phenomena related to the material behavior.
A natural evolution are the models that couple more than one the-
ory, creating formulations that are almost always complex. How-
ever, aiming to decrease the complexity of the formulations, but 
still taking into account the coupling of the effects in the formula-
tion, and due to theories, a great highlight has been given to the so 
called simplified constitutive models (Álvares et al. [1]).
In general, the concrete destruction can be divided into two types: 
the first one happens by tensile stress and it is characterized by 
crack formation and loss of tensile stress resistance in the normal 
direction to the cracks formed; the second one is due to compres-
sion, and it is characterized by the formation of multiple cracks 
parallel to the compression force. The cracks from the later have 
a smaller size which make the concrete lose a great part of its 
strength.
A strength criterion aims to establish laws through which it is pos-
sible to predict the rupture condition under any type of stress or 
strain combination through the material behavior in the simple 
tensile and compression tests (Nicolas et al. [12]). Many of the 
existing strength criteria present restrictions in relation to the appli-
cation to heterogeneous and anisotropic materials with directional 
strength and elasticity properties such as concrete. Therefore, the 
investigation of a strength criterion that allows a proper evaluation 
of the rupture of this material to an axial or biaxial stress state be-
comes important and necessary.
This article presents two modeling proposals for reinforced 
concrete structures through two numerical computational stud-
ies using the Finite Element Method aiming to analyze the 
aspects involved in computational modeling including items 
related to constitutive models of the materials. The non-linear 

analyses are carried out considering the arc-length method 
with the modified Newton-Raphson iterative process. This 
technique is characterized by presenting a concomitant load 
and displacement control.
The first study consists of the one-dimensional structural analysis 
of a beam proposed by Jarek et al. [7]. The modeling of this struc-
tural element is made with the Scilab program, version 5.3.3. The 
concrete behavior is simulated by the damage constitutive model 
proposed by Mazars [10] and, the steel by a bilinear elastoplastic 
constitutive model. Tsai and Wu’s [18] failure criterion is also incor-
porated to the model.
From the two-dimensional problem of an adapted reinforced pull 
rod from Mazars and Pijaudier-Cabot [11], the second study analy-
ses the structural response considering the damage constitutive 
model coupling proposed by Mazars [10] and a rupture model in 
Mode I based on the work of Schellekens [16]. This model was 
implemented in Fortran code – Compaq Visual Fortran Edition 6.5. 
The crack is simulated though a line interface element and the 
softening phenomenon can be considered – linear, bilinear or ex-
ponential - in the constitutive model.

2.	C onstitutive model for the concrete

The damage model proposed by Mazars [10] is based on a couple 
of experimental evidences observed in uniaxial tests of concrete 
specimens, having as basic hypotheses (Proença [14]):
n	 locally, the damage is due to extensions (elongations) evi-

denced by positive signs; at least by one of them, the main 
strain components (εi > 0);

n	 the damage is represented by a scalar variable D ∈ [0.1] which 
evolution happens when a reference value for the ‘equivalent 
elongation’ is overcome;

n	 it is considered, however, that the damage is isotropic although 
the experimental analyses show that the damage leads, in gen-
eral, to a an anisotropy of the concrete (which can be initially 
considered as isotropic), and

n	 the damaged concrete behaves as an elastic medium. Thus, 
the permanent strains that were experimentally evidenced in an 
unloading situation are disregarded.

In this model, it is supposed that the damage begins when the 
equivalent strain reaches a reference strain value εd0, deter-
mined in uniaxial tensile tests in relation to the maximum stress.

The constitutive relation is given by (Tiago et al. [17]):

(1)σ=(I-DI)Cº

Where I is the identity tensor and C0 is the elastic tensor of the 
undamaged material. The extension state is locally character-
ized by an equivalent strain that is expressed by (Pituba and 
Proença [13]):

(2)ϵ~= <ϵ1>+
2+<ϵ2>+

2+<ϵ3>+
2
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model, the steel is represented as an elastoplastic material and it 
has the same behavior in tensile and compression stresses. The 
schematic is given by a bilinear stress-strain diagram. Thus, the 
stress in steel is determined by (Tiago et al. [17]):

(7)σ= {Eaε
Eat ε

  
           ,   -εsy≤ε≤εsy

,otherwise
 

Where Ea is the initial longitudinal modulus of elasticity for steel, εsy 
is the yielding extension and Eat = kaEa is the longitudinal modulus 
of elasticity after the steel yielding.

4.	 Line interface element

The geometrical discontinuities can be successfully modeled us-
ing interface finite elements. These elements aim to transmit the 
stresses between either bodies or parts of the same body among 
which it is found.
Line interface elements were used in this paper in order to simu-
late pre-established cracks in the part, assuming cracking mode I. 
Mode I effect is represented by the transmission of stresses that 
are normal to the crack faces.
The line interface element is based on the work of Schellekens 
[16]. This one-dimensional element is isoparametric, with four nod-
al points (two degrees of freedom per node - u, v), linear shape 
functions and zero thickness.
The nodal displacement vector u is given by:

(8)u= [u1 v1 u2 v2 u3 v3 u4 v4]T 

Where ui and vi, i = 1,...,4, are the nodal displacements in the di-
rection ξ and η, respectively. Operator B, which relates the nodal 
displacements to the displacement field regarding the element, is:

(9)B= [ [h1 0 h2 0 h3 0 h4 0

0 h1 0 h2 0 h3 0 h4
 

Where hi, i = 1,...,4, are the shape functions given by:

(10)h1=h4=
1

2
(1-) 

(11)h2=h3=
1

2
(1+) 

Usually, the stresses are evaluated as a function of the strains; how-
ever, in the case of the stresses in the interface, those are determined 

Where εi, i = 1,...,3, are main strain components and <εi>+, i = 
1,...,3, are the positive parts defined by:

(3)<ϵi>+
=
1
2
(ϵ | |)i+ ϵi

The concrete, with regards to the rupture modes, presents a dis-
tinct behavior in relation to the tensile and compression stresses. 
The concrete rupture by tensile strengths happens due to crack 
formation and the consequent loss of normal strength in the direc-
tion of the crack. As for the damage during compression, the con-
crete presents a behavior that can be considered plastic, which is 
the crushing caused by the internal cohesion being overcome due 
to the shear stress characterized by a large quantity of microcracks 
(Leonel et al. [9]).
Considering a continuously increasing or radial loading of the 
stress-strain curves obtained in tensile and compression uniaxial 
tests, the damage variables DT and DC can be explicitly determined 
the following way, respectively:

(4)DT(ε)=1-
εd0 1(

( (

(-AT

ε
-

AT

e BTε-εd0

~
~ ~

(5)Dc (ε)=1-
εd0 1(

( (

(-Ac

ε
-

Ac

e BTε-εd0

~
~ ~

Where AT and BT are characteristic parameters of the material in 
uniaxial tensile stress, AC and BC are parameters of the material in 
uniaxial compression stress and εd0 is the limiting elastic strain. The 
subindexes T and C mean tensile and compression, respectively.
For complex stress states, the variable for damage can be deter-
mined by a linear combination of DT and DC by means of the follow-
ing condition (Pituba and Proença [13]):

(6)D=αTD
T
( (ε ε~ ~) )+αCDc ,  αT+αC=1 

Where the coefficients αT and αC take on values in the closed inter-
val [0,1], and represent the contribution of the tensile and compres-
sion stresses to the local extension state, respectively. Mazars [10] 
proposed the following variation limits for the parameters AT, BT, 
AC and BC, obtained from the calibration with experimental results:
0,7 ≤ AT ≤ 1     104 ≤ BT ≤ 105     1 ≤ AC ≤ 1,5     103 ≤ BC ≤ 2 103     
10-5 ≤  ≤ 2 10-4

3.	C onstitutive model for steel

In this work, a uniaxial model is used to describe the behavior of 
armatures, once, in reinforced concrete structures, the steel bars 
essentially resist axial strains. In the implemented computational 

user09
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The constitutive model of the exponential softening is character-
ized by the curve in which the tensile stiffness decreases exponen-
tially in relation to the relative displacement. The contribution of the 
tangential stiffness component is disregarded in this model. Matrix 
D can be written by:

(17)D= [ [ {0 0
0 K0

' 
w≤wc→K0

'
=K0e-θw

w>wc→K0
' =0

 

Where θ is the exponential softening coefficient. The fracture en-
ergy (Gf) for the exponential softening can be obtained by integrat-
ing the constitutive law and varying the opening of the crack from 
0 to ∝, where we have:

(18)Gf =
σu

Θ
 

The bilinear constitutive model is characterized by a curve with 
two different slopes, considering that the material loses its strength 
from the beginning of the stress. Matrix D can be written the fol-
lowing way:

(19)[ [ {D=
0 0

0 K0
' 

w≤w1→K0
'=K0+

(K1-K0)w

w1

w1<w=wc→K0
'=
K1(w-wc)

w1-wc

w>wc→K0
'
=0

Where w1 is the opening of the crack and K1 is the tensile stiffness 
from which the relation stiffness-opening follows the other consti-
tutive law. In case of bilinear softening, the critical opening of the 
crack wc is obtained by:

(20)wc=
2GF

U
-w1-

2U

1
 

Where σ1 is the tensile stress of the material for an opening equal 
to w1.

5.	 Tsai and Wu’s strength criterion

The procedure proposed by Tsai and Wu [18] was to increase the 
number of terms in Hill’s [6] failure criterion equation for a better 
approximation of the experimental data obtained for several ma-
terials. The failure of a certain material is interpreted as the oc-
currence of any discontinuity in the material response to the me-
chanical stimuli (Nicolas et al. [12]). Some of the discontinuities of 
interest are: the beginning of the non-linearity in the relation stress 
versus strain, the occurrence of irreversible strains and material 
rupture. The conditions for the occurrence of these phenomena 

as a function of the relative displacements. The relative displacements 
(∆w) of the element are calculated through the following relation:

(12)w=Bu 

D being the matrix of the material properties and, considering that 
the line interface element has no dimension in the direction η and 
that the thickness e is constant along the length of the material, the 
stiffness matrix K is obtained by:

(13)K=e ∫ B
T
DB

L


d=1

=-1
 

Where L is the length of the element. The constitutive matrix D is 
given by:

(14)D= [ [KS 0
0 K0

 

Where KS and K0 denote the horizontal stiffness components (tan-
gential stiffness) and vertical stiffness (tensile stiffness), respec-
tively. When calculating the matrix stiffness components, D, the 
softening phenomenon – linear, bilinear or exponential - can be 
considered in the constitutive model.
The linear softening model disregards the tangential cohesive ef-
fects and simplifies the tensile stiffness curve, considering that the 
material loses its strength from the beginning. Matrix D can be writ-
ten the following way:

(15)D= [ [0 0

0 K0
'  {w≤wc→K0

'=K0 (wc-w

wc
)

w>wc→K0
'=0

 

Where wc is the critical relative displacement from which there is no 
transmission of stresses between the crack faces, K0 is the initial 
tensile stiffness and, w is the opening between the nodes of the 
element that has a normal interface in relation to the crack faces. 
The opening of the critical crack (wc), in the case of linear soften-
ing, is obtained from the fracture energy (Gf) and it is given by:

(16)wc=
2GF

U
 

Where σu is the ultimate tensile stress of the material. This model is 
in agreement with the Fracture Mechanics principles, for the area 
limited by the stress curve transmitted through the crack versus 
the opening of the crack (σ x w) is equal to the fracture energy of 
the material (Gf).
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are referred to as failure or rupture criterion. The fragile rupture 
condition must be considered as a special case in which the failure 
criterion due to yielding corresponds to the failure criterion due to 
rupture (Gagliardo et al. [3]).
Considering totally anisotropic materials, it must be admitted that 
the failure modes are conditioned both by the normal and tangen-
tial stresses, considering that the fractures may occur due to differ-
ent sets of stresses that act on the element. In a general way, this 
theory may be presented by:

(21)Fiσi

6

i=1

+ Fijσiσj

6

j=1

+

6

i=1

Fijkσiσj

6

k=1

6

j=1

6

i=1

σk+ ... = 1     

The coefficients Fi, Fij and Fijk are tensor rearranged structures of 
the 1st, 2nd and 3rd order, respectively. An advantage of this method 
is that it is possible to use as many terms as are necessary for the 
approximation of experimental points of a material. However, once 
each constant is associated with a unique type of mechanical test 
for its determination, Equation 21 is normally restricted to 2nd order 
terms. If this is not done, the quantity and complexity of the neces-
sary tests for determining the constants would make the method 
impracticable. Thus, Equation 21 is reduced to:

(22)  Fiσi
6

i=1 + Fijσiσj
66

j=1i=1 =1 

Considering a plane state of stresses applied to orthotropic materi-
als, and developing Equation (22), we have:

(23)F1σ1+F2σ2+F11σ1
2+F22σ2

2+2F12σ1σ2+ F44σ4
2=1

Where σi, i = 1,…,3, are the main stresses and σ4 is the shear 
stress. Equation (23) indicates that the state of stresses is at a 
critical point (on the verge of the failure). However, if the state of 
stresses given by the left side of Equation (23) presents a numeri-
cal result lower than one, we have a safety situation. Different from 
other strength criteria, this one takes into consideration the effect 
of the hydrostatic components of the stresses.

6.	 Arc-length method with the modified 	
	 Newton-Raphson iterative process

When applying the Newton-Raphson method for limit-point prob-
lems with a load control, the stiffness matrix tends to singularize 
around this point in its ascending trajectory. An alternative to de-
tect and surpass the limit point is to use solution methods associat-
ed with the Newton-Raphson method, for instance, the arc-length 
method.
The arc-length method is characterized for presenting a concomi-
tant control of the load and displacement. There are two variables: 
the increment of the load factor ∆ϕ and the displacement increment 
vector ∆u. In each step of the solution, the iteration trajectories are 

perpendicular to the arcs, which in turn, can be approximated by 
tangents to the equilibrium trajectory at the initial points of these 
steps (Ramm [15]). Considering the arc-length method with the 
modified Newton-Raphson iterative process, the equilibrium equa-
tions for the i-th iteration can be written as:

(24)KT
a  ui= φiR0+ Qi-1 

Where ∆φi is the increment of the load factor of iteration i, ∆ui is 
the displacement increment vector,  is the reference loads vector, 
KT

a is the updated tangential stiffness matrix only at the beginning 
of each loading step, and ∆Qi-1 is the non-balanced loads vector 
given by:

(25)Qi-1=Rext
i-1-F int

i 

Rext
i-1 being the external forces vector and  is the internal nodal 

forces vector. Vector must be written as a function of the load fac-
tor, updated at the end of the previous iteration and the constant 
reference loads vector , through the following relation:

(26)Rext
i-1

=φi-1R0 

For a system of the n+1 order, n being the number of degrees of 
freedom for the structure, we have:

(27)[ { {{ {[KT
a -R0

u
1

φ
1

u
i

φi = Qi-1

0
 

Where ∆u1  is the first displacement increment vector of the solu-
tion step and ∆φ1 the first increment of the load factor in the given 
step. It can be noticed that the resolution of the system given in 
(27) creates a system of equations with non-trivial solution even if 
the matrix  is singular, which is a great advantage for the solution 
of problems with limit point.

6.1	 Convergence criteria

Aiming to limit the iterative processes, two convergence criteria are 
established: one for the displacements and another for the forces.
The convergence criteria for the displacements must obey the fol-
lowing inequality:

(28)‖u
i
‖

‖ui‖
≤utol 
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Where the numerator is the standard Euclidean norm of the dis-
placement increment vector ∆ui correspondent to the i iteration and 
the denominator is the Euclidian norm of the total displacement 
vector ui =ui-1 + ∆ui of the i-th iteration.
The convergence criteria of the forces must obey the relation:

(29)‖Qi‖

‖φiR0‖
≤ Q

tol
 

Where the numerator is the Euclidian norm of the non-balanced load 
increment correspondent to the i iteration and the denominator is the 
Euclidian norm of the force increment for the solution step.

7.	 Results and discussions

7.1	 Simulation 1

In this example, adapted from Jarek et al. [7], a one-dimension-
al non-linear analysis is carried out using the finite elements of 
a reinforced concrete beam, considering the damage model from 
Mazars [10] to simulate the concrete and the bilinear elastoplastic 
model for the steel. The criterion of Tsai and Wu [18] was adopted 
as the failure criterion for the concrete. The beam supported by 
two points is 6 m in length, rectangular cross-section of (20 x 40) 
cm2, subject to a condensed force applied in the middle of the gap. 
The lower longitudinal armatures (Ast) and the upper longitudinal 
armatures (Asc) of the beam are constituted by 3 φ12.5 mm, with a 
0.02 m coating. The material parameters and strength coefficients 
for the Tsai and Wu’s [18] criterion are presented in Table 1.
In the finite element discretization, 100 beam elements with 2 nodes 
and 2 degrees of freedom/node were employed using the geometry 

and loading symmetry, analyzing thus, only half of the beam (Figure 1). 
The modified Newton-Raphson method combined with the arc-length 
technique was used in the solution of the non-linear equations. The load 
increment used was taken as equal to 0.5 kN. The maximum admitted 
errors at the end of each increment were utol = 10-3 and Qtol = 10-2.
In the analysis, the equivalent strain  is evaluated the following 
way (Tiago et al. [17]):

(30)ε~= {
εx

-ν 2εx
  
,  εx≥0 

,  εx<0 
 

Where ν is the Poisson coefficient for the concrete.
The equivalent bending stiffness for the beam (EIeq) is determined 
considering two parcels. The first one refers to the equivalent bend-
ing stiffness for the concrete (EIeqc) and it is obtained by dividing 
the cross-section of the beam in n layers. The moment of inertia Ii 
for the i-th layer is calculated through the parallel axis theorem by:

(31)Ii=– –
b(yi-yi-1)

3

12
+b(yi-yi-1)(yi-1+

y
i
-y
i-1

2 )
2

,   i=1,... ,n

Where n is the total number of layers, b is the width of the rectan-
gular cross-section and yi is the coordinate for the i-th layer from 
the section centroid. The portion EIeqc is obtained by:

(32)EIeqc=Σi=1
n EciIi 

Table 1 – Parameters of the model

Concrete Steel 

Tsai and Wu [18]  

Coefficient Equation  
Adopted values 

(MPa) (Gagliardo 
et al. [3])  

E  = 30.2 GPac0

 
E  = 210 GPaa

  
F1 0.224 

 = 0.2
  

 = 0.3
  

F2 0 

A  = 0.995T

  
k  = 0.85a F11 -0.0288 

5B  = 10T

  
F22 0 

A  = 1.1C

  
F44 0.0305 

3B  = 8 10C
  F12 ±0.00385 

1 1
ft1 fc1

fc2

 

1 1
ft2

 

1
ft1 fc1

 

1
ft2 fc2

 

1
2fv4

 

± F11 F22
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Where Eci = Ec0i (1-Dji), with j = C, T, is the damaged concrete longi-
tudinal elasticity module of the i-th layer. In this example, the cross-
section of the beam was divided into 60 equal layers. The second 
portion refers to the equivalent bending stiffness for the steel EIeqa 
and it is determined by the following expression:

(33)EIeqa=Σk=1
nb Eak ( (πØk

4

64
+
πØk

2

4
y
ai
2

Where nb is the number of bars; φk is the bar diameter k; Eak is the 
longitudinal modulus of elasticity of the bar steel k; and yai, i = 1, 2, 
is the distance from the bar centroid k to the geometric center of 
the cross-section of the beam. Thus, the total equivalent bending 
stiffness EIeq is calculated, in a simplified way, by the sum of the 
portions EIeqc and EIeqa:

(34)EIeq=EIeqc+EIeqa 

When obtaining the vector of the internal elemental force, the 
equivalent bending stiffness is determined for each Gauss point in 
the numerical integration using the Gaussian Quadrature method. 
In the process for calculating the equivalent stiffness, in order to 
simplify it, we suppose that the neutral line (sx = 0) is located in the 
centroid of the cross-section; this condition is valid if there is a sym-
metry of the armature (lower and upper longitudinal armatures with 
the same area and symmetrically positioned in relation to the cen-
troid) and if the materials have a linear elastic behavior (Hooke’s 
law). However, when the materials (concrete and/or steel) present 
a non-linear behavior, the location of the neutral line is altered. 
Thus, in a non-linear analysis, the positioning of the neutral line is 
altered for each numerical iteration.
The results obtained from the computational simulations with the 
proposed modeling varying the εd0 parameter are shown in Figure 
2, as well as the experimental and numerical curves (obtained with 
the Ansys software) presented in the work of Jarek et al. [7]. This 
example shows an important aspect of the Mazars’ model in rela-
tion to the sensitivity of the results with regards to the variation of 
the parameter εd0. The damage determined at the Gauss points 
appear in the material when the equivalent strain  reaches the ref-

erence strain εd0, occasioning thus, the stiffness decrease in the 
corresponding point.
In accordance with Figure 2, it can be seen that the predicted nu-
merical responses with the proposed modeling for the beam are 
more stiff (smaller displacements) for εd0 equal to 0.00003 and 
0.00005 up to a given load increment, if compared to the experi-
mental ones. Differently, for εd0 equal to 0.00001, the maximum 
displacement v takes on higher numerical values from the begin-
ning of the analysis. It can also be noticed that there is a linear 
behavior trend in the load-displacement relation from a certain load 
value and it maintains itself up to the rupture point. According to 
the authors Guello and Bittencourt [5], simulations with the Mazars’ 
model can lead to excessive strains in the structure from a given 
loading. In order to limit these strains, these authors suggest limit-
ing the damage value during the analysis, i.e., have DT < 1 and DC 
< 1. However, such restrictions were not considered in the simula-
tions carried out with the proposed modeling.
Considering the uniaxial stress case (σ1≠0, σ4≠0 and σ2=0), Equa-
tion (23) is re-written the following way:

(35)F 1σ1+F 11σ1
2+F 44σ4

2=1 

For all the simulations achieved by varying εd0, the beam collapses 
when P reaches a value of approximately 50 kN, getting close to 
the experimental rupture load. In the computational model, it is 
considered that the part fails when one of the finite elements of the 
mesh, in one of the Gauss points, fails, i.e., when the inequality  
F1 σ1+F11 σ1

2+F44 σ4
2 >1 is satisfied (result evaluated from the de-

termination of the maximum stresses in the corresponding cross-
section: σ1=σx and σ4=σx /2).
Differences in the answers obtained from the three-dimensional mod-
els (with plate and disperse armatures) with the help of the Ansys 
software (Jarek et al. [7]) and the implemented in this work. These dif-

Figure 1 – Structural model of the 
beam supported by two points

Figure 2 – Maximum displacement 
curve versus load increment



108 IBRACON Structures and Materials Journal • 2013 • vol. 6  • nº 1

Numerical-computational analysis of reinforced concrete structures considering the damage, 
fracture and failure criterion

ferences can be explained through some factors such as: the model 
implemented in this work is unidimensional and it adopts the constitu-
tive relation for the concrete based on the Continuous Damage Me-
chanics; in the work of Jarek et al. [7], in order to simulate the concrete 
cracking by evaluating its behavior in relation to the tensile stress, the 
Willan-Warnke criterion was used; and for its behavior in relation to 
the compression, the von Mises plastification criterion was used.

7.2	 Simulation 2

The two-dimensional problem was adapted from Mazars and Pi-
jaudier-Cabot [11]. The problem consists of a reinforced pull rod 
with 70 cm in length and rectangular cross-section (10 x 10) cm2, 
with a steel bar with moment of inertia I = 490.87 mm4 located in 
the centroid of the section (Figure 3). A tensile force P = 23823.53 
kN is applied to the free end of the pull rod. It was admitted that the 
steel has a non-elastic behavior, which is the same as to suppose 
that ks is equal to 1, the value used for εsy being irrelevant.
For the problem discretization, 310 isoparametric linear plane ele-
ments were considered: 270 to simulate the concrete and 31 to 
simulate the steel bar. Nine line interface elements were used to 
simulate the discontinuity. The modified Newton-Raphson method 
combined with the arc-length technique was used in the simula-
tions carried out with this model. The maximum admitted errors at 
the end of each load increment were utol = 10-3 and Qtol = 10-3. The 
symmetric geometry of the pull rod permitted the modeling of half 
of the pull rod. The material parameters are given in Table 2.
The maximum displacement curves versus load obtained from the pro-
posed modeling by varying the value of εd0, from Mazars and Pijaudier-
Cabot [11] and from Guello [4] are presented in Figure 4. As for the 
obtained results, it was verified that the curves obtained from the simu-
lations with the proposed modeling were close to the curve obtained 
from the numerical model of Mazars and Pijaudier-Cabot [11].

The crack is simulated through the line interface elements with 
linear softening constitutive behavior. The interface parameters 
were adopted as per Bessa et al. [2]. Figure 5 shows the maps 
of the damage distribution in the concrete that correspond to the 
values of εd0 equal to 0.00001, 0.00003 and 0.00005. In all the 
cases, it is noticed the formation of new cracks in the transversal 
direction to the pull rod and parallel to the existing one, as well 
as cracks around the bar. The pulling off the steel bar did not 
happen. The variation of the εd0 value causes differences in the 
distribution of the damage in the part once the Mazars’ model 
predicts the appearance of damage in different spots of the pull 
rod for each value.
The cracks that are perpendicular to the part axis will develop if the 
tensile stress in the concrete exceeds the tensile stress resistance, 
not only around the steel bar but also in the entire cross-section. 
These cracks are basically due to the tensile stress from the stress 
transference from the steel to the concrete through the adherence.
In fact, in reinforced concrete parts under tensile stress, a relative 
sliding always occurs between the armature and the adjacent con-
crete when the strains in both of them have different values. This 
sliding occurs mainly due to the crushing of the concrete in front of 
the armature bar saliences (Bessa et al. [2]).
Moreover, the contribution of the tangential stiffness component 
(Ks) is disregarded in the constitutive model for simulating the 
crack. This simplification may result in singularity and instability in 
the numerical analysis once the tangential relative displacement is 
without restriction.

8.	C onclusions

The traditional analysis of concrete structures is based on labora-
tory tests in structures or structural parts. The results obtained from 
these tests are limited and, sometimes, difficult to interpret. Thus, 
the development of mathematical-numerical models is needed to 
complement the experimental analysis and allow the generaliza-
tion of results for different structures and types of loading.

Figure 3 – Structural model of the reinforced 
concrete pull rod with a previous crack

Table 2 – Material parameters 
of the structural model

Concrete Steel Interface

E  = 30 GPac0   
 = 0.2  
A  = 0.8T   

3B  = 5 10T   
A  = 1.4C   

3B  = 2 10C   

E  = 200 GPaa   
 = 0.2  
k  = 1a

–
– –
– –

  

-4G = 4.87 10  kN/cmf    
2K  = 0.158 kN/cm0   

w  = 0.00616 cmc   
2s  = 0.158 kN/cmu   

Figure 4 – Maximum displacement curve versus load
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In relation to the first simulation, the computational numerical mod-
el implemented in this work, even it being one-dimensional, was 
able to reasonably reproduce the results with regards to the other 
answers obtained in Jarek et al. [7]. The rupture load predicted 
by the criterion of Tsai and Wu [18] was close to the experimental 
collapse load. However, depending on the adopted value for the 
reference strain εd0, the numerical answer may differ and lead to 
non-satisfactory results.
Tsai and Wu’s [18] theory was chosen for presenting many advan-
tages in relation to the several other existing theories, such as: it is 
a scalar and invariant equation in which the strength components 
are expressed in a tensor; and the symmetry properties of the ten-
sor may be strictly determined.
The second problem is a study of the coupling of theories - Dam-
age Mechanics and Fracture Mechanics - for simulating the phe-
nomena related to the concrete behavior.
The structural analysis of reinforced concrete parts with a previous 
crack (discontinuity) carried out through the line interface element, – 
for simulating the crack - together with a model of damage, has proved 
to be satisfactory from the qualitative point of view, for the maps of the 
damage distribution once all the simulations presented perpendicular 
cracks to the pull rod axis and parallel among themselves.

This methodology has the advantage of not requiring the use of 
finite element mesh reconstruction techniques. In general, discreet 
models require sophisticated and expensive mesh reconstruction 
techniques, from the computational point of view, for capturing the 
propagation of cracks along the loading process.
It is believed that the adoption of constitutive models that consider 
the coupling of theories present a great potential for projects used 
for calculating the collapse load and identifying all the mechanism, 
for verifying the behavior of finite elements under stress and in the 
analysis of reinforced concrete structures subject to random loads, 
for instance, the ones from the shocks, and also for verifying the 
deformability of the structures in use.
The joint application of such models in practical situations is 
harmed due to the experimental identification of the parameters 
contained in the evolution laws of the damage and fracture vari-
ables. According to Pituba and Proença [13], the Mazars’ [10] 
model can be expanded for use in situations that are more close 
to reality, provided that resources such as the armatures plastifica-
tion, location of permanent strains and the consideration of the in-
teraction between the concrete and the armature are incorporated.
In future works, besides the suggestions from these authors, we 
intend to implement new constitutive models based on the Con-
tinuous Damage Mechanics for simulating the concrete and other 
failure criteria, such as the Willian-Warnke, in two-dimensional and 
three-dimensional reinforced concrete structures, which will allow 
more realistic analyses.
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