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Abstract  

Resumo

The main goal of the present work is to present a comparison between two different strategies for the computational simulation of reinforced 
concrete structures, both using smeared crack models to represent the behavior of the materials. As a first approach, a multidirectional 
smeared crack model available in DIANA has been adopted along with different softening rules for the cracked materials (brittle, linear, non-
linear of Moelands-Reinhardt and Hordijk). Additionally, the Disturbed Stress Field Model – DSFM has also been adopted to model cracked 
concrete as an orthotropic material with smeared rotating cracks. The finite element codes DIANA and VecTor2 have been used to evaluate 
the performance of the different smeared crack models to predict the behavior of reinforced concrete beams subjected primarily to flexure.

Keywords: smeared crack, reinforced concrete, finite element method.

O objetivo principal do trabalho é apresentar uma comparação entre distintas estratégias de simulação computacional de estruturas de 
concreto armado utilizando modelos de fissuração distribuída. Em uma primeira abordagem, foi adotado o modelo multidirecional de 
fissuração distribuída do programa DIANA empregando-se diferentes regras de amolecimento para o material fissurado (frágil, linear e 
não-lineares de Moelands-Reinhardt e de Hordijk). Posteriormente, foi utilizada a formulação DSFM – Disturbed Stress Field Model, mo-
delando o concreto fissurado como um material ortotrópico com fissuras distribuídas do tipo rotacionais. Os programas DIANA e VecTor2 
foram utilizados como ferramentas para avaliar a eficácia dos diferentes modelos no estudo de vigas de concreto armado submetidas a 
esforços de flexão.

Palavras-chave: fissuração distribuída, concreto armado, método dos elementos finitos.
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1.	 Introduction

The reinforced concrete became one of the most important struc-
tural materials in the last century, being widely used in different ar-
eas of civil engineering. Due its low resistance to tensile stresses, 
the concrete structures suffer cracks even when they are subjected 
to low levels of load, which causes a reduction on their stiffness 
and modify the internal stress distribution, and as a result the struc-
ture starts to present a non-linear behavior.
The crack modeling is a quite complex and intriguing topic for being 
associated to the discontinuity study in the displacement field. In 
the numerical simulation of reinforced concrete structures by Finite 
Element Method, three different tendencies have been developed 
to represent the cracks: discrete, smeared and incorporated.
The discrete crack models are based on the idea of always work-
ing with the portion of the solid which remains continuous and with-
out any damages, so that during the formation or progression of an 
existing crack, its sides incorporate to the outline of the solid. The 
cracks are modeled as displacement discontinuities among the fi-
nite elements and they must develop across their outlines, what 
ends up generating a restriction in its propagation direction. The 
application of these models is limited to the study of the problems 
involving the progression of few cracks, what hinders its use in 
most of the reinforced concrete structures.
In the smeared crack models, the cracked material is treated as 
continuous, and the discontinuity of the displacement field caused 
by the crack is spread across the element by changing the con-
stitutive equation. Despite the successful study of most of the 
reinforced concrete structures, among the deficiencies of these 
models, it can be pointed out the difficulty in studying the localized 
cracking situations, as well as the sensitivity problems concerning 
the finite element mesh.
Later on, the incorporated crack models appeared which gather 
the favorable aspects of the previous two tendencies: there is no 
need of a mesh redefinition (deficiency observed in the discrete 
model) and the results obtained are independent from the finite 
element mesh (deficiency of the smeared model). The models are 
based on the concept of discontinuities incorporated in standard 
finite elements. 

2.	 Smeared crack models

Since it has begun to be used in reinforced concrete structures, the 
Finite Element Method has shown more advantages by representing 
the cracks through changes of the constitutive equations (smeared 
models) instead of changes on the finite element mesh (discrete 
models). The first analyses were based on the idea of fragile failure, 
that is, to make the material stiffness null in the direction of the maxi-
mum tensile stress when it exceeded the tensile strength. 
Later on, it was observed that better results in the post-peak phase 
could be achieved by adopting a gradual reduction in the stress. In 
order to represent this behavior, the stress-strain diagram started 
to be defined by experimental values and, thus, several models 
were proposed (Cedolin e Dei Poli [1], Bazant and Gambarova [2], 
Gupta and Maestrini [3], and Vecchio [4]).
Though successfully used to represent the behavior of the rein-
forced concrete structures which presented a crack pattern well 
distributed, when used to simulate the behavior of structures in 
which a crack is predominant (plain concrete or deep beams), these 

models presented some deficiencies. One of the deficiencies is the 
sensitivity regarding the mesh, caused by the non-consideration of 
concepts associated to Fracture Mechanics. So, it was necessary 
to apply the Fracture Mechanics concepts directly over the con-
crete structures analysis, creating a series of new models (Bazant 
and Cedolin [5], Bazant and Oh [6], Feestra and de Borst [7]).
Rots and Blaauwendraad [8] presented a comparative study be-
tween the discrete and smeared crack models. This study intro-
duced the idea of dividing the smeared crack models into fixed 
and rotating. In the fixed model, the crack orientation is kept con-
stant during the whole computational process, while in the rotating 
model the crack orientation may change, following the main direc-
tions. There is also an intermediary option which is the concept of 
multidirectional fixed smeared crack.
There are also the models based on the plasticity theory, which are 
able to represent well the pre-peak and post-peak phases, consist-
ing of a constitutive model and a failure criterion. In this line it can be 
pointed out the models by Ottosen [9] and Pramono and Willam [10].  

3.	 Smeared crack models in DIANA

DIANA code – version 9.1 was used to evaluate the performance 
of different smeared crack models.  DIANA is a finite element soft-
ware based on the displacement method for non-linear analysis 
of concrete structures, which has been developed since 1972 by 
Delft University of Technology in Netherlands.
The smeared crack models are defined through the combination of 
three factors: a failure criterion (constant or linear), the cut transfer 
through the crack (total, constant or variable) and the material soft-
ening behavior (brittle, linear, multilinear or non-linear). In order to 
enable the combination of the crack model with a plastic behavior 
of the material, the total strain, ε, is decomposed in two parts, one 
is the elastic strain, εe, and the other is the crack strain, εcr. In the 
definition of the constitutive model, a criterion for the beginning of 
a new crack and its stress-strain relationship must still be estab-
lished.
For the beginning of a new crack, two pre-requirements are neces-
sary: the principal stress must exceed a limit stress; and, in case 
there is a previous crack, the angle between the existing crack and 
the principal tensile stress must exceed the initial crack angle. Re-
garding the constitutive model, the stress-strain relationship in the 
normal direction of the crack may be expressed by:

where, ft is the concrete tensile strength and the variable y is the 
function that represents the material softening diagram. The ulti-
mate strain εult is assumed to be constant, and it may be obtained 
from the concrete tensile strength ft, the fracture energy Gf, and the 
element area (represented by its equivalent length h):
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• Constant:	 it admits a constant value of the tensile strength and
	 considers the beginning of a crack if the maximum 	
	 principal tensile stress exceeds the concrete tensile strength.
• Linear: 	 it admits a linear variation and considers the
	 beginning of new cracks, if the principal tensile 	
	 stress exceeds the minimum value between ft and
	 ft (1+ σlateral / fc), in which σlateral is the principal lateral 	
	 stress and fc is the concrete compressive strength. 
In the smeared crack models, it is adopted a reduction parameter 
β for the transverse stiffness of the material known as “shear reten-
tion factor”. Thus, the shear stiffness may be expressed by:

The parameter β may range from 0 to 1. For values next to zero, 
it is achieved a very small concrete shear stiffness and in the op-
posite case, for the unitary value it is obtained an infinite shear 
stiffness that will prevent the formation of cracks in this direction. 
Following the recommendations found in the literature, in the nu-
merical examples analyzed in this work it was adopted  β = 0.2.
In the multidirectional smeared crack model it is possible to adopt 
a plasticity criterion for the material: Tresca, von Mises, Mohr-Cou-
lomb or Drucker-Prager, and to choose the concrete tensile behav-
ior in the softening branch. Among the different softening rules of 
the material available in DIANA it can be pointed out: brittle, linear, 
and non-linear by Moelands-Reinhardt and Hordijk, according to 
Figure 1. 
The brittle behavior is characterized by the total reduction of stress 
after the failure criterion has been achieved. This behavior may be 
described by the following expression:

In the case of the linear softening model, the stress-strain relation-
ship in the crack is defined by the following expression:

Two other non-linear models may still be adopted. The softening 
model by Moelands-Reinhardt uses a non-linear relationship be-
tween stresses and strains expressed in the following equation, 
with the coefficient c1 taking the constant value of 0.31:

The other non-linear model present in DIANA is the model by Hordijk 
which uses an exponential relationship between the normal tensile 

where:

The fracture energy Gf may be calculated in two ways: the first 
one based on the model code CEB-FIP [11] and the second based 
on the laws of the softening and hardening branches of concrete. 
Another possibility is to use the hardening-softening laws with 
rheological models originated from the plasticity theory. Among 
the smeared crack models available in DIANA, it may be pointed 
out: fixed, multidirectional and rotating models. In the present 
work just the multidirectional smeared crack models were used.

3.1	 Multidirectional smeared crack models

The multidirectional smeared crack models are known for pre-
senting an intermediary behavior between the fixed and rotating 
models. These models allow the propagation of several cracks at 
the same point and according to the definition of the parameter 
called “threshold angle”, a fixed or rotating model may be ob-
tained. This parameter represents the angle between an existing 
crack and another one formed at the same point and its standard 
value is 60º. If this parameter is changed to 90º, a fixed model is 
obtained and if changed to 0º a rotating model is obtained. In the 
present work, it was used the standard value defined by DIANA.
The multidirectional models present some differences in relation 
to the fixed models, among which it may be pointed out: different 
concrete models for tensile stresses, an option to decrease or 
not the transverse stiffness and the possibility to use constitu-
tive models originated from the plasticity theory. The behavior of 
the concrete subjected to tensile stresses may be defined in two 
different forms: constant or linear: 
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Figure 1 – Material softening models – DIANA
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stresses and strains, with the coefficients c1 and c2 taking, respective-
ly,  the values of 3.0 and 6.93, according to the following equation:

The multidirectional model available in DIANA is characterized for 
modeling the material combining a smeared crack model (brittle, 
linear, exponential,...) with a plastic model for compression, in 
which it is possible to use the classical failure models by Tresca, 
Von Mises, Mohr-Coulomb and Drucker-Prager.
The constitutive model for the reinforcement is the perfect elas-
to-plastic. By adopting this model, the reinforcement stress may 
be determined by the equations (9) and (10), where fy is the yield 
stress, Es is the elastic module and εs is the reinforcement strain:     

4.	 Smeared crack models in VecTor2 

VecTor2 is a finite element software used in the analysis of two-
dimensional reinforced concrete structures which has been devel-
oped at the University of Toronto since 1990. The software devel-
opment has been happening parallel to a series of experimental 
tests, in order to better predict the behavior of a variety of rein-
forced concrete structures.

The theoretical bases of VecTor2 are the MCFT – Modified Com-
pression Field Theory, developed by Vecchio and Collins [12] and 
DSFM – Disturbed Stress Field Model, developed later by Vecchio 
[4]. These formulations are analytical models to predict the response 
of reinforced concrete elements, representing the cracked concrete 
as an orthotropic material with rotating smeared cracks. The main 
concepts of the MCFT and DSFM formulations will be addressed in 
the next sections.

4.1	 Modified Compression Field Theory (MCFT)

The MCFT is an analytical model to represent the behavior of two-di-
mensional reinforced concrete structures discretized by membrane ele-
ments subjected to normal and shear stresses, as shown in Figure 2. 
This formulation evaluates the average stresses and strains (in the 
region between the cracks) and the local stresses and strains of 
the concrete and reinforcement, as well as the widths and orienta-
tions of the cracks during the loading and, based on this informa-
tion, the failure mode of the element can be determined.
The modeling of the cracked concrete element is performed by us-
ing an orthotropic material and a rotating smeared crack model. 
In other words, the cracked concrete is treated like a continuous 
medium with cracks smeared across the membrane element. The 
smeared cracks may suffer changes in their directions always re-
maining linked to the direction changes in the principal stress field.  
The MCFT is based on three groups of relationships: compatibil-
ity relationships for the average strains in the concrete and rein-
forcement; equilibrium relationships for the average stresses in 
the concrete and reinforcement; and the constitutive relationships 
for the cracked concrete and reinforcement. Among the hypoth-
eses admitted in the MCFT formulation, it may be pointed out: the 
uniformly distributed reinforcement; uniformly applied shear and 
normal stresses; perfect bond between the concrete and the rein-
forcement; uniformly distributed and rotating cracks; and the orien-
tation of principal stress and strain are the same.
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subjected to in plane stresses
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4.1.1 Compatibility relationships in the MCFT

The compatibility relationships in the MCFT are achieved from the 
average strains in the components which represent the concrete 
and the reinforcement, according to Figure 3. Based on the perfect 
bond hypothesis, the average strains in the concrete (εc) are equal 
to the average strains in the reinforcement (εs). Although any num-
ber of components and reinforcement orientations may be consid-
ered in the MCFT formulation, considering the membrane element 
orthogonally reinforced of Figure 2, the compatibility equations 
may be expressed by:

With a value for the shear strain γxy, it is possible to obtain the aver-
age principal concrete tensile strain (εc1) and the average principal 
concrete compressive (εc2), as well as the orientations of the aver-
age principal tensile strain and stress axes using Mohr’s circle:

4.1.2 Equilibrium relationships in the MCFT

Considering the free body diagram of the membrane element 
shown in Figure 4, through the balance of forces in the x and y 
directions, the results of the normal stresses applied in panel σx e 
σy must be balanced by the normal stresses in the concrete fcx and 
fcy and by the stresses in the reinforcement fsx e fsy.  
The balance of moments requires that the shear stress applied to 
the panel, represented by τxy, to be totally resisted by the average 
shear stress in the concrete τcxy, assuming that the   reinforcement 
does not present any kind of dowel action. Thus, these equilibrium 
relationships for the average stresses may be expressed by the 
following equations, where ρsx and ρsy are the reinforcement ratios 
in the x and y directions:
                                                                                                      
 
 
 

Since the cracked concrete is orthotropic with respect to the direc-
tions of the principal stress, Mohr’s circle can be used to relate 
the average concrete stresses fcx and fcy, to the average principal 
concrete tensile stress fc1: 

                                                                                               

4.1.3 Constitutive relationships in the MCFT

A set of thirty panels measuring 890x890x70 mm was tested ex-
perimentally and the results were analyzed to develop constitutive 
models able to represent the behavior of the cracked concrete in 
compression and tension. 
The constitutive relationship to describe the concrete in com-
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pression relates the principal compressive stress, fc2, to the 
principal compressive strain, εc2. The tests with the panels 
have indicated that the compressive strength and stiffness 
suffered reductions as the principal tensile strain, εc1 in-
creased. This phenomenon, known as compression softening 
is incorporated through the stiffness reduction in the stress-
strain curve of the concrete:

                                                                            
The term which appears in the numerator is the Hognestad’s parabolic 
relationship, obtained for the concrete subjected to the uniaxial com-
pression, generally used for normal strength concrete. The value ε0 
corresponds to the strain associated to the peak stress of the concrete 
fc’, as determined experimentally from uniaxial compression tests of 
concrete cylinders. The denominator reflects the softening effect.
With regards to concrete in tension, it is first necessary to deter-
mine the values of the uniaxial cracking strength of the concrete, 
ft’, and its corresponding tensile strain, εcr, which may be obtained 
through the following expressions:    

where Ec is the initial tangent stiffness of the concrete, estimated 
by the following expression:

It is admitted that before cracking, the concrete presents a linear-elastic be-
havior in tension. Therefore, after cracking, tensile stresses may continue 
to exist in the concrete between the cracks due to bond interactions be-
tween the concrete and reinforcement. To model this phenomenon known 
as tension stiffening, the MCFT proposed the following relationship:

For the reinforcement in compression and tension, the MCFT uses 
a bilinear relationship to relate the average stress and strain, in the 
same way it had been done with the crack model in DIANA.

where Es is the elastic module and fs
yield is the yield stress of the 
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Figure 5 – (a) Average stresses between cracks and (b) local stresses at crack free surface
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4.1.4 Local crack conditions in the MCFT

Given a compatible average strain condition, the constitutive 
relationships can be used to determine the average stresses in 
the concrete and reinforcement, as well as the normal and shear 
stresses acting on the structure. However, it would be unconserva-
tive to disregard the possibility that the response of the structure 
may be guided by the local yielding of the reinforcement at the 
crack or sliding shear failure along a crack. To cover these possi-
bilities, the MCFT limits the local stresses at the crack and average 
tensile concrete stress.
The stress field in the reinforced concrete suffers variations when 
evaluated according to the average values in the area between 
the cracks and when evaluated locally at the crack. This behavior 
can be better understood considering Figure 5(a), which depicts 
the average stresses in a section located between cracks, and 
Figure 5(b), which depicts the local stresses at the free surface 
of the crack.
At a free surface of the crack, the average concrete tensile 
stresses are practically reduced to zero. Consequently, to 
transmit the average tensile stresses across the crack, the 
stresses and strains in the reinforcement must increase locally 
at the crack. Static equivalence between the average and local 
stresses in the normal direction to the crack surface, results in 
the following relationship:

where fscrx and fscry are the local reinforcement stresses at a crack, 
and θnx and θny the values of the angles between the normal to the 
crack and the reinforcement. Considering the equation (27), the 
average tensile concrete stress must be limited by the yielding of 
the reinforcement at the crack and consequently:

As a principal plane, the shear stress is absent and thus, they do 
not appear in Figure 5(a). However, as the reinforcement generally 
crosses the cracks at a skew angle, the local shear stresses, τci will 
be present on the crack surface. Consequently, through the static 
equivalence of the average and local stresses in the tangential di-
rection to the surface of the crack, the local shear stresses can be 
determined by the following equation:

However, the local shear stress is limited by the aggregate interlock 
mechanism, which decreases with the increase of the crack width 
(w) and with the reduction of the size of the aggregated (a). Based 
on the analysis of the aggregate interlock mechanisms developed 

by Walraven [13], the MCFT establishes a limit for the shear stress 
on the crack:

4.2	 Disturbed Stress Field Model (DSFM)

The DSFM is an extension of the MCFT, with the purpose of treat-
ing the MCFT deficiencies. For example, in lightly reinforced ele-
ments, in which the shear slip along the crack is more expressive, 
the rotation of the stress field tends to present a certain discrep-
ancy concerning the rotation of the strain field. In these cases, the 
stiffness and strength end up being overestimated by the MCFT, 
which assumes the orientations of the principal stress and strain 
are the same. On the other hand, in elements which present small 
rotations in the stress and strain fields, the MCFT generally under-
estimates the shear stiffness and strength.
The DSFM is conceptually similar to the MCFT, however, it ends up 
extending the MCFT in several aspects. Primarily, the DSFM en-
larges the compatibility relationships of the MCFT to include crack 
shear slip. Furthermore, the DSFM decouples the orientation of the 
principal stress and strain fields. By explicitly calculating crack slip 
deformations, the DSFM eliminates the need to check the shear 
stress. Modifications in the calculation of the constitutive relation-
ships for the concrete and reinforcement are also presented.  

4.2.1 Compatibility relationships in the DSFM

Although the MCFT admits that the orientations of the principal stress-
es and strains remain the same, experimental tests indicate that this 
hypothesis is not always valid after the crack. The experimental re-
sults show that the principal strain field generally suffers modifications 
in its orientation at a larger rate than in the principal stress field. 

Figure 6 – Deformations due to crack shear slip
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This phenomenon is attributable to the manner by which the stress 
and strain fields are determined. The measured strains are total 
strains, which are obtained by the sum of the average strains in 
cracked concrete (Figure 2) and the shear strains, caused by slip-
ping across the crack, as shown in Figure 6.
In order to represent this behavior, the DSFM defines the total 
strains, εx, εy and γxy as the sum of the net concrete strains, εcx, εcy 
and γcxy, and the strains due to shear slip, εx

s, εy
s and γxy

s.

The principal net concrete tensile strain (εc1) and principal 
net concrete compressive strain (εc2) may be evaluated using 
Mohr’s circle:

The crack slip shear components, εx
s, εy

s and γxy
s, can be calculated 

from the average crack slip shear strain γs. This strain is equal to 
the slip in the crack, δs, divided by the average space between the 
cracks, s, according to the following expression:

The orientation of the principal net concrete strains, θ, and the ori-
entation of the principal concrete stress, θσ, with respect to the x 
axis can be determined from Mohr’s circle with the components of 
the net concrete strain as follows:

Likewise, the orientation of the principal total strain field, θε, can be 
determined from the components of the total strain:

Although in the DSFM, it is possible to use any number of rein-
forcement components and orientations, considering the orthogo-
nally reinforced membrane element and assuming perfect bond, 
the average strains in the components of the reinforcement in the 
x and y directions will be equal to the total strains:

4.2.2 Equilibrium relationships in the DSFM

Considering again an orthogonally reinforced membrane element, 
the equilibrium relationships of the DSFM are the same determined 
previously for the MCFT, that is:
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Similarly, the DSFM formulation also incorporates the equilibrium 
relationships for the local stresses at the crack:

It is worthy pointing out that the average concrete tensile stress 
must be limited by the yielding of the reinforcement traversing 
the crack:

However, unlike the MCFT, the tensile stress is not subjected to the 
limitation of the shear stresses at a crack, since the DSFM incor-
porates deformations due to shear slip, instead of imposing a limit 
stress corresponding to the shear slip failure.

4.2.3 Constitutive relationships in the DSFM

The experimental analysis of a series of reinforced concrete pan-
els led Vecchio and Collins [12] to propose a reduction factor, βd, in 
order to reflect the softening effect of the concrete and its connec-
tion to the principal tensile strain.

In this equation, the softening effect of transverse tensile strains is 
taken into account by factor Cd, defined by:

The factor Cs determines if the analysis of the element will 
take into account slip deformations. If the analysis does not 
consider the slip deformations, as in the MCFT, then factor 
Cs = 1.0. If the analysis considers element slip distortions, as 
in the DSFM, then the softening effect appears to be less for 
the same value of the relationship εc1/εc2 since the softening 
effect is attributed only to the tensile strains and in this case,  
Cs = 0.55.
In order to consider the concrete softening effect, the concrete cyl-
inder strength fc’, and its corresponding strain peak, εc’, are both 
reduced:

With regards to the constitutive models to simulate the behavior 
of the concrete in tension, it is admitted that the response before 
crack is linear-elastic and for cracked concrete the average con-
crete tensile stresses, fc1

a, due to tension stiffening, may be mod-
eled by a nonlinearly decaying relationship:

The coefficient ct incorporates the influence of the reinforcement bond 
characteristics and can be determined by the following equation:

where dbi is the bar diameter and ρi is the reinforcement ratio of 
each of the n reinforcement components. In the DSFM, a trilinear 
constitutive model for reinforcement in tension or compression is 
used to account for strain-hardening phenomenon:
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where Es is the elastic module; fsyield is the yield strength of the re-
inforcement; εsyield is the yield strain of the reinforcement; εsh is the 
strain at the onset of strain hardening; and εu is the ultimate strain 
of the reinforcement.

4.3	 Composite material stiffness matrix

The composite material stiffness matrix is the sum of the concrete 
material stiffness matrix Dc and the reinforcement component ma-
terial stiffness matrices Dsi:

As the MCFT and DSFM model the reinforced concrete element as 
an orthotropic material in the principal stress direction, it is neces-
sary to formulate the concrete material stiffness matrix relative to 
these directions, Dc’. Assuming that the Poisson’s effect is negli-
gible, then Dc’ can be calculated by:

The secant modules are computed from the current values of the 
principal stresses fc1 and fc2 and the corresponding net concrete 
strains εc1 and εc2:

Likewise, the reinforcement component matrices Dsi’ must be determined 
initially relative to their longitudinal axes. Assuming that the reinforcement 
only resists to uniaxial stresses, the matrix Dsi’ can be determined by:

Afterwards, the material stiffness matrices Dc’ and Dsi’ initially eval-
uated relative to the principal axes are transformed to the x and y 
axes by means of the transformation matrix:  

                                                                                                       
 

5.	 Numerical examples 

5.1	 Simply supported reinforced concrete  
	 beam – Leonhardt and Walther [14]

A set of four reinforced concrete beams (ET1, ET2, ET3 e ET4) ex-
perimentally analyzed by Leonhardt and Walther [14] will be stud-
ied numerically using different smeared crack models in DIANA 
and VecTor2. The beams are simply supported and submitted to 
vertical loads as shown in Figure 7.
The beams have the same amount of reinforcement but they have 
different core widths, what implies in different reinforcement ratios. 

(57)shsshsyields Eff εε −+= , ussh εεε ≤<

Figure 7 – Reinforced concrete
beams (ET1, ET2, ET3 and ET4)
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The longitudinal reinforcement at the bottom of the cross section 
consists of four bars with diameter of 20 mm and yield stress fy = 
428 MPa. The longitudinal reinforcement at the top consists of two 
bars with diameter of 8 mm and yield stress fy = 465 MPa. The 
transverse reinforcement is represented by stirrups of 6 mm and 
yield stress fy = 320 MPa. 
The concrete cube strength, achieved experimentally by Leon-
hardt and Walther [14], was fcub = 28.5 MPa. The corresponding 
values for the concrete cylinder strength (fc = 22.8 MPa), the con-
crete cracking strength (ft = 1.57 MPa) and the initial elastic module 
(Eco = 23874.67 MPa) were determined from the concrete cube 
strength, according to Vecchio and Collins [12].
The set of reinforced concrete beams was analyzed with smeared 
crack models, employing different softening rules from DIANA (brit-
tle, linear, non-linear by Moelands-Reinhardt and Hordijk) and the 
plasticity criterion by von Mises, as well as using the DSFM from 
VecTor2. The parameters used in the softening models are showed 
in Table 1. The perfect elasto-plastic behavior and elastic module 
Es = 210000 MPa were considered for the reinforcements.
The finite element mesh used for modeling the concrete structure 
with 341 nodes and 300 rectangular elements is shown in Figure 
8. Incorporated models were used in DIANA for the discretization 
of the reinforcement. On the other hand, VecTor2 used discrete 
models for the longitudinal reinforcement and smeared models for 
the stirrups.
The vertical displacements of the beams at Point A (midspan) 
are shown in Figure 9. It can be observed that the load x dis-
placement curves achieved with the different models present a 
great concordance with the experimental results. In general, the 
computational models presented a little higher stiffness than the 
experimental results. 

The additional stiffness associated to the consideration of perfect 
bond and the contribution of concrete between cracks is more sig-
nificant for smaller reinforcement ratios. The beam ET1 (with the 
smaller reinforcement ratio) presented the biggest discrepancy 
to the experimental results. The discrepancy between numerical 
and experimental models was less significant in the beams with 
higher reinforcement ratios (ET2, ET3 and ET4), as according to 
d’Avila [15]. 
To better understand the behavior of the beams and their col-
lapse mechanisms, it is shown in Figure 10, the crack pat-
tern and the orientations of the principal tensile strains ε1 and 
principal compressive strain ε2 of the beam ET4 for a load 
P=76.8 KN. 

5.2	 Continuous reinforced concrete  
	 beam – Leonhardt and Walther [16]

A set of three reinforced concrete beams (HH3, HH4, and HH5) 
tested experimentally by Leonhardt and Walther [16] will be an-
alyzed using a smeared crack model with the softening rule by 
Hordijk and the plasticity criterion by von Mises in DIANA and also 
with the DSFM in VecTor2. The beams have rectangular cross sec-
tions (25 x 32 cm2), presenting different lengths and reinforcement 
ratios, as shown in Figure 11.
The positive and negative longitudinal reinforcements are repre-
sented by bars of 14 mm with yield stress fy = 417 MPa. The trans-
verse reinforcements consist of stirrups of 8 mm with yield stress 
fy = 371 MPa.  
The length of the beams and their respective mechanical prop-
erties are shown in Table 2. Likewise the previous example, the 
concrete cylinder strength, the concrete cracking strength and 

Table 1 – Mechanical properties for cracked concrete

Property Value Softening Models

Shear Retention factor ( )β 0.2 All  DIANA models

Ultimate Strain( )εu
0.0003337 Linear

Fracture Energy (G )f 0.00068 KN/cm Moelands-Reinhardt, Hordijk
Crack bandwidth (h) 17.32 cm Moelands-Reinhardt, Hordijk

Figure 8 – Finite element mesh – 10x30
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the initial elastic module were determined from the concrete cube 
strength according to Vecchio and Collins [12].
The parameters adopted for the Hordijk’s model are showed in 
Table 3. The perfect elasto-plastic behavior and elastic module Es 

= 210000 MPa were adopted for the reinforcement.
The finite element mesh used for modeling the concrete struc-
ture with 369 nodes and 320 rectangular elements is shown in 
Figure 12. Incorporated models were used in DIANA for the dis-
cretization of the reinforcement. On the other hand, VecTor2 used 
discrete models for the longitudinal reinforcement and smeared 
models for the stirrups.
The vertical displacements of the beams at Point A are shown in 
Figure 13. The load x displacement curves achieved with the dif-
ferent models present a great concordance with the experimental 
results. At the beginning of the loading process the computational 

models presented a smaller stiffness than the experimental results, 
however, for the final phase, this situation inverts and the com-
putational models start to present a little higher stiffness than the 
experimental results. 
The additional stiffness in the computational models is caused by 
two factors: the consideration of the perfect bond and the contribu-
tion of concrete between cracks, which was also observed in the 
previous example.  
For this series of continuous beams, it is also showed a compar-
ison of the reinforcement stresses for the different models. The 
analyzed points are: under the load for the positive reinforcement 
(Point C) and at the central support for the negative reinforcement 
(Point B), as shown in Figure 14, indicating that the computational 
models were able to evaluate properly the reinforcement stresses 
during the loading process. 

Figure 9 – Load x Displacement curve (ET1, ET2, ET3 and ET4)
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Figure 10 – Beam ET4 – (a) Deformed shape and beam crack pattern,
(b) and (c) Orientations of the principal tensile and compressive strains andε ε1 2

ε1

ε2

(a)

(b)

(c)

Figure 11 – Reinforced concrete beams (HH3, HH4 and HH5)
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Table 2 – Mechanical properties of concrete

Beams L (cm) F (MPa)cub F (MPa)c F (MPa)t E (MPa)c0

HH3 211 37.1 29.68 1.80 27240

HH4 257 33.6 26.88 1.71 25923

HH5 300 36.3 29.04 1.78 26944

Table 3 – Parameters for the Hordijk model

Property Value Beams
Shear Retention factor ( )β 0.2 HH3, HH4 e HH5

Fracture Energy (G )f 0.00068 KN/cm HH3, HH4 e HH5

Crack bandwidth (h) 17.32 cm HH3, HH4 e HH5

Figure 12 – Finite element mesh – 8x40

To better understand the behavior of the beams and their collapse 
mechanism, the crack pattern and the reinforcement stresses of 
the beam HH5 for a load P=195.4 KN are shown in Figures 15 
and 16.

6.	 Conclusions

The smeared crack models of DIANA and VecTor2 proved to be 
very efficient to analyze the reinforced concrete beams subjected 
to bending. The load x displacement curves obtained with the differ-
ent models presented a great concordance with the experimental 
values. In general, the computational models presented a higher 
stiffness than the experimental results. Among the causes of the 
additional stiffness, it can be pointed out the concrete contribution 
between cracks, which proved to be more significant for smaller re-
inforcement rates and the hypothesis of perfect bond, since due to 
the non-consideration of the bond loss, it is natural that the cracked 
structure becomes stiffer. The selection of the material softening 
rule showed to be more significant for smaller reinforcement ratios, 
in which the brittle model presented the highest discrepancy with 
respect to the experimental values.
The smeared crack models permitted to simulate the post-crack 
behavior of the reinforced concrete allowing to follow up the evo-
lution of stresses and strains during the loading process and to 
obtain a crack pattern which enabled to better understand its be-

havior, as well as to follow up the stress evolutions and the yielding 
of the reinforcements.
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Figure 14 – Reinforcement Stresses (HH3, HH4 and HH5)
(a)negative reinforcement –HH3, (b)positive reinforcement – HH3, (c)negative reinforcement – HH4,

(d)positive reinforcement – HH4, (e)negative reinforcement – HH5, (f)positive reinforcement– HH5
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Figure 15 – Crack pattern for beam HH5

Figure 16 – Reinforcement stresses for beam HH5
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