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Vibration behavior of 
thin-walled steel members 
subjected to uniform bending
Abstract

This article reports the results of an investigation on the effects of internal mo-
ments on the vibration behavior of thin-walled steel members. The analyses are based 
on the Generalized Beam Theory (GBT), a thin-walled bar theory accounting for cross-
section in-plane deformations – its main distinctive feature is the representation of the 
member deformed configuration by means of a linear combination of cross-section 
deformation modes, multiplied by their longitudinal amplitude functions. The study 
concerns a simply supported T-section (with unequal flanges) members exhibiting a 
wide range of lengths and subjected to uniform internal moment diagrams – their mag-
nitudes are specified as percentages of the corresponding critical buckling values. After 
providing a brief overview of the main concepts and procedures involved in performing 
a GBT-based structural analysis, the vibration behavior of load-free and loaded T-sec-
tion members is addressed – the influence of the applied loadings is assessed in terms of 
(i) the fundamental frequency difference and (ii) the change in the corresponding vibra-
tion mode shape. For validation purposes, some GBT results are compared with values 
yielded by shell finite element analysis performed in the code ABAQUS (Simulia, 2008).

Keywords: thin-walled members, Generalized Beam Theory (GBT), vibration of 
loaded beams, local, distortional and global vibration.
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1. Introduction

It is well known that, due to the 
high slenderness of their walls, thin-
walled members exhibit responses that 
may be governed by phenomena involv-
ing local and/or distortional deforma-
tions of their cross-sections. Moreover, 
it is a common practice to analyze 
their vibration behavior under the (ap-
proximate) assumption that they are not 
subjected to any loading. i.e., load-free. 
However, structural members are invari-
ably subjected to loadings of more or less 
significant magnitude and, therefore, 
the associated geometrically non-linear 
effects (local, distortional or global) 
may have some impact on their natural 
vibration frequencies and mode shapes.

Over the last decades, several studies 
have been published concerning the vibra-

tion behavior of thin-walled members 
acted upon by axial forces (e.g., de Borbón 
and Ambrosini, 2010; Vo and Lee, 2011) 
and/or bending moments (e.g., Shih et 
al., 1986; Joshi and Suryanarayan, 1989, 
1991; Pavlović et al., 2007; Mohri et al., 
2008; Magnucka-Blandzi, 2009; Vo and 
Lee, 2010, 2013; Motamarri and Suryana-
rayan, 2012; Talimian and Vörös, 2013; 
Kashani et al., 2014; Verma, 2015). Re-
garding the second group of publications, 
one must especially mention the contribu-
tion of (i) Shih et al. (1986), related to the 
analytical solution of the flexural vibration 
of long simply-supported beams subjected 
to their own weight, (ii) Talimian and 
Vörös (2013) investigated the dynamic 
stability of a thin-walled beam subjected 
to a time periodic gradient bending mo-

ment, and (iii) Verma (2015) analysed 
the flexural-torsional vibration of a thin-
walled beam due to the combined action 
of bending moment and torque.

However, the vast majority of these 
works are restricted to members vibrating 
in global modes, i.e., involving exclusively 
bending and/or torsional deformations. 
Only a few (and quite recent) publica-
tions deal with the local and distortional 
vibration of loaded thin-walled members 
− most of them concerning members under 
axial force, i.e., columns (e.g., Okamura 
and Fukasawa, 1998; Ohga et al., 1998) 
and only a few concerning thin-walled 
members subjected to bending (e.g., Ur-
baniak and Kubiak, 2011).

The Generalized Beam Theory 
(GBT) was originally developed by 
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Schardt (1966) and may be viewed as an 
extension of Vlasov’s classical bar theory 
(Vlasov, 1961) that incorporates genuine 
folded-plate concepts and, thus, is able 
to take into account in-plane (local) 
cross-section deformations. Moreover, 
the member deformed configuration is 
expressed as a linear combination of a set 
of pre-determined cross-section deforma-
tion modes − due to this rather unique 
modal nature, the application of GBT is 
considerably more versatile and computa-
tionally efficient than similar finite strip or 
shell finite element analyses. Indeed, it has 
been recently shown that GBT provides 
a rather powerful, elegant and clarifying 
tool to investigate a wealth of structural 
problems involving thin-walled prismatic 
members (e.g., Silvestre and Camotim, 
2002; Camotim et al., 2010).

Taking advantages of the exclusive 
modal decomposition features of GBT, 

Schardt and Heinz (1991) study the lo-
cal, distortional and global vibration 
behavior of load-free isotropic thin-walled 
members. Since then, new formulations 
have been extensively developed and 
implemented by Silvestre and Camotim 
(2016, 2006a, 2012), and Bebiano et al. 
(2008, 2013) to analyze the vibration 
behavior of thin-walled members acted 
upon by loadings that may include com-
binations of axial force and uniform or 
non-uniform bending − a study dealing 
with the influence of pure bending in 
steel I-section beams was also reported by 
Camotim et al. (2007). However, it must 
be said that no investigation was carried 
for intermediate-to-long beams, with 
asymmetric cross-sections, that buckle 
in distortional modes − the present work 
aims at providing a first contribution 
towards filling this gap.

The objective of this work is to  

present a GBT-based study concerning the 
local, distortional and global vibration 
behavior of thin-walled members acted 
upon by a uniform major-axis bending 
moment. The analyses are carried out for 
simply supported T-section (with unequal 
flanges) beams exhibiting a wide length 
range and subjected to several loading 
levels, defined as percentages of the cor-
responding critical bifurcation values. 
The influence of the loading is assessed 
through the comparison relatively to the 
load-free case of the (i) natural frequency 
values and (ii) vibration mode shapes. 
The results presented and discussed are 
validated by means of values and mode 
shapes provided by numerical analyses 
performed with the code ABAQUS 
(Simulia, 2008), adopting fine meshes of 
four-node isoparametric shell (S4) ele-
ments (length-to-width ratio close to 1) 
to discretize the columns.

2. Generalized beam theory – brief overview

As mentioned earlier, the GBT 
is a one-dimensional bar theory that 
expresses/discretizes the member de-
formed configuration as a linear com-
bination of cross-section deformation 
modes multiplied by the corresponding 
(modal) amplitude functions. Its appli-
cation involves the performance of two 

main tasks, namely (i) a cross-section 
analysis and (ii) a member analysis – a 
very brief overview of this theory is pre-
sented next (a complete account can be 
found, e.g., in Silvestre and Camotim, 
2002a) and, for illustrative purposes, 
one considers the member depicted in 
Fig. 1(a) − also shown is the member 

global coordinate system X–Y–Z (lon-
gitudinal, major and minor axis). Note 
that, in each wall, a local coordinate 
system (x-s-z) is adopted, where x and 
s define the corresponding mid-surface 
(longitudinal and transverse directions) 
and z is measured along the wall thick-
ness (e) during time (t).

Figure 1
T-section: (a) Coordinate 
system and displacement field. 
(b) Geometry. (c) GBT discretization.

According to the classical thin-
walled beam theory (Vlasov, 1961), the 

mid-plane displacement field components 
(u(x,s), v(x,s), w(x,s)) are expressed as

u(x, s, t) = Σ u
k
(s).φ

k,x
(x, t)     v(x, s, t) = Σ v

k
(s).φ

k
(x, t)     w(x, s, t) = Σ w

k
(s).φ

k
(x, t)

(a) (b) (c)

where (i) (.),x≡ d(.)/dx, (ii) u
k
(s), v

k
(s) and v

k
(s) 

are functions providing the longitudinal, 
transverse membrane and transverse 
flexural displacements characterizing 
deformation mode k, and (iii) φ

k
 (x, t) 

are amplitude functions describing their 
variation both along the member length  
(0 ≤ x ≤ L) with time t. It is herein assumed 
that the summation convention applies 
to subscript k (k = 1,…, n

d 
, where n

d
 is the 

number of deformation modes).
In the context of GBT analyses, 

these deformation modes and the corre-
sponding mechanical properties (i) have 

a clear structural meaning and (ii) are 
determined by a systematic procedure 
named cross-section analysis. The com-
plexity of this task depends on the type 
of cross-section intended to be analyzed 
(open/closed, branched/unbranched). 
Following the methodology proposed 
by Dinis et al. (2006) specifically for ar-
bitrarily “branched” open cross-sections 
(i.e., whose bifurcation nodes are shared 
by more than two walls), the cross-
section analysis of the T-section steel 
(E=210GPa, ν =0.3, ρ =7.8t/m3) member 
with the cross-section geometry shown 

in Fig. 1(a) and the discretization shown 
in Fig. 1(c) involves 6 independent natu-
ral nodes, 2 dependent natural nodes 
and 11 intermediate nodes, leading to a 
set of 21 deformation modes: 1-4 are the 
classical rigid body modes (axial exten-
sion, major and minor axis bending and 
torsion), 5-6 are distortional modes and 
7-21 are local modes. The twelve most 
relevant in-plane deformed configura-
tions are shown in Fig. 2. Depending on 
the particular problem under consider-
ation, it is possible to select any sub-set 
of deformation modes (of dimension n

d
) 

(1)
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to be used in the GBT problem solution, 
thus leading to a reduction in the number 
of degrees of freedom involved.

The next step consists of per-
forming the member analysis. This 
procedure comprises the specifications 

of the member length, loading and end 
support conditions, in order to solve 
the differential equilibrium equation 
system, which may be obtained by em-
ploying a suitable variational principle, 
such as Hamilton’s principle.

In the context of member first-order 
(geometrically linear) analysis, the GBT 
system of equilibrium equations (one per 
deformation mode), expressed in terms of 
the modal amplitude functions, is given by 
(Silvestre, 2005):

(2)

(3)

C
ik
 f

k,xxxx
- D

ik
 f

k,xx
 + B

ik
 fk - aB λW

p
0 X

pik
 f

k,xx 
- aV ω2 (R

ik
 f

k 
- Q

ik
 f

k,xx
 = 0

and the boundary conditions are written as:

(W
i
τ + aB W

p
0 X

pik
 f

k,x 
- aV ω2 Q

ik
 f

k,x
)δf

i,x
|

0
L = 0      W

i
σ δf

i,x
|

0
L = 0

where (i) i ≥ 1, 1 ≤ p ≤ 4 e k = 1,…, n + 1, (ii) 
φ

k
(x) are the problem unknowns, (iii) W

p
0 is 

the pre-buckling internal forces and mo-
ments (uniform along the member length) 
acting on the member that can be either (a) 

axial compressive forces (W
1

0=N), (b) major 
(W

2
0=M

I 
) or minor axis bending moments 

(W
3

0=M
II 
), (c) bi-moments (W

4
0=B) or (d) any 

combination of them, (iv) W
i
σ and W

i
τ are 

generalized internal forces due to the nor-

mal and shear stress related to deformation 
mode k and acting at the member end sec-
tions, (v) λ is an applied load parameter and 
(vi) ω is a frequency parameter, concerning 
the member harmonic free vibration.

Figure 2
T-section: in-plane shapes of the 

twelve most relevant deformation modes.

The solution to buckling or vibra-
tion problem yields on determining the 
corresponding eigenvalues (buckling loads 
or natural frequencies) and eigenvectors 
(buckling or vibration mode shapes) − 
the latter provide the coefficients of the 

modal amplitude functions. With this 
purpose, if one makes (i) aB = 1 and a

ν
 = 0,  

(ii) aB = 0 and a
ν
 = 1 or (iii) aB = ψ (0 ≤ ψ ≤ 1) and  

a
ν
 = 1, Eqs. (2) and (3) define, respectively, 

the (i) buckling analysis, (ii) free vibration 
analysis of load-free members and (iii) free 

vibration analysis of loaded members (i.e., 
acted by generalized internal forces W

p
0). In 

the last case, note the value of W
p
0 is known 

a priori and ω2 are the problem eigenvalues. 
The tensorial quantities appearing in Eqs. 
(2) and (3) are given by the expressions:

C
ik
 =

E E
1 - ν 2 1 - ν 2

eu
i 
u

k
ds + e 3 w

i 
w

k
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S S12

B
ik
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w
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D
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Q
ik
 = ρe

ρe 3
u

i 
u

k
ds + e 3 w

i 
w

k
ds

S S 12

R
ik
 = ρe

ρe 3
(ν

i 
ν

k
 + w

i 
w

k
) ds + w

i,s 
w

k,s 
ds

S S 12

(3e)

(3f)

(4)

where E, G, ν and ρ are the Young’s 
modulus, shear modulus, Poisson’s ratio 
and mass density, respectively. It is worth 
noting that (i) C

ik
, D

ik
 and B

ik
 are linear stiff-

ness matrices. The components of C
ik
 and 

D
ik
 represents the warping displacements 

and torsional rotations, while B
ik
 stems 

from local deformations (wall bending and 

distortion), (ii) X
jik
 are geometric stiffness 

matrices associated with the acting axial 
normal stress resultants W

p
0, (iii) Q

ik
 and 

R
ik
 are mass matrices that account for the 

influence of the inertia forces on the out-of 
and in-plane cross-section displacements.

At this point, it should be men-
tioned that the GBT-based vibration/

buckling results presented herein have 
been obtained through the application 
of the Galerkin method (only simply 
supported members are considered, 
i.e., members with locally and globally 
pinned and free-to-warp end sections), 
which means that the exact solutions of 
Eqs. (2)-(3) are sinusoidal functions

φ
k,x

 = d
k
sin  

n
s 
πx
L

where d
k
 is the amplitude associated 

with deformation mode k and n
s
 is the 

vibration/buckling mode number of 
the solution.

The following sections illustrate and 
discuss the vibration behavior of load-free 

and loaded T-section members with (i) the 
cross-section depicted in Fig. 1(b), (ii) the 
discretization shown in Fig. 1(b) and (iii) 
the particular dimensions of b

w
 = 150 mm 

(web width), b
s
 = 150 mm (top flange width), 

b
i
 = 50 mm (bottom flange width), s = 20 mm 

(stiffener width) and e = 3 mm (wall thick-
ness) – the influence of the applied loadings 
(uniform major-axis bending moment) is 
assessed in terms of (i) the fundamental 
frequency variation and (ii) the change in 
the corresponding vibration mode shape.

3. Load-free vibration behavior

The curve displayed in Fig. 3(a) 
shows the variation of the load-free 
T-section first three natural frequen-
cies (ω

1
≡ω

f
, ω2 and ω3, where ω

f
 is the 

fundamental frequency) for members 
exhibiting L ≤ 1000 cm − for clarity 

purposes, both axes are expressed in 
logarithmic scale. Moreover, Fig. 3(b) 
presents the GBT modal participa-
tion diagram concerning the member 
fundamental vibration mode shapes 
− this diagram provides the contribu-

tion of each deformation mode to a 
deformed configuration mode nature. 
Finally, Figs. 3(c1)-(c2) show the GBT 
and ABAQUS fundamental vibration 
mode shapes of members with L=20cm 
and L=150cm.

(a)

(b)

(c1) (c2)
Figure 3
Load-free member vibration behavior: 
(a) variation of ω

f
 with L, 

(b) GBT modal participation diagram 
in the fundamental (load-free) vibration 
mode and (c) vibration mode configura-
tions for (c1) L=20cm and (c2) L=150cm.
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These results prompt the follow-
ing remarks:

(i) The curves ω
1
(L), ω

2
(L) and ω

3
(L) 

exhibit no local minima. As the length 
increases, all of them decrease mono-
tonically and tends to null fundamental 
frequency values.

(ii) Regardless of the member 
length, the fundamental frequency ω

f
 is 

always associated with single half-wave 
(local or global) vibration modes (i.e., 
n

s
 = 1).

(iii) For L ≤ 20 cm, the modal 
participation diagram reveals that 
the fundamental vibration modes 

involve only local deformation modes  
(L ≡ 7 + 8 + 9 + bit of 11 + 12 + 13) − the 
number of deformation modes in-
volved is relatively high to annul the 
top flange deformation.

(iv) For 45 ≤ L ≤ 100 cm, the par-
ticipation of the distortional mode  
(D ≡ 5) becomes dominant, despite small 
contributions of local (L ≡ 7) and global 
(flexural torsional FT ≡ 4 + 3) modes. 
Moreover, the GBT modal composition 
also indicates the predominance of mixed 
modes, which combine two main natures: 
LD ≡ 7 + 5 + bit of 8 + 9 (20 ≤ L ≤ 45 cm) 
and DFT ≡ 5 + 4 + 3 (100 ≤ L ≤ 200 cm). It 

also can be noted that there is a smooth 
transition between the LD and DFT modes.

(v) For long members (L ≥ 200 cm), 
the fundamental vibration mode shape 
is purely flexural-torsional (FT ≡ 4 + 3). 

(vi) There is an excellent agreement 
between the GBT-based results and the 
values yielded by ABAQUS shell finite 
element analysis (the differences always 
below 0.5%) − however, note that the 
latter involve 2000-26600 d.o.f., while 
the former require only 21. In order to 
enable a quantification of this agreement, 
the table in Fig. 3(a) shows the variation 
of ω

f
 with L.

4. Loaded member vibration behavior

The vibration behavior of loaded 
T-section members acted by uniform 
major-axis bending moment (the applied 

moments cause compression on the top 
flange − the most probable loading case) 
is addressed next. The simply supported 

beam buckling behavior is first analyzed, 
since his knowledge is indispensable to as-
sess the loaded member vibration behavior.

4.1 Beam buckling behavior
The curves presented in Fig. 4(a) 

concern variation, with the beam length 
L (in logarithmic scale), of the bifurcation 
moments (M

b.1
, M

b.2
, and M

b.3
) associated 

with single, two and three (n
s
 = 1-3) wave 

buckling modes, as well (ii) the critical 
buckling moment M

cr
 = min (M

b.1
, M.

b.2
, 

M
b.3

, …, M
b.ns

, where n
s
 = ∞). The modal 

participation diagrams for single-wave 
(Fig. 4(b)) and critical (Fig. 4(c)) buckling 

modes provide valuable information 
about the contribution of the relevant 
GBT deformation modes in the beam 
buckling behavior and the evolution of 
the number of half-waves with the length. 

Figure 4
Beam buckling behavior: 

(a) Variation of M
b.1

, M
b.2

, M
b.3

 
and M

cr
 with L, (b) GBT modal participa-

tion diagrams in (b1) single-wave and (b2) 
critical buckling modes and (c) ABAQUS 

buckling mode configurations for (c1) 
L=20cm, (c2) L=150cm and (c3) L=500cm

(a)

(b1)

(b2)

(c1) (c2) (c3)
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Note that, in order to access the number 
of half-waves associated with the partici-
pation of a given deformation mode, the 
number identifying this mode is either not 
underlined (single-wave), underlined once 
(2 waves) or underlined twice (3 waves). 
The subsequent vertical lines separate 
length ranges connected to critical buck-
ling modes exhibiting a growing number 
of half-waves. Finally, Figs. 4(c1)-(c3) depict 
the ABAQUS critical buckling modes 
for beams with L=20, 150 and 500cm.  
These buckling results lead to the fol-
lowing comments:

(i) The critical buckling curve 
exhibits three distinct zones, corre-
sponding to (i1) 1-3 wave local buckling  
(L ≤ 25 cm), (i2) 1-5 distortional buckling wave  
(25 < L ≤ 291 cm) and (i3) single-wave 
global (flexural-torsional) buckling  

(L > 291 cm). It only differs from its single-
wave counterpart for (i1) 10 ≤ L ≤ 25 cm 
(2−3 wave local buckling) and (i2) 85 ≤ L ≤ 
291 cm (2−5 wave distortional buckling).

(ii) The single-wave buckling curve 
exhibits two local minima at L≈15 cm  
(M

cr.L
 ≅ 114.1 kN.m) and L≈60 cm  

(M
cr.D

 ≅ 50.9 kN.m), (ii1); the former cor-
responding to a local buckling mode that 
combines modes 7,  8,  9, 11, 12 and 13, 
and (ii2) the latter associated with a distor-
tional buckling mode combining modes 5 
(predominant) and a bit of 7 and 8.

(iii) Although, the curve M
cr
(L) 

does not coincide with M
b.1

(L) in all its 
extension, the critical beam buckling 
modes combines exactly the same set of 
GBT deformation modes participating 
in single-wave ones. The only differ-
ence resides in the fact that the number 

of waves associated with some of these 
critical modes changes for certain range 
lengths. In this case, the critical buckling 
modes exhibit two (11 ≤ L ≤ 17 cm and  
90 ≤ L ≤ 140 cm), three (18 ≤ L ≤ 25 cm and  
150 ≤ L ≤ 210 cm), four (220 ≤ L ≤ 270 cm) 
and five (280 ≤ L ≤ 291 cm) waves.

(iv) Finally, it is worth noting that 
the single half-wave T-section beam 
buckling modes (Fig. 4(b1)) and load-free 
member fundamental vibration modes 
(Fig. 3(b)) are not identical. Indeed, al-
though combining exactly the same set 
of GBT deformation modes participating 
significant differences occurs throughout 
the whole lengths range − note that these 
differences were not observed in a previ-
ous thin-walled loaded member vibration 
study involving lipped channel columns 
(Silvestre and Camotim, 2006).

4.2 Loaded beam vibration behavior
The local, distortional and global vi-

bration behavior of T-section members act-
ed by uniform major-axis bending moment 
is addressed next. The analyses are carried 
out for beams subjected to several loading 
levels, defined as percentages of the cor-
responding critical bifurcation values, i.e.,  
α = M/M

cr
, where 0 ≤ α ≤ 1. Seven levels 

of load are considered, namely α = 0.25, 
0.50, 0.75, 0.90, 0.95, 0.99, and the in-
fluence of the loading is assessed through 

the (i) fundamental frequency values (ω
f.M

) 
and (ii) vibration mode shapes – in order 
to clarify that influence, the load-free 
member vibration curve (M =α = 0 – ω

f.0
 

curve), already shown in Fig. 3(a), are 
also presented.

The curves depicted in Fig. 5 
display the variation of ω

f.M with the 
length L, for members vibrating under 
the action of α M

cr
 – for clarity pur-

poses, (i) this figure also depicts the L 

values for which the critical buckling 
mode exhibit a number of half-waves 
greater than 1 (recall that the curve 
M

cr
(L) was plotted in Fig. 4(a)) and (ii) 

both axes are expressed in logarithmic 
scale. The modal participation diagrams 
shown in Figs. 6(a)-(f) enable to assess 
the influence of the applied load levels  
(α = 0.25, 0.50, 0.75, 0.90, 0.95, 0.99)  
on the fundamental vibration mode 
shapes.

Figure 5
Beam vibration behavior: variation of the 
fundamental frequency ω

f.M
 with α and L.

The observation of these vibration 
results leads to the following comments:

(i) As expected, the ω
f.M

 curves (i1) 
vary considerably with L, (i2) moves down 
as α increases, (i3) remain parallel and 
fairly close to the initial load-free one (as 
long the column vibration mode associ-
ated with ωf.Μ exhibits a single half-wave) 
and (i4) the frequency drop is more pro-
nounced when the applied moment level 
approaches its critical value (α = 0.99).

(ii) Moreover, when M
cr
 ≠ M

b.1
  

(11 ≤ L ≤ 27 cm and 86 ≤ L ≤ 299 cm), 
the shapes of the curves become visibly 
different as the value of α increases. 
Indeed, the number of half-waves as-
sociated with the curves ω

f.M
 depends 

on the percentage of applied bending 
moment (never exceeding the number 
of the critical buckling mode − in this 
case, n

s
 ≤ 5).

(iii) The fundamental vibration 
mode shape is considerably altered even 
by the presence of small applied moments 

(e.g., α = 0.25) − see the modal participa-
tion diagrams presented in Figs. 3(b) and 
6(a). On the other hand, for α ≥0.90 the 
vibration mode, shapes change drasti-
cally, approaching their critical buckling 
mode counterparts − compare Figs. 4(b2) 
and 6(f)).

(iv) However, the T-section loaded 
member vibration behavior exhibit an 
uncommon feature, namely the fact that 
the ω

f.0
 curve does not remain as the 

upper curve for the whole beam length. 
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Indeed, only for 30 ≤ L ≤ 86 cm the ω
f.M

 
curves exhibit this characteristic, which 

was observed in previous thin-walled 
loaded members vibration studies in-

volving lipped channel columns (e.g., 
Silvestre and Camotim, 2006).

Figure 6
GBT modal participation in the 

beam fundamental vibration mode for 
(a) α = 0.25, (b) α = 0.50, (c) α =0.75, 

(d) α = 0.90, (e) α = 0.95 and (f) α = 0.99.

(a)

(f)

(b)

(c)

(e)

(d)

In order to acquire further and 
deeper insight on the influence of the 
loading level on the vibration behavior 
of beams, namely providing the expla-
nation for the unexpected vibration 

behavior of the T-section members, the 
variation of the fundamental frequency 
ratio ω

f.M
/ω

f.0
 with α for members with 

(i) L=60 cm (length inside the 30 ≤ L ≤ 
86 cm interval mentioned above), (ii) 

L=120 cm and (iii) L=180 cm is plot-
ted in Fig. 7. The analyses are carried 
out for beams subjected (i) to uniform 
positive or negative major axis bend-
ing (i.e., −1 ≤ α ≤ 1), and (ii) to twelve 
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Figure 7
Variation of the ratio ω

f.M
/ω

f.0
 with 

α for beams with L = 60, 120 and 180 cm.

load levels (α = ±0.25, ±0.50, ±0.75, 
±0.90, ±0.95, ±0.99). This figure also 

includes several ωf.M/ωf.0 values, ob-
tained through ABAQUS shell finite 

element analyses and used to validate 
the GBT-based results.

As for Figs. 8(a)-(e), they present the 
GBT and FEM-based vibration mode shapes 
for members with L = 60 cm and (i) α = 0 

(load-free vibration), (ii) α = ±0.75 and (iii) 
α = ±0.95. Finally, Figs. 9(a)-(c) and 10(a)-(c) 
show similar vibration mode shapes for three 

loading cases (α=0, 0.75 and 0.95) − they 
correspond to members with lengths equal to 
L = 120 cm (Fig. 9) and L = 180 cm (Fig. 10).

Figure 8
GBT and ABAQUS vibration 
mode shapes for L = 60 cm and 
(a) α = 0 (load-free vibration), (b) α = −0.75,
(c) α = −0.95, (d) α = 0.75 and (e) α = 0.95.

(a)

(b)

(c)

(e)

(d)
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The observation of these results 
leads to the following conclusions:

(i) First of all, there is a fairly good 
correlation between the fundamental 
frequency values and vibration mode 
shapes obtained through ABAQUS shell 
finite element and GBT-based analyses, 
which fully validates the latter − the dif-
ferences on the fundamental frequency 
values increase with α: (i1) they are mi-
nor for small applied moments (less than 
4% for −0.50 ≤ α ≤ 0.50, (i2) increases to 
7% for −0.90 ≤ α ≤ 0.90, and (i3) reaches 
10% for higher applied moments (the 
ωf.M increase is due to the fact that the 
load-free vibration mode shape is very 
different from the loaded member one 
− the former a flexural-torsional mode, 
the latter a distortional-torsional one  
(5 + a bit of mode 4). Moreover, note 
that (v1) T-section is very asymmet-
ric relative to the major-axis and (v1) 

positive moments originate tractions 
on the bottom flange, which increase 
the stiffness of the weak part of the 
cross-section).

(ii) The ω
f.M

/ω
f.0

 curves concerning  
L = 60 cm beams under positive major-
axis bending (α > 0) are relatively simi-
lar to their negative counterparts (α < 
0) − the fundamental frequency of the 
loaded beams (ii1) are always lower than 
their natural frequency and (ii2) tend to 
zero as α increase to ±1.0. Moreover, 
the curve of the beam under negative 
applied moments always lie above the 
positive ones − the latter loaded mem-
ber vibration mode is more akin to the 
load-free one (see Fig. 8).

(iii) The fundamental frequencies 
of the other two beams (L = 120 and  
180 cm) under positive major-axis bend-
ing are also lower than ω

f.0
. However, 

note that both curves lie above to their  

L = 60 cm counterpart − the GBT pro-
vides the explanation for the distinct 
vibration behaviors exhibited by this 
groups of columns. Indeed, with two 
distinct load-free vibration modes: (iii1) 
local-distortional-torsional one (4+5 + a 
bit of mode 7), for L = 60 cm beam, and 
(iii2) flexural-torsional ones (4+3), for  
L = 120 and 180 cm beams.

(iv) Finally, the curves concerning 
the L = 120 and 180 cm beams under 
positive major-axis bending (α > 0) ex-
hibit ω

f.M
 values that may be significantly 

higher than the natural frequencies. 
Indeed, those values may increase up to 
(iv1) 1.5 times (L = 120 cm) and (iv2) 2.4 
times ω

f.0
 (L = 180 cm) − the increase is 

connected to the maximum number of 
longitudinal half-waves to be exhibited 
by the (sinusoidal) vibration mode: 
two for L = 120 cm beam, three for the  
L = 180 cm one (see Fig. 9 and Fig. 10).

Figure 9
GBT and ABAQUS vibration mode 

shapes for L = 120 cm and (a) α = 0 (load-
-free vibration), (b) α = 0.75 and (c) α = 0.95.

Figure 10
GBT and ABAQUS vibration mode 

shapes for L = 180 cm and (a) α = 0 (load-
-free vibration), (b) α = 0.75 and (c) α = 0.95.

(a)

(b)

(c)

(a)

(b)

(c)
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5. Conclusions

This article reported an investigation, 
carried out by means of analyses based 
on the Generalized Beam Theory (GBT), 
dealing with the influence of uniform major-
axis bending moment (compression on the 
top flange) on the fundamental vibration 
behavior of thin-walled T-section (with 
unequal flanges) members. Various load-
ing levels, expressed as percentages of the 
member critical buckling moments (i.e.,  
α = M/M

cr
, where 0 ≤ α ≤ 1), were considered 

and the load-sensitivities of the member’s 
fundamental frequency and vibration mode 
shape (taking advantage of the GBT modal 
features) were assessed through the com-
parison relative to the load-free case. Some 
GBT-based results (fundamental frequency 
and vibration mode shapes) were validated 
by means of values and mode shapes pro-
vided by numerical analyses performed with 
the code ABAQUS (Simulia, 2008). The 
analysis of the GBT-based results obtained, 
led to the following main conclusions:

(i) As expected, the load-free member 
vibration behavior is characterized by the 
fact that the fundamental frequency is 

always associated with single-wave (local, 
distortional or global) vibration modes, 
regardless of the member length − the 
mode is a distortional-flexural-torsional 
one for intermediate-to-long members, 
progressively fading the participation of 
the symmetric distortional mode as the 
member length grows.

(ii) Moreover, (ii1) the beam single-
wave buckling P

b.1
 vs. L curve and the 

load-free fundamental vibration ω
f.0

 vs. L 
curve exhibit significant differences (e.g., 
the latter has no local minima) and (ii2) the 
single half-wave beam buckling modes and 
load-free member fundamental vibration 
modes are not identical. Indeed, although 
combining exactly the same set of GBT de-
formation modes participating significant 
differences occurs throughout the whole 
lengths range − differences not observed in 
a previous thin-walled members vibration 
studies involving lipped channels (Silvestre 
and Camotim, 2006).

(iii) The effect of applied bend-
ing moments on the member vibration 
frequency (ω

f.M
) increases with the value 

of moment. Indeed, the ω
f.M

  vs. L curves 
(i1) vary considerably with L, (i2) moves 
down as α increases, (i3) remain paral-
lel and fairly close to the initial load-
free one (as long the column vibration 
mode associated with ω

f.Μ exhibits a 
single half-wave), (i4) the frequency drop 
is more pronounced when the applied 
moment level approaches its critical value  
(α =  0.99) and (i5) the vibration mode 
shape modifies significantly and ap-
proaches their critical buckling mode 
counterparts (i.e., same shape and number 
of half-waves).

(iv) However, the T-section loaded 
member vibration behavior exhibits an 
uncommon feature, namely the fact that 
the ω

f.0
 curve does not remain as the 

upper curve for the whole beam length 
− this characteristic was observed in 
previous thin-walled loaded member vi-
bration studies involving lipped channel 
columns (Silvestre and Camotim, 2006). 
The increase is due to the fact that the 
load-free vibration mode shape is very 
different from the loaded member one.
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