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Abstract

Short-term mining planning typically relies on samples obtained from channels 
or less-accurate sampling methods. The results may include larger sampling errors 
than those derived from diamond drill hole core samples. The aim of this paper is to 
evaluate the impact of the sampling error on grade estimation and propose a method 
of correcting the imprecision and bias in the soft data. In addition, this paper evalu-
ates the benefits of using soft data in mining planning. These concepts are illustrated 
via a gold mine case study, where two different data types are presented. The study 
used Au grades collected via diamond drilling (hard data) and channels (soft data). 
Four methodologies were considered for estimation of the Au grades of each block to 
be mined: ordinary kriging with hard and soft data pooled without considering dif-
ferences in data quality; ordinary kriging with only hard data; standardized ordinary 
kriging with pooled hard and soft data; and standardized, ordinary cokriging. The 
results show that even biased samples collected using poor sampling protocols improve 
the estimates more than a limited number of precise and unbiased samples. A well-
designed estimation method corrects the biases embedded in the samples, mitigating 
their propagation to the block model.
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1. Introduction

Mineral deposit mining decisions are 
based in part on the information provided 
in the grade block models obtained from 
samples. To decrease the uncertainties of 
these grade estimates, short-term min-
ing planning staff increase the sampling 
density in order to provide accurate and 
precise predictions. Using a larger number 
of samples improves the reliability of the 
resulting estimates. During the explora-
tion stage, sampling is typically obtained 
from diamond drill holes (DDHs). The 
DDH technique is costly but provides ac-
curacy and precision. High-quality data 
is sparse during the exploration stage. In 
the production stage, sampling is typically 
performed using other techniques due to 
budget constraints and the need for rapid 
data acquisition and model updates. Gen-
erally, these production samples are of 

lower quality than DDHs and are not 
rigorously prepared and controlled, as 
they are not subject to a QAQC protocol 
(quality assurance / quality control). These 
results can contain large sampling errors. 
Given that two sources of information 
with differing quality levels are available, 
we want to understand how to use the 
low-quality data to update the block model 
while avoiding bias propagation that af-
fects the final results.

The goals of this article are to evalu-
ate the impact of sampling error-affected 
data quality on block classification by iden-
tifying methodologies that can mitigate 
bias in the data, and to propose a method 
of correcting imprecision and bias in soft 
data. In addition, it evaluates the benefits 
of using soft data in mine planning. The 
methodologies tested were illustrated us-

ing a case study of a gold mine where Au 
grades obtained from core samples via 
diamond drilling (hard data) and from 
samples obtained via channels (soft data) 
were available. Four methods for estimat-
ing the Au grades at each block to be mined 
were investigated.

The results of the different methods 
were compared using three statistical ap-
proaches. They were the linear correlation 
coefficient (ρ), the slope of the linear regres-
sion (y=bx) measured from the scatter-plot 
between the estimates and the reference 
data set, and the absolute error (Costa, 
1997). These statistical approaches were 
used to confirm the accuracy and precision 
of the estimation methods. The number 
of misclassified blocks, i.e. ore classified 
as waste, waste as ore, and their sum was 
also determined for each of the models.

2. Methodology

Four methodologies were evalu-
ated for block grade estimation: 
ordinary kriging with hard and soft 

data pooled without considering dif-
ferences in data quality; ordinary krig-
ing with only hard data; standardized 

ordinary kriging with pooled hard and 
soft data; and standardized, ordinary 
cokriging.
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Method 1- Ordinary kriging with pooled hard and soft data:
Ordinary kriging was thoroughly 

explained by GOOVAERTS (1997). 
In this method, the hard and soft data 
were pooled without considering dif-

ferences in data quality. The modeled 
variogram is

Method 2- Ordinary kriging with only hard data:
This method used only accurate, 

precise hard data to conduct estimates with 
ordinary kriging. The variogram is same 
as that used in Method_1 (Equation 1).

Method 3- Standardized ordinary kriging with pooled hard and soft data:
The differences in sample support 

(volume and delimitation) between 
the channel (soft data) and diamond 
drilling (hard data) methods indicate 
global and conditional biases. In our 
estimate, the hard and soft data were 

pooled together, and a correction factor 
was used to mitigate the bias. This es-
timation workflow can be understood 
as a form of co-kriging in a situation 
where hard and soft data are strongly 
correlated. In the first step, soft data 

(Zj(uαj )) was standardized (see Equation 
2) using its mean (mj) and standard de-
viation (σj). The transformation shown 
in Equation 2 leads to a mean of zero 
and standard deviation of unity in the 
transformed data:

Next, the soft standardized data 
Zj (uαj )* was rescaled to match the hard 

data statistics (see Equation 3) using its 
mean (mi) and standard deviation (σi). 

Thus, the means of the hard and soft 
data are now equal.

From a geostatistical viewpoint, this 
difference in data precision and accuracy 
must be considered when integrating the 
two data types. This proposal relies on 

standardizing the soft data (Equation 2) 
using its declustered mean and standard 
deviation. Next, the soft data is rescaled 
(Equation 3) using the mean and standard 

deviation from the hard data.
The variogram used for these es-

timates was the same that presented in 
Equation (1).

Method 4- Standardized Ordinary Cokriging
Standardized ordinary cokriging is 

thoroughly explained by GOOVAERTS 
(1997). This is a suitable framework for 
incorporating data sets of varying quality 
levels. It considers spatial auto and cross-
correlations among the variables involved. 
This method also filters bias from inac-

curate datasets, and uses standardized 
residuals instead of the original data. 
This article uses standardized ordinary 
cokriging, in which the sum of the weights 
of the primary and secondary variables is 
1. Spatial continuity is defined using the 
linear model of coregionalization (LMC). 

During cokriging, the LMC controls the 
weights allocated to the soft data. A cross-
correlation is obtained using the cross-
covariance, since the cross-variogram 
requires collocated data (an isotopic 
multivariate dataset). The adjusted LMC 
is shown in Equations (4), (5), and (6).

The four methods were tested 
using the same variogram model 
(Methods 1, 2, and 3) fitted on the dia-
mond drill hole dataset (Equation 1) to 
evaluate the efficacy of each methodol-
ogy. The estimates were performed on 

10x10x10 m blocks discretized using 
5x5x5 points within each block, ar-
ranged along the north (x), east (y), and 
vertical (z) axes. The search strategy 
used a maximum of two samples per 
angular sector of the search ellipsoid. 

Eight angular sectors were used with 
a minimum distance of 2 m between 
samples. The same search neighbor-
hood (using octants) and range from 
the primary variograms were used for 
each of the four estimates.

3. Case Study

(1)

(2)

(3)

(4)

(5)

(6)

This case study uses data from one 
geological domain with samples that 

mimic two sampling techniques. The 
data generated via DDH and channel 

approaches is referred to as hard and soft 
data, respectively.
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3.1 Creating a reference block
A reference model that mimics a 

real, unknown deposit was obtained via 
geostatistical simulation using the Turning 
Bands algorithm (JOURNEL, 1974). This 
model was derived from unconditional 
simulations. No data was used to generate 
the model, however a histogram and var-
iogram were used as input. The grid nodes 
were sampled, since the grades within the 

mineralized domain reproduced the statis-
tical input. The sampling scheme followed 
a typical long-term sampling pattern when 
using DDH and a short-term pattern when 
using channel samples.

Table 1 shows statistics from the 
reference point support model derived 
from unconditional simulations, and the 
DDH (hard data) samples used to perform 

estimations. Also the statistics for the 
reference block support model obtained 
by upscaling the point simulated model 
at 10 m blocks are depicted. A few drill 
holes were virtually drilled on the refer-
ence point simulated model providing 311 
samples. The drill hole collars are spaced 
at an average of 10x10 m and sampled at 
every vertical meter down the hole.

Number of  Data Points Mean Std. 
Dev. CV Min. Max.

simulated model 
(point support) 125766 2.27 4.91 2.16 0.03 33.47

DDH samples 311 2.41 4.46 1.85 0.03 33.47

simulated block 
support model 477 2.31 1.30 0.92 0.30 8.82

Table 1
Statistics from the 

original and block reference data.

3.2 Creating bias and imprecision
The reference point simulated 

values were disturbed by adding ran-
dom Gaussian errors of +/- 25%. Bias 
was also added increasing the grades 
by 25%. These biased samples mimic 
what frequently occurs within channel 
samples in gold deposits. The error was 

assumed to be heteroscedastic, i.e. the 
variance increases with the mean, as 
commonly occurs (GOOVAERTS, 1997; 
MATHERON, 1963).

This imprecise and biased reference 
point model was used as a source for soft 
data sampling. An additional set of chan-

nels was sampled virtually in this grade 
model using a 3 x 3 x 1 m grid.

Table 2 shows statistics from the 
reference point support biased and impre-
cise dataset used as the soft data source. 
Channel samples in this dataset mimic 
poor-quality, bias-affected data. 

Data Number of Data Points Mean Std. 
Dev. CV Min. Max.

Reference biased 
and imprecise model 125766 2.83 6.24 2.20 0.00 72.25

Channel samples 1246 3.69 7.91 2.14 0.02 51.56
Table 2

Statistics from the original reference, and 
from the biased and imprecise soft data.

4. Results and discussion

Figure 1 shows scatter plots that 
relate the estimates (using all tested esti-
mation methods and data) to the reference 
model thought to represent the true block 
grades. In addition, Figure 1 shows the 
global mean and the standard deviation 
of each model, as well as the linear cor-
relation coefficients (ρ) and slopes of the 
linear regressions (y = bx) between the 
estimates and the reference. Figures 1a, 
1b, and 1c show estimates determined 
using ordinary kriging.

Figure 1a shows ordinary kriging 
results produced when hard and soft 
data are pooled together, and differences 
in data quality are ignored. The results 
are clearly unsatisfactory. The means 
and standard deviations of the estimates 
are higher than those of the reference 
model. The estimates are biased due to 
systematic overestimation. This solution 

is not recommended for use in updating 
the short-term geological model.

Figure 1b shows estimates produced 
using ordinary kriging with a small num-
ber of accurate, precise data points. The 
means of the estimated grades are similar 
to those of the reference block grades, and 
the slope of the regression (0,48) and lin-
ear correlation coefficient (0,29) are low.

When estimates are made using 
hard and soft data combined with stan-
dardized ordinary kriging (Figure 1c), 
the linear correlation coefficient (0,60) is 
one of the highest encountered from the 
methods considered and the slope of the 
linear regression (0,73) is close to 1. Ad-
ditional bias-corrected data leads to better 
estimates, increasing the efficacy of the 
correlation. This model exhibits the best 
overall results, as well as reduced condi-
tional bias. Method 3 uses corrected soft 

data as a primary variable in the estima-
tion process. It receives the same weight 
as the hard data, and thus increased its 
influence on the estimates.

Figure 1d shows that estimates made 
using standardized ordinary cokriging 
exhibit a lower correlation (0,32) and 
slope (0,35) than those produced via 
standardized ordinary kriging with a 
combination of hard and soft data. This 
is probably caused by two factors: poor 
correlation between hard and soft data 
and the resulting low weights given to soft 
data when cokriging is used. In this case 
study, the cross-correlation is 0,60 when 
h = 0. The minimum correlation coef-
ficient limits required for cokriging are 
not clearly stated in literature. However, 
a correlation coefficient that exceeds 0.7 
favors method 4, while one below 0.2 
does not produce good results. Between 
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0.2 and 0.7, the results may not be of high 
quality. (MINNITT; DEUTSCH, 2014)

The cross correlograms indicated 
by Equation 5 show that approximately 
78% of the total cross-covariance of the 
phenomenon (sum of the nugget effect 
and first structure of the correlogram) 
deteriorates quickly at the first lags, i.e. 

has low spatial continuity of approxi-
mately 2 m. This leads to low soft data 
weights, even when the data is similar 
to that of the points being estimated. 
This high variability is related to the 
presence of sampling and preparation 
errors in the soft data (greater inaccu-
racy), which increases the nugget effect. 

This higher imprecision is clear when 
the variograms are compared: the nug-
get effect from the soft data (Equation 
6) is 20% higher than that from the 
hard data (Equation 5), thus affecting 
the weights received by the soft data. In 
addition, soft data is irregularly spaced 
along the area studied.

Figure 1
Scatter-plot of estimates vs. the reference 
block model for: a) Method 1_ Ordinary 
kriging with hard and soft data, without 
consideration of data quality; b) Method 
2_Ordinary kriging with only hard data; 
c) Method 3_Standarized ordinary kriging 
with hard and soft data; and d) Method 
4_Standarized ordinary cokriging.

Figure 2 shows cut-off grade x ton-
nage and cut-off x average grade curves 
for the reference block grade (red lines), 
as well as for estimated models. The es-
timates made using Method 1 (ordinary 
kriging with hard and soft data combined 
– light blue lines) produce a poorer grade 

tonnage curve. Ordinary kriging overes-
timates the grades above cut-off. Also, 
the largest deviations from the tonnage 
predicted by the true model occur with 
the ordinary kriging block model. For all 
cutoffs, the best results are obtained from 
the grade tonnage curve produced using 

Method 3 (standardized ordinary kriging 
with hard and soft data pooled – black 
lines). The result produced is closest to the 
reference curve. These results show that 
soft data may improve short-term geologi-
cal mine planning when an appropriate 
methodology is used to integrate it.

Figure 2
Cut-off grade x tonnage and cut-off x ave-
rage grade curves for the reference block 
grade model (red lines) and the estimates.

Figure 3 shows a histogram of the 
errors of each estimation method con-
sidered. The error median was chosen 
for bias assessment, as it tends to be 
statistically less sensitive to extreme 

values. The median error for ordinary 
kriging using only hard data is -0,52 
(Figure 3a), while using ordinary krig-
ing with hard and corrected soft data 
produces an error of -0,17 (Figure 3b), 

and standardized ordinary cokriging 
produces an error of -0,65 (Figure 
3c). A smaller bias was obtained using 
ordinary kriging with hard and bias-
corrected soft data.

(a) (b)

(c) (d)
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Figure 3
Histogram showing the error of each 

estimation method considered a) Method 
2_Ordinary kriging with only hard data; 

b) Method 3_Standarized ordinary kriging 
with hard and soft data; and c) Me-

thod_4 Standardized ordinary cokriging.

Figure 4 shows the total number of 
misclassified blocks, the number of ore 
blocks classified as waste, and the num-
ber of waste blocks classified as ore. Four 
cutoffs were considered: 1.18 g/t (Q20), 
1.69 g/t (Q40), 2.43 g/t (Q60), and 3.16 
g/t (Q80). The standardized ordinary 

kriging model using hard and soft data 
(black line) minimized block misclassifi-
cation. This difference can be seen with 
the cut-off grade 1.69 g/t in Figure 4b, 
where Method 4 erroneously classifies 25 
more ore blocks as waste than Method 3. 
Use of an adequate estimation workflow 

reduces the number of ore blocks disposed 
of, and consequently provides more ore 
blocks for processing, increasing mine 
metal recovery. Thus, use of a more precise 
methodology leads to better decision-
making when choosing destinations for 
the mined blocks.

(a) (b)

(c)

5. Conclusion

Geostatistical workflows with dif-
fering treatments of hard and soft data 
were investigated in order to integrate 
samples with known bias into the estima-
tion process. Four methodologies were 
tested: ordinary kriging with only hard 
data, ordinary kriging with hard and soft 
data combined, standardized ordinary 
kriging with hard and soft data, and 

standardized ordinary cokriging.
When cokriging was used, a moder-

ate correlation between data types was 
noted when modeling the cross-covariance 
with short spatial continuity. Conse-
quently, low weights were assigned to 
secondary soft data. Cokriging produced 
a lower coefficient of correlation with the 
reference model than standardized kriging 

with hard and soft data.
Ordinary kriging with sparse hard 

data samples (a small number of accurate 
data points) produced global statistics 
that were similar to those of standardized 
kriging with hard and soft data. However, 
the first exhibited local bias as indicated 
by the lower coefficient of correlation with 
the reference model.

(a) (b)

(c)

Figure 4
Block misclassification: 

a) total number of misclassified blocks; 
b) number of ore blocks classified as 

waste; and c)number of waste blocks 
classified as ore.
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A correction factor was applied to 
biased and imprecise samples in order to 
mitigate global and conditional biases. 
The results show that the soft data can 
be standardized using the declustered 
mean and standard deviation when the 
samples are in the same domain. Next, 
the soft data is rescaled using the mean 
and standard deviation of the hard data.

After these corrections, two types 
of samples (hard and soft data) were 

given equal weight in the standardized 
ordinary kriging workflow. The results 
produced by this methodology showed 
that the bias presented in the samples 
was not reproduced in the estimates.

This case study shows that soft 
data may improve short-term geo-
logical modeling when an appropriate 
method is used to integrate it. The 
best option is Method 3- standard-
ized ordinary kriging with hard and 

soft data, assuming that hard and soft 
data are moderately correlated and 
exhibit short-range cross variograms. 
The scatter-plot of estimates versus 
reference values indicates one of the 
highest available coefficients of cor-
relation, a slope of regression closer to 
one, an absolute error close to zero, and 
better block-classifying efficiency than 
other methods for most of the cut-off 
grades tested in this study.
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