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Abstract

Most mining decisions are based on models estimated/simulated given the infor-
mation obtained from samples. During the exploration stage, samples are commonly 
taken using diamond drill holes which are accurate and precise. These samples are 
considered hard data. In the production stage, new samples are added. These last are 
cheaper and more abundant than the drill hole samples, but imprecise and are here 
named as soft data. Usually hard and soft data are not sampled at the same locations, 
they form a heterotopic dataset. This article proposes a framework for geostatisti-
cal simulation with completely heterotopic soft data. The simulation proceeds in two 
steps. First, the variable of interest at the locations where soft data are available is 
simulated. The local conditional distributions built at these locations consider both 
hard and soft data and are obtained using simple cokriging with the intrinsic coregion-
alization model. Second, the variable of interest in the entire simulation grid using the 
original and previously simulated values at soft data locations is simulated. The results 
show that the information from soft data improved both the accuracy and precision of 
the simulated models. The proposed framework is illustrated by a case study with data 
obtained from an underground copper mine.

Keywords: local probability distribution, completely heterotopic, geostatistical simula-
tions, data integration.
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Geostatistical 
simulations with 
heterotopic hard and soft data 
without modeling the linear 
model of coregionalizationhttp://dx.doi.org/10.1590/0370-44672020740075

Mining
Mineração

Decisions in mining operations are 
generally based on estimated/simulated 
grade models. The information used to 
build these models comes from samples 
obtained from various sources. At every 
stage of a mining project, more samples 
are collected and used to update the 
models and reduce their uncertainty. 

During the exploration stage, the 
samples are mostly diamond drill cores, 
which are accurate and precise, but ex-
pensive and scarce. These samples are 

considered error-free and are denoted 
hard data. At the production phase, ad-
ditional samples are obtained from blast 
hole drilling fragments (dust) or channel 
samples. Compared to the diamond drill 
samples, these samples are cheaper and 
more abundant, but they have a non-
negligible sampling error and are denoted 
soft data. Usually, soft and hard data are 
not sampled at the same locations.

Classical approaches to integrate 
different data sources in geostatistical 

simulations are generally known as co-
simulation. The sequential Gaussian 
co-simulation (Verly 1993) is one of the 
first workflows and is an expansion of the 
original sequential Gaussian simulation 
(Isaaks 1990) to consider multiple vari-
ables and their correlations. The sequen-
tial Gaussian co-simulation uses simple 
cokriging to integrate different data. The 
relationships between the different types 
of data are described by the linear model 
of coregionalization (LMC) (Journel 

1. Introduction
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and Huijbregts 1978; Goovaerts 1997; 
Wackernagel 2003). Oliveira et al. (2020) 
proposed a methodology for geostatistical 
co-simulation that does not require the 
LMC. The integration of data of different 
types is based on covariance tables (direct 
and cross), which describe the spatial con-
tinuity of the data. The main limitation of 
this technique is that the secondary data 
must be densely sampled.

The problem of sequential Gauss-
ian co-simulation is that fitting the LMC 
is often a tedious and challenging task. 
This task is even more complicated when 
the hard and soft data are heterotopic 
and have different and irregular sampling 
spacing. In this case, the experimental 
cross-variograms cannot be calculated, so 
cross-covariograms or correlograms must 
be used. In addition, these experimental 
cross-correlograms may be very sensitive 
to their calculation parameters, such as 
lag spacing and tolerances.

Another problem is that the se-
quential Gaussian co-simulation requires 
solving the cokriging system at all the 
nodes of the simulation grid whose 
search neighborhood includes secondary 
data. The resolution of the cokriging sys-
tem may slow the simulation process, if 
the search neighborhood includes many 
samples. Using many samples in the 
search neighborhood is recommended 
for geostatistical simulations, since it aids 
in reducing the uncertainty.

One approach for simulation of 
multiple correlated variables without 
modeling the LMC is to simulate the 
variables hierarchically (Journel and Al-
meida 1994) using collocated cokriging 
with a Markov model of coregionaliza-
tion (Almeida and Journel 1994; Journel 
1999). In the Markov models, the cross-
variogram models are proportional to 
the variogram models of either the hard 
or soft data (Shmaryan and Journel 
1999). This approach requires that the 
soft data be available at all locations of 
the simulation grid. Otherwise, the soft 
data may be simulated first to populate 
the simulation grid. Then, the hard data 
or primary variable is simulated using the 
collocated secondary/soft datum with 
collocated cokriging.

The problem of simulating the 
variables hierarchically with collocated 
cokriging is that the variance of the 
primary simulated variable is too high 
(Journel and Deutsch 1998). In this 
context, Babak and Deutsch (2009) 
proposed a method that solves the vari-

ance inflation of collocated cokriging. 
The method is called intrinsic collocated 
cokriging (ICCK) and consists of simu-
lating with cokriging using the secondary 
data at the node being simulated and at 
the locations of the primary data. The 
authors used the intrinsic coregionaliza-
tion model (ICM) to define the direct and 
cross-variogram models. The intrinsic 
coregionalization model (ICM) is a 
particular case of the LMC, where all 
the direct and cross-variograms are pro-
portional to one basic variogram model 
(Goovaerts 1997). For instance, all direct 
and cross-variograms are obtained by 
multiplying a basic variogram model by 
a rescaling factor. The basic variogram 
model used by Babak and Deutsch 
(2009) for the ICM was the variogram 
model of the primary variable. Thus, 
ICCK requires fitting only the variogram 
model of the primary variable.

In this study, we adapted the ICCK 
(Babak and Deutsch 2009) to the situation 
of complete heterotopy between the hard 
and soft data. These authors showed a case 
study with exhaustive secondary data. In 
this case, the secondary data are available 
at the locations of the primary data, and 
the use of ICCK is straightforward. This 
article considers the situation where the 
secondary data are not at the locations of 
the primary data.

Intrinsic collocated cokriging 
requires the coefficient of correlation 
between the variables, whose calculation 
is not direct when the data are completely 
heterotopic. To obtain the coefficient of 
correlation between the variables, we 
extrapolated the experimental cross-
correlogram values until the distance of 
zero (Minnitt and Deutsch 2014). There 
are other ways to obtain the relationship 
between different variables in the case 
of heterotopic data. Myers (1982) and 
Cressie (1991) proposed one generaliza-
tion of the variogram to compute the 
cross variance between variables called 
as pseudo cross variogram. Some authors 
discuss the limitations of the pseudo 
cross variogram when the variables are 
measured at different support and units 
(Papritz et al. 1994; Papritz and Fluhler 
1993). Cressie and Wikle (1997) have a 
different standpoint. They believe that 
in cokriging estimates with variance-
based cross-variograms, the variables 
can be measure with a different mean 
and scale. Foehn et al. (2018) used the 
pseudo cross variogram to compute the 
linear model corregionalization to de-

velop a methodology called regression 
cokriging in heterotopic data applied in 
meteorological data

When the dataset is heterotopic, 
Barnett and Deutsch (2015) and Silva 
and Deutsch (2018) proposed multiple 
imputation (MI) to integrate second-
ary data into geostatistical simulations. 
The main idea of MI is to perform the 
geostatistical simulations in two steps. 
The first step is to simulate the primary 
variables at the locations of the second-
ary data. The result is a series of differ-
ent datasets. The second step consists of 
performing geostatistical simulation in 
the simulation grid using the different 
datasets generated at the first step as 
conditioning information. Each gener-
ated dataset conditions one realization. 
This simulation at the second step is 
performed using simple kriging. This ap-
proach is efficient since it requires solving 
the cokriging system only at the loca-
tions of the secondary data. The main 
drawback of this approach is that only 
the collocated secondary datum is used.

Similar to Barnett and Deutsch 
(2015) and Silva and Deutsch (2018), 
Soares et al. (2017) Neves et al. (2018), 
and Narciso et al. (2019) also simulated 
at the locations of the soft data before 
simulating in the simulation grid. At the 
location of the soft data, Soares et al. 
(2017), Neves et al. (2018) and Narciso 
et al. (2019) used direct sequential simu-
lation (Soares 2001) with local prob-
ability distributions. The collocated soft 
datum informed the local histogram 
used for direct sequential simulation. 
The result was a set of datasets that 
conditioned the simulations in the simu-
lation grid, which were performed with 
DSS and a global histogram. Araujo et 
al. (2019) proposed Bayesian Updating 
(Deutsch and Zanon 2004; Doyen et al. 
1996; Neufeld and Deutsch 2006) to 
build the local probability distribution 
at each location where a soft datum 
is available and sequential Gaussian 
simulation to complete the remaining 
grid nodes. The main drawback of these 
methods is that only one collocated soft 
datum combined with hard data is used 
to condition the simulations.

Cuba et al. (2012) proposed a 
method to combine data with different 
errors. The method builds a conditional 
distribution at the location of the soft 
data using only the neighborhood 
samples removing the sample with error. 
The Gibbs sampler algorithm is used to 
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This article proposes a methodol-
ogy to integrate heterotopic soft data 
into geostatistical models. Soft data 

are referred to herein as values of the 
same variable of hard data but with 
attached uncertainty (imprecise). The 

methodology is presented in Figure 1 
and listed below:

i. Build the Conditional Cumula-
tive Distribution Function (CCDF) at 
soft data locations using MultiGauss-
ian cokriging. For this, local simple 
cokriging estimation was performed 
at the soft data locations using all 
hard and soft data within the search 
neighborhood. The local CCDF has a 
Gaussian distribution with mean and 
variance equal to the simple cokriging 

mean and variance, respectively. The 
Intrinsic Coregionalization Model 
(ICM) was used, so all direct and 
cross-variograms are proportional to 
the variogram model of hard data.

ii. Generate a spatially cor-
related grid of random numbers in 
the interval [0, 1] via unconditional 
simulation. This is the main idea of 
p-field simulation (Srivastava 1992; 

Froidevaux 1993). These values were 
generated by unconditional geostatis-
tical simulation using the variogram 
model of hard data. N scenarios  
were generated

iii. Draw a value from the CCDF 
built-in (i) using the random number 
obtained in (ii) at this soft data location.

iv. Repeat (ii) and (iii) at all soft 
data locations.

Figure 1 - Schematic illustration of geostatistical modeling with Pfield/Tbsim.

sample from this conditional distribu-
tion. The simulated values are kept if 
they satisfy statistical requirements (var-
iogram and histogram). Maleki Tehrani 
et al. (2013) showed a method to consider 
both hard and soft data in geostatistical 
simulation. The original soft data con-
sisted of geological information (rock 
type description), while the hard data 
consisted of copper grades. The first 
step was to build a local Cumulative 
Distribution Function (CDF) of grades 
in these soft data locations. The local 
CDFs followed a Gaussian distribution, 
whose means and variances correspond 
to the cokriging estimates and vari-
ances. The conditioning information for 
cokriging consisted of the original hard 
data and the soft geological data. The 
second step consisted of simulating a set 
of values at these local CDFs using the 
matrix decomposition method (Alabert 
1987). Finally, these simulated values 
were combined with the original hard 
data to condition the simulations that 
occur over the entire study area. Some 
approaches based on Kalman filters, to 
integrate soft data to update short-term 
mining plans, improved production 
control in mineral resource extraction 
(Benndorf and Jansen, 2017; Wambeke 

and Benndorf, 2017).
Different from the other proposals 

presented herein, we present a method 
that uses all the hard and soft data 
available in the local vicinity of a soft 
datum to condition the simulations. To 
the authors’ knowledge, the method 
has not been applied before. Similar to 
other approaches (Cuba, 2012; Barnett 
and Deutsch (2015); Silva and Deutsch 
(2018); Soares et al. (2017); Neves et al. 
(2018); Narciso et al. (2019) and Araujo 
et al. (2019)), we start by generating 
a series of datasets at the location of 
the soft datum. The generation of the 
datasets is performed by p-field simula-
tion (Srivastava 1992). The conditional 
cumulative distribution functions re-
quired for p-field simulation were built 
with MultiGaussian cokriging using all 
the hard and soft data inside the search 
neighborhood. P-field simulation is used 
due to its simplicity and flexibility, since 
the local distribution may be obtained 
from any source of information.

The direct and cross-covariances re-
quired for cokriging were obtained by the 
intrinsic coregionalization model (ICM), 
so that all the variograms are proportional 
to the variogram of the primary variable. 
The ICM requires the coefficient of cor-

relation, which was obtained by extrapo-
lating the experimental cross-correlogram 
(Minnitt and Deutsch 2014). This cokrig-
ing is similar to the ICCK used by Babak 
and Deutsch (2009).

The result of the p-field simulation 
is a set of datasets that are used to con-
dition the simulations in the simulation 
grid. The simulations at the remaining 
grid nodes were performed afterwards 
with turning bands simulation (Journel 
and Huijbregts 1978). Simple kriging 
was used to condition the turning band 
simulations. Although the p-field simula-
tion may generate some artifacts (Pyrcz 
and Deutsch 2001; Ortiz 2003), the 
number of locations simulated with p-
field simulation is negligible compared to 
the number of locations simulated with 
turning bands. The result is that the final 
geostatistical models do not present the 
artifacts of p-field simulation.

The advantages of the workflow 
proposed are the following: (i) only the 
spatial continuity model of the hard data 
is required; the uncertainty of soft data is 
accounted for in the geostatistical mod-
els, (ii) it is computationally efficient, and 
(iii) all the available soft data are consid-
ered. An underground mine case study 
illustrates the methodology proposed.

2. Methodology



272

Geostatistical simulations with heterotopic hard and soft data without modeling the linear model of coregionalization

REM, Int. Eng. J., Ouro Preto, 74(2), 269-278, apr. jun. | 2021

This study uses data from an under-
ground copper mine. The geological domain 
considered was sampled by two different 
types of data (hard and soft data). Figure 2 
shows a data location map. The hard data 

(Figure 2a) were collected using diamond 
drill holes, and are considered accurate 
and precise, but have a large sample spac-
ing. There are 470 samples with an average 
sampling spacing of 10 × 10 m. The soft data 

(Figure 2b) comprise 1473 values sampled 
by channels. The soft data are imprecise and 
inaccurate because errors are incorporated 
during the sampling process. The average 
space between soft data values is 3 × 3 m.

Table 1 shows the global statistics for 
the declustered dataset, using cell decluster-
ing (Deustch and Journel,1998) which will 
be combined to build a grade model: hard 
data (Cu_DDH) with good quality and 

sparse and soft data (Cu_Channels) with 
poor quality and abundant. The mean and 
standard deviation are respectively 73.25% 
and 89.68 %, higher than that of the hard 
data. These large differences indicate that 

soft data was collected in the vein area (Fig-
ure 2a and 2b), where the high grades are 
located. To check for bias and imprecision 
in the soft data, both the hard and soft data 
must be investigated at the same domain.

Table 2 shows the main statistics of the 
declustered dataset of the samples that are a 
maximum of 3 m apart (quasi-collocated). 
This was obtained by assigning the soft da-

tum value to the nearest hard datum location 
whose distance was less than 3 m. We assume 
that the hard data (Cu_DDH) are unbiased 
and precise. The mean and standard devia-

tion of the soft (Cu_Channels) data are re-
spectively 5.25% and 8.50% lower than that 
of the hard data. These differences indicate 
that soft data is biased and imprecise.

Figure 3 shows the univariate 
Gaussian histograms of the hard (Fig-
ure 3a) and soft (Figure 3b) data. The 
data were transformed d by the normal 

transformation (Deutsch and Journel, 
1998). The data are transformed as the 
simulation techniques used assume that 
the data follow a multivariate Gaussian 

distribution. The histograms show that 
the data after transformation are standard 
normal (zero mean, unit variance) for 
both variables.

Figure 2 - Copper underground mine data locations used in this work in ZY 
vertical section - a) hard data location b) soft data location; the gray area corresponds to the geological domain.

Data No. of samples Mean Standard 
Deviation

Coefficient 
of variation Minimum Maximum

Cu_DDH 470 2.28 2.52 1.10 0.70 22.92

Cu_Channels 1473 3.95 4.78 1.89 0.70 32.91

Data No. of samples Mean Standard 
Deviation

Coefficient 
of variation Minimum Maximum

Cu_DDH 89 3.63 4.23 1.10 0.70 22.92

Cu_Channels 89 3.44 3.87 1.13 0.71 21.75

Table 1 - Statistics of the hard and soft declustered data.

Table 2 - Statistics for the hard and soft data separated at a maximum distance of 3 m.

3. Case study

3.1 Data presentation

(a) (b)

v. Combine original hard data 
with a realization at all soft data loca-
tions and proceed with simulation of 

the remaining grid.
v i .  Repeat (i i)  to (v)  for a  

new realization.

The methodology described above 
in six steps (i to vi) is herein known as 
Pfield/Tbsim.
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Figure 3 - Histogram in Nscore unit for variables: a) primary variable (hard) (Cu_DDH) b) secondary (soft) variable (Cu_Channels).

Figure 4 - Cross-correlogram for different lags between hard and soft data, correlation fit (red line) and extrapolation (blue line).

In order to compute correlation in a 
completely heterotopic dataset (the hard and 
soft data are never at the same location), the 

experimental cross-correlogram plot (Figure 
4) was used to project the cross-correlogram 
to zero h and infer the correlation among 

data (Minnitt and Deutsch 2014). The results 
(blue line) indicate a considerable correlation 
of approximately 0.90.

MultiGaussian cokriging was used to 
build the local CDFs which are used after-
wards to draw local realizations using p-field 

simulation. The local CCDF is Gaussian 
where the mean is the cokriging estimate 
and the variance is the cokriging variance. 

The cross-covariances for the cokriging were 
obtained by the intrinsic coregionalization 
model. Figure 5 shows the variance map of 

The spatial continuity model of the 
hard data used in this case was defined 
using standardized variogram models. 

(Eq. 1), and this model is defined by two 
spherical (Sph) structures. The major, 
intermediate and vertical directions are 

called h1, h2 and h3, respectively. This 
model was used for p-field and turning 
bands simulations.

3.1.1 Bivariate statistics and spatial continuity

3.2 p-field simulation

(a) (b)

γNscore_Cu (h) = 0.10 + 0.55  Sph(1)
h1

20m

h2

20m

h3

15m
, ,. . + 0.35  Sph(2). h1

70m

h2

40m

h3

65m
, ,. (1)

Figure 5 - Variance location map of simulate data locations generate in step i) of the proposed methodology.
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To validate the datasets gener-
ated, we checked the histogram and 
variograms of the datasets built with 
p-field simulation. Bias effect in the 
histograms was controlled by using 

cell declustering (Deustch and Jour-
nel,1998), leading to a weighted aver-
age Cu (%) content of 2.28 (%). Figure 
7 shows the cumulative histogram of 
the simulated datasets (black lines) 

and declustered hard data (red line). 
The mean and standard deviation of 
the simulated data are close to the hard 
data histogram. The results indicate 
that the distributions are similar.

Figure 8 shows the experimental 
variograms along the major, interme-

diate and vertical directions, where 
the red line represents the variogram 

model (Eq. 1) and the black lines rep-
resent the experimental variograms 

3.2.1 Validating simulated data

local CCDF. The variance is zero (light blue 
dots) at the hard data locations, as expected. 
At the soft data locations, the variance de-
pends on the amount and correlation of data 
in the vicinity.

Figure 6 shows the location map for 
two realizations of the simulated data with 
p-field simulation. When we compare the 
two, the simulated values (dots symbols) are 
different at the soft data locations but are 

the same at the hard data locations (cross 
symbols). It means, for each new realiza-
tion, there will be different simulated values 
comprising the data set. Fifty realizations 
were generated.

Figure 6 - Example of simulate data locations generate in the ZY vertical section in each soft data location, where 
the symbol plus represents hard data and circles the simulated data value in the same color scale a) scenario 15 and b) scenario 16.

Figure 7 - Histogram of simulated data (black lines) generated compared 
against the hard data (Cu_DDH) histogram (red line) and simulated data (black lines).

(a) (b)

Figure 8 - Variogram reproduction of pseudo-hard and hard data (black lines), 
variogram model (red line): a) major direction, b) intermediate direction and c) vertical direction.

(a) (b) (c)
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The remaining grid nodes were 
simulated with the Turning Bands simula-
tion (Matheron, 1973 and Journel, 1974). 
These simulations were conditioned to the 
datasets generated by p-field simulation. 
For each realization, a different dataset 
was used, which was comprised of that 

original hard data and simulated data set 
values at soft data locations. To optimize 
final model results with the recommenda-
tions suggested by Emery and Lantuéjoul 
(2006) were used. Simple kriging was used 
to build and obtain the mean and variance 
for the local CCDF. A total of one thou-

sand lines were used for the turning bands 
algorithm. Fifty realizations were created 
with the same spatial continuity model 
used in p-field simulation data describe in 
equation 2. Finally, the simulated models 
were back-transformed to the space of the 
original units.

 In Figure 9, the red line represents 
the cumulative histogram of the declustered 
hard data (Cu_DDH), and the black lines 
are the histograms of the realizations. The 
plot shows good statistical reproduction 

of the histogram. The relative difference 
between mean values is 12% for the pro-
posed methodology. The bias can occur 
in situations when the histogram of Cu 
(%) has a small amount of data, mostly in 

low frequency classes. Therefore, as in the 
proposed workflow, soft data were used 
with their error incorporated; the bias and 
imprecision of the data were not transferred 
to realizations.

 In order to verify whether the 
results obtained by the proposed 
framework improved the accuracy 
and precision of the simulations, 
the values of a few hard data were 

excluded from the dataset, and simu-
lations were run at these locations 
of the excluded data (omitted for the 
sake of comparison using jackknife 
(Efron 1982). To perform the test, 

eight diamond drill holes (compris-
ing 55 hard data samples, or the 
equivalent of 12% of the total hard 
data values) were excluded from the 
dataset. (Figure 11).

3.3 Turning bands simulation

3.3.1 Validation models

3.4 Evaluating the accuracy and precision models

Figure 10 shows the variogram 
reproduction by the models obtained 
by Pfield/Tbsim. The red line represents 

the variogram model (Eq. 1), and black 
lines represent those derived from the 
realizations at the major, intermediate 

and vertical directions. The results show 
the proposed methodology reproduces 
the spatial continuity of hard data.

for the generated dataset. The models 
are similar; meaning that the inferred 
data (pseudo-hard) have the same 
spatial continuity of the hard data. 

The artifacts of p-field simulation are 
more pronounced when there are hard 
data to condition the simulations. In 
this case, the p-field was performed 

only at the locations of the soft data. 
The result is that the experimental 
variograms of the dataset did not show 
the artifacts of the p-field simulation.

Figure 9 - Histogram of simulated models compared (black lines) against the hard data histogram (red lines).

Figure 10 - Variogram reproduction by the various models obtained by Pfield/Tbsim (black lines) 
against variogram model of hard data (red line): a) major direction, b) intermediate direction and c) vertical direction.

(a) (b) (c)
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This article presents an approach 
to incorporate hard data and completely 
heterotopic soft data into geostatistical 
simulations. The simulated data gener-
ated to infer the uncertainty associated 
with soft data reproduced the spatial 
continuity and cumulative distribution 
(histogram) of the hard data.

The simulated data inferred by 

p-field simulation reproduce the dis-
tribution and spatial continuity of the 
hard data. The quality of the models 
was assessed using the accuracy plot. 
The results indicate the methodology 
proposed incorporates the uncertainty 
of the soft data into the final model.

For future studies, the authors 
suggest using the methodology in the 

original data space with direct sequen-
tial simulation and applying it in other 
case studies with variables that have 
different coefficients of correlation. This 
workflow may be an easy alternative to 
incorporate soft data in the simulation, 
since it needs few steps and the model-
ing of the spatial continuity only for the 
hard data.
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Figure 11 - Copper underground mine data locations along a ZY plane view (blue dots: hard data; red dots: 
soft data; green dots: hard data excluded from the dataset; and the gray area corresponds to the geological domain).

Figure 12 - Accuracy plot using Pfield/Tbsim.

In order to check the model of uncer-
tainty, accuracy plots were used. On this 
plot, the probability of a real value falling 
inside an interval given by simulations is 
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