Acessibilidade / Reportar erro

Computer-based simulation of kinetics of internal corrosion of engineering alloys at high-temperatures

Simulação computacional da cinética de corrosão interna de ligas metálicas usadas em altas temperaturas

A reasonable prediction of the service life of structures or equipment operating at high-temperatures in aggressive atmospheres requires a full understanding of the degradation mechanisms of the material due to mechanical loading and corrosion. The overall objective of this study is to simulate high-temperature corrosion processes under near-service conditions, which require both, a thermodynamic model to predict phase stabilities for given conditions and a mathematical description of the kinetic process, i.e., solid state diffusion. A computer program was developed in which the thermodynamic program library ChemApp is integrated into a numerical finite-difference diffusion calculation to treat internal oxidation, nitridation and sulfidization processes in various commercial alloys. The model is capable of simulating multi-phase internal corrosion processes controlled by solid-state diffusion into the bulk metal as well as intergranular corrosion occurring in low-alloy steels by fast inward oxygen transport along the grain boundaries of the substrate. In this article, dilute and monophase solutions are considered.

Internal nitridation; oxidation; computational thermodynamics; ChemApp; InCorr; finite difference


Escola de Minas Rua Carlos Walter Marinho Campos, 57 - Vila Itacolomy, 35400-000 Ouro Preto MG - Brazil, Tel: (55 31) 3551-4730/3559-7408 - Ouro Preto - MG - Brazil
E-mail: editor@rem.com.br