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Resumo

Esse trabalho trata da simulação numérica do módulo de elasticidade efetivo
de concretos leves através da técnica multiescala Homogeneização por Expansão
Assintótica. A partir das propriedades elásticas do agregado e da argamassa
empregados na composição do concreto, é possível calcular o tensor elástico
homogeneizado do material resultante. O presente trabalho descreve o estudo
numérico feito com concretos leves fabricados com a mesma argamassa e cinco
tipos de agregados leves, com frações volumétricas variadas. O modelo adotado
para representar as propriedades geométricas e mecânicas do concreto é
caracterizado pela simplicidade. Comparações dos resultados numéricos com
medições experimentais indicam a potencialidade da técnica multiescala empregada
para a simulação do módulo de elasticidade de concretos.
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Abstract

This study concerns the numerical simulation of effective elasticity modulus

of lightweight concrete by means of Asymptotic Expansion Homogenization.

Taking as input data the elastic properties of the aggregate and mortar employed

in the concrete composition, it is possible to evaluate a homogenized elastic

tensor for the resulting material. The present work deals with lightweight concretes

made of the same mortar and five families of low density aggregates, with varying

aggregate volumetric fractions. The multiscale model employed to represent the

geometric and mechanical properties of the concrete is characterized by a great

deal of simplicity. The validation of the adopted procedure consisted of

comparisons of the numerical results with experimental measurements, showing

good agreement.
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1. Introduction

It is well known that the macroscopic behavior of
heterogeneous materials may be strongly influenced by
microstructural characteristics, mainly concerning durability
aspects and aggressive environmental conditions, which lead
to progressive degradation (Piasta et al., 1984; Rostasy et al.,
1980; Saad et al., 1996, Farage et al., 2003). In these cases, it is
convenient to take into account the microscale aspects in the
modeling of heterogeneous systems, in order to adequately
simulate the macroscale effects. However, the detailed
representation of the microstructural interactions often results
in extremely complex problems, which may even turn the
solution impossible due to the great demand of computational
effort. This fact justifies the application of numerical multiscale
techniques to the estimation of effective or homogenized
properties, whose values are similar to those obtained from
experimental measurements (Murad et al., 2001;  Murad &
Moyne, 2002a, 2002b; Romkes & Oden, 2004;  LNCC, 2005).
This work employs Asymptotic Expansion Homogenization
(AEH), a multiscale technique which is applied to periodic
media for estimating the effective mechanical properties of
concretes. The numerical simulations accomplished herein are
based on the results of an experimental program developed by
Ke et al. (2006a, 2006b) for the characterization of lightweight
concretes with varied volumetric fractions of expanded clay.
Firstly, this work presents the overall aspects of the AEH
applied to linear elasticity problems. Then the experimental
program used as validation for the applied numerical procedure
is described. The numerical analysis and results are finally
presented, as well as the comparison of the estimated
homogenized properties to their experimental counterpart.

2. Asymptotic expansion

homogenization

2.1. General aspects

AEH is based on the assumption that a heterogeneous
medium may be represented by a homogeneous one since its
microstructure is periodic or repetitive. The technique basically
consists of studying the different scales of a material,
extrapolating the results from inferior or heterogeneous scales
in order to obtain global or homogenized properties (Sanchez-
Palencia, 1980). When applying AEH, a very important aspect
is the definition of the geometric characteristics of the periodic
cell, which is the smallest microstructural volume capable of
adequately representing the global constitutive behavior of
the medium. Once the geometrical and physical properties of a
cell are known, it is assumed that these properties are
periodically repeated over the structure. In periodic structures
with two scales, AEH consists of uncoupling those scales
into a microscale and a macroscale. The general procedure
for AEH applying the Finite Elements Method (FEM)

comprises the following steps, as stated by Chung et al. (2001):
(1) definition of a global body X in a coordinate system x

i
,

consisting of the structure without microstructural details, and
a local body Y in a coordinate system y

i
, consisting of one

microstructure period; (2) meshing of X and Y in finite elements;
(3) primary variable approximation by an asymptotic series in
scale parameter ∈ , which relates the two coordinate systems
x

i 
 and y

i
; (4) derivation of hierarchical equations, specific for

the treated problem; (5) definition of a homogenized elastic
tensor in the microscale Y; (6) resolution of the homogenized
problem in the macroscale X. The homogenization deals with
partial differential equations related to heterogeneous materials
with periodical structure, considering the assumption that the
amount of periodic cells tends to infinity.  The scale parameter
∈ relates the characteristic dimension of the period (or periodic
cell) to the characteristic dimensions of the macroscopic
dominium.

2.2  AEH applied to Linear Elasticity

According to Chung et al. (2001), by considering a
material whose microstructure is composed of multiple phases,
periodically distributed over the body (Sanchez-Palencia, 1980;
Farage et al., 2005), the periodic elastic material properties are
defined by the following relations:









∈

=∈ x
DD ijklijkl (1)

where ( )∈ denotes quantities related to the actual non-
homogeneous medium and D

ijkl
 stands for the material property

variations in the heterogeneous microstructure Y. The linear
elasticity problem is described by the equilibrium equation (2),
boundary conditions (equations 3 and 4), strain-displacement
relation (equation 5) and constitutive relation (equation 6);
where σ

ij

Î is the ij term of the internal stress tensor and f
1
 is the

body force in the dominium Ω; u
i

∈ is the displacement in
direction i; n

j
 is the vector normal to the boundary Ω and F

i
 is

the external force applied on the boundary and ε
ij

∈ is the ij term
of the strain tensor. The displacements are approximated by
an asymptotic series in ∈, given by equation (7), where u

i

0 is
the macroscopic displacement and u

i

1, u
i

2,.... stand for the
periodic displacements in more refined scales. As the
heterogeneous actual medium is represented by two
coordinate systems (x and y=x/∈), the derivatives originally
in x∈ must be expanded in a chain rule given by equation (8). In
order to obtain the uncoupled equations that describe the
microscale and the macroscale problems, the displacement u

i

is replaced by equation (7) in the set of equations (2) to (6).
The basis of the approximation is the assumption of ∈ tending
to 0, indicating that the number of periodic cells tends to infinity
and the actual non-homogeneous structure is then
approximated by a homogeneous one. In order to validate such
an approximation, the resulting coefficients of ∈ with negative
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exponent must be identically nulls. That leads to the conclusion
that the homogenized solution u0 is constant over the
microscopic scale (u0 does not depend on y), as indicated by
equation (9).
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Equation (10) relates u
i

1 to the homogenized term u
i

0 and
represents the microscale problem:
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where u0 is a known quantity and u1 is the unknown. The
variational formulation of the problem described by equation
(10) is:

dy ν 
y
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where ν is a weight function. In order to avoid the need of
solving u

i

1 in the periodic cell for every variation of u
i

0, the
solution of the variational problem (11) is given by (12):
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 is an integration constant and χι
kl is the

solution to the variational problem (13):
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The function χ
i

kl is known as the elastic corrector or
characteristic function (Chung et al., 2001), independent of u

i

0.

Once χ
i

kl is determined, it is possible to obtain the homogenized
elastic property tensor Dh from equation (14):
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which employs the average operator given by equation (15):

( )dy .
Y

1
.

Y∫= (15)

where |Y| is the volume of the microscopic domain (periodic
cell).

The evaluated homogenized tensor Dh

 
relates the

macroscopic stress to the macroscopic strain in the periodic
cell (The reference (Sanchez-Palencia, 1980) brings the
complete formulation of the AEH applied to linear elasticity
problems).

2.2.1 General procedure for the numerical

evaluation of the elastic tensor via AEH and the

Finite Element Method

The general steps to the evaluation of the effective elastic
properties of periodic heterogeneous media via AEH and FEM
are:

1) Identification of the periodic cell.

2) Meshing of the periodic cell in finite elements.

3) Evaluation of the elastic corrector (χ) through equation
(13), rewritten as follows:

[ ] [ ][ ] [ ] [ ] [ ] J DB J B DB
T

Y

T

Y

∑∑ =χ (16)

where ∑
Y
 stands for the integration over the periodic cell’s

volume, [B] is the differential operator, J is the jacobian
operator and [D] is the elastic tensor of the finite element’s
material.

4) Evaluation of the homogenized elastic tensor D
h
 through

equation (14), rewritten as follows:

[ ] [ ] [ ][ ]( )χ BI D
Vt

Ve
D

Y

h
+= ∑ (17)

where V
e
 is the finite element volume, V

t
 is the periodic cell

volume and [I] is the identity tensor.

3. Experimental program

3.1 Materials and mixture proportions

The experimental study program regards the concrete as
a biphasic material, composed of a mortar matrix and aggregates.
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Lightweight Aggregate’s (LA)
characteristics and volume fraction vary
from one concrete to another, while the
composition of the mortar matrix remains
identical. Concretes made of five different
families of expanded clay were
characterized. The physical properties of
the employed aggregates are presented
in Table (1). The saturated surface’s dry
specific gravity values range from 0.88
to 1.58. Water absorption at 24 hours is
between 6 and 24%. The matrix is a
Portland CEM I 52.5 cement mortar with
fine sand 0/2 mm. For each aggregate
type, the mortar mix proportioning is kept
unchanged. The water/cement and sand/
cement ratios are kept constant at 0.446
and 1.4 while the volume of lightweight
aggregate varies. The volume fraction,
defined as the coarse aggregate volume
divided by the total concrete volume, was
12.5%, 25.0%, 37.5% and 45.0%. The LA’s
are used after a 48 hour immersion to
avoid any change of the water-to-
cement ratio due to water absorption by

the aggregates during mixing. The
aggregates are then drained for 20
minutes until their surface moisture
becomes constant. This water availability
for cement hydration is deduced from
mixing water. A superplasticizer is used
to obtain equivalent slump. The details
of mix proportions for lightweight
concrete (LWAC) made with the 0/4 650A
expanded clay are shown in Table (2);
for the other aggregate types, the
proportioning is obtained by taking into
account the respective specific gravity
given in Table (1). It is assumed that all
the aggregates have a Poisson ratio of
0.20, while their elastic moduli (E

a
) are

given in Table (3).

3.2 Experimental methods

The specific gravity and water
absorption of the lightweight aggregate
were tested according to EN1097-6
(AFNOR, 2006). Four 16x32 cm cylindrical

specimens were cast for each volume
fraction. During the first 24 hours, the
specimens were left in the mold and then
they were removed and cured in water
for 27 days. Uniaxial compressive tests
were carried out using a hydraulic 3000kN
press with imposed stress rate. Axial
displacements of the samples were
measured in its median part during the
test by three displacement transducers
LVDT supported by aluminum rings in
contact with the specimen. The samples
underwent three loading-unloading
cycles, from 0.5MPa to 1/3 of the ultimate
load. The first cycle is accomplished in
order to avoid measurements affected by
plastic deformations. The Young’s
modulus is then determined from the
slopes of the second and third cycles,
according to the procedure
recommended by Torrenti et al. (1999).
The results of compressive strengths
and Young’s modulus are the averages
of measures obtained for 3 specimens.

Table 1 - Physical properties of the employed lightweight aggregates.

Table 2 - Mix proportions for the lightweight concrete made with the 0/4 650A aggregate.
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The 4th specimen is used to measure the
concrete density after oven drying,
according to EN12390-7 (AFNOR, 2006),
and to determine a segregation index
(I

s
=ρ

top
/ρ

bottom
). The level of LWAC’s

segregation is estimated as the ratio of
hardened densities of the upper to the
lower part of a concrete cylinder. A
possible segregation of LWAC then
leads to a reduced density of the upper
section of the specimen due to the
tendency of the aggregates to float in
the denser matrix. To obtain a sufficiently
accurate index, concrete cylinder
sections with 8 cm are sawn. Segregation
problems are sometimes encountered at
the lowest volume fractions with the
lightest aggregates. Specimens with a
segregation index lower than 0.98 are re-
cast under better vibration control. The
elastic properties of the employed mortar
are E

m
=28.58 GPa and ν =0.2. The

measured elastic moduli for the tested
concretes (E

c
) are listed in Table (3).

4. Numerical evaluation

of the effective elastic

tensor

The AEH formulation for linear
elasticity problems described in section
2.2 was implemented in the integrated
technical computing environment
Matlab© (Mathworks, 2009). The current
version of the program (HEA2D)
evaluates the effective or homogenized
elastic tensor of two-dimensional cells
via FEM (Farage et al., 2005; 2006), and
was employed to evaluate the elastic
properties of the concretes characterized
in the experimental program presented
in Section 3. The main purpose of this
application is to verify the ability of the
studied multiscale technique to
determine the Young’s modulus of
concretes based on the following main
assumptions: (a) the concrete is
represented as a biphasic medium,
composed of mortar and aggregate, both
considered as isotropic; and (b) the
heterogeneous microstructure is
modeled by plane periodic square cells.
The aggregate volumetric fraction in

each concrete is represented in the cell
by inclusions: the ratio between the
inclusions’ area and the cell’s total area
equals the aggregate proportion in the
mixture. In order to verify the influence
of the inclusion’s geometry on the
homogenized result, three simple
geometric forms were adopted to model
the medium. The typical aspects of the
adopted periodic media and cells are
shown in Figure (1), where the mortar is

represented in white and the aggregates
in black. The adoption of symmetric cells
composed of isotropic phases leads to
an isotropic homogenized tensor,
described by the general formula (18):

 

( ) ( )

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−−
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1
00

01

01
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E
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h

ν
ν

ν
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Table 3 - Experimental and numeric data and results.

f(%) is the aggregate volumetric fraction; E
a
 is the aggregate’s Young’s modulus; E

ai 
is

the numeric homogenized modulus; e
i 
is the approximation error (Equation 19); subscripts

(.)
1
, (.)

2
 and (.)

3
 stand for cell types a, b and c respectively.
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where D
h
 is the effective elastic tensor;

n is the effective Poisson ratio and E
h
 is

the homogenized Young’s modulus for
the composite material. The proposed
geometric model was applied to the
numerical estimation of the elastic
tensors of the lightweight concretes
characterized in the experimental
program. As stated earlier, the concrete
herein is considered as a biphasic
medium, and the input data for the
HEA2D program are the Young’s
Modulus (Eα ) and the Poisson ratio (ν

α
)

of each component a: mortar and
aggregate. The values adopted in this
work were obtained from the described
experimental program (see Section 3 and
Table (3)). The HEA2D program gives as
output the homogenized tensor D

h
, from

which the numeric modulus E
h
 may be

evaluated. The typical aspects of the
finite element meshes employed in the
present study are shown in Figure (2),
generated via the mesh generator Gmsh
(Geuzane, 2008).

4.1 Comparison between the

numeric and the experimental

results

In order to analyze the numerical
errors obtained from the three tested cells,
the approximation errors were evaluated
by Equation (19):

 

%100
E

EE
e

c

hic

i

−
= (19)

where E
c
 is the experimental Young’s

modulus of the tested concretes obtained
from the experimental program; E

hi
 is the

numeric homogenized Young’s modulus
and ( )

i
 identifies the cell type indicated

in Figure (2) (where 1 stands for cell a, 2
for cell b and 3 for cell c). Information
concerning the FE meshes employed to
model concretes with varying aggregate
volumetric fractions (f(%)) are listed in
Table (4). As one can notice in Figure
(3), the influence of the LA’s f(%) on the
E

c
 values is adequately represented by

the evaluations accomplished with all 3
periodic cells. The errors e

i
 indicate that

cells a and b lead to very similar values
for E

h
 , denoting that these geometric

forms are equivalent to representing the
aggregates in the medium. Most of the

Figure 1 - Adopted geometric models for the periodic media and cells.

Figure 2 - Typical aspects of the adopted finite element meshes.

(a) Cell a (b) Cell b (c) Cell c

(a) (b) (c)
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evaluated errors e
1
 and e

2
 are less than

3%, except for one mixture for which the
experimental value is rather more
elevated than the expected (line 9 in Table
(3)), which probably results from some
experimental problem. Results obtained
from cell c are rather different from the
others, mainly for concretes with lower
f(%). Such differences might indicate that
the inclusion distribution in the periodic
cell affects the evaluation of E

h
. On the

other hand, for the concretes made of
aggregates with E

a
=20,20GPa, there are

no significant differences amongst the
values obtained from the 3 cells, since
the errors e

i
 are less than 1%. This fact

might indicate that the homogenization
is more effective for lower E

m
/E

a
 ratios,

but the authors believe that it is due to
the FE meshes, whose refinement, mainly
in the interface regions, do affect the
approximations.

5. Conclusions

Despite a number of simplifying
hypotheses adopted to model the
geometric and mechanical characteristics
of the heterogeneous medium in study,
the numeric results are similar to the
experimental measurements taken as
reference. The influence of the geometric
distribution of the inclusions adopted
to represent the aggregates in the
periodic cell needs to be further analyzed,
as herein the discrepancies observed
among the numeric results obtained from
three different geometries seem to have
been more influenced by aspects related
to the finite element meshes. The
obtained results encourage the
application of AEH to simulate more
complex problems.
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