
259

Tiago L. D. Forti et al.

REM: R. Esc. Minas, Ouro Preto, 67(3), 259-264, apr. jun. | 2014

Abstract

This article describes the development of an application for structural analy-
sis of tubular trussed girders. Such structural components are widely used on
roofs for which long span components are a necessity, e. g., supermarkets, distri-
bution centers, etc. The application supplies hints to the project engineers as to the
most economic solutions for a combination of span, loads, and other characteris-
tics. Software development techniques are also explored. Such techniques can be
divided into two large groups. In the first one, which is most widely known and
used, software development complies with very rigid planning, where processes
are more important than skills. This methodology is known as the Rigorous De-
velopment System (RDS). The second group, called Agile Development System
(ADS), is conceived as an option for those not aligned with the RDS rules. This
text describes the experience of an ADS based software development for truss
design. In Section 2, the basis of ADS is presented. Section 3 describes the truss
design application and civil engineering related concepts. Section 4 brings an ex-
ample illustrating the application. Conclusions are in Section 5.

Keywords: steel structures, design automation, agile programming.

Resumo

Este artigo descreve o desenvolvimento de um programa de computador
para análise estrutural de treliças tubulares. Esse tipo de estrutura é amplamente
empregado em coberturas de grandes vãos, como as de supermercados, centros
de distribuição, etc. O programa indica ao projetista as soluções mais econômi-
cas para uma combinação de parâmetros de vão, cargas, entre outros. O artigo
também explora técnicas de desenvolvimento de software. Tais técnicas podem
ser divididas em dois grandes grupos. No primeiro, mais empregado e conheci-
do, o desenvolvimento é baseado em um planejamento rígido, em que processos
são mais importantes que habilidades. Essas metologias são conhecidas como
Rigorous Development System (RDS). O segundo grupo, chamado de Agile De-
velopment System (ADS), é concebido como uma alternativa àqueles que não se
alinham com as regras do RDS. O texto descreve uma experiência de desenvol-
vimento, baseado em ADS, de um programa de projeto de treliças. Na Seção 2,
as bases da ADS são apresentadas. A Seção 3 descreve o programa e conceitos de
engenharia civil relacionados. A Seção 4 traz um exemplo ilustrando o progra-
ma. Conclusões são apresentadas na Seção 5.

Palavras-chave: estruturas metálicas, automação de projeto, programação ágil.

Agility based software
development for truss design

Desenvolvimento de programa
de computador para projeto de treliças
baseado em tecnologias ágeis

Tiago L. D. Forti
Simworx Engenharia,

Pesquisa e Desenvolvimento,

Campinas - São Paulo - Brazil

forti@simworx.com.br

Gustavo C. Longhin
Simworx Engenharia,

Pesquisa e Desenvolvimento,

Campinas - São Paulo - Brazil

longhin@simworx.com.br

Nadia Cazarim da Silva Forti
Professora e Pesquisadora da Pontifícia

Universidade Católica da Campinas,

Parque das Universidades,

Campinas-SP, Brasil,

nadiacazarim@yahoo.com.br

João Alberto V. Requena
FEC,Universidade Estadual de Campinas,

Cidade Universitária "Zeferino Vaz",

Campinas-SP, Brasil

requena@fec.unicamp.br

Civil Engineering
Engenharia Civil

260 REM: R. Esc. Minas, Ouro Preto, 67(3), 259-264, apr. jun. | 2014

Agility based software development for truss design

1. Introduction

The steel construction industry
has evolved considerably since the hand
designed crafted, assembled structures
of the XIX century. It has evolved to a
manufacturing process using automated
production lines yielding ready to go
parts containing the latest technologies
of its field.

Along with the last four decades of
the steel construction industry evolution,
another industry is evolving with astonish-
ing speed and is greatly contributing to all
of the industrial evolution, the Informa-
tion Technology industry (IT).

The pace of development found in IT
evolution, combined with the challenges
to which IT is exposed, provides scientists
with motivation for the development of
new technologies, methodologies, rules,
and processes in the process of defining the
way information is exploited. Among all
IT specialties, Software Engineering (SE) is
an example of IT related disciplines which
evolved because of such motivations.

Software Engineering was first
established as a well defined science,
with accurate scope and non ambiguous
contexts back in the 80s. One can think
of software development evolution as an
adaptation of methodologies found in
other engineering fields, i.e. Civil Engi-
neering, Mechanical Engineering, etc.
Analogies amongst those fields fomented
the definitions of man hour specification,
budgetary schedules, deliverable sched-
ules, etc. Nevertheless, contrary to such
disciplines, SE does not count on such
non abstract, totally palpable products
such as buildings, engines, bridges etc. SE
lacks a well defined deliverable, and this
is certainly its main drawback, and still,
it is a very strong motivation for all types
of evolution.

Since SE defines such an adverse
environment, its evolution is addressing
all its deficiencies with constant modi-
fications, re-designs, accommodations,
adaptations, among others. Its initial

methodologies reflected a strong neces-
sity of protecting the contractors against
the software developers. Processes were
totally dependent on strong bureaucratic
tools, schedules, patterns, and measure-
ments, i.e., a very rigid development
system. Methodologies compliant to such
restrictive requirements are identified as
Rigorous Development Systems (RDS).
Rational Unified Process (RUP) is an ex-
ample of RDS methodology, Jacobson et
al. (1999) and Kroll & Kruchten (2003).
RDS methodologies are unquestionably
very appropriate to most of the large
scale software projects, where hundreds
of developers work on the same subject
and where final integration without the
help of well defined procedures would be
humanly impossible.

RDS was then taken as the solution
for all software development projects,
until a new requirement arouse, speed.
Terms like “time to market” became as
common as Class Diagrams on any soft-
ware specification. The intrinsic qualities
of RDS methodologies compromised its
performance whenever time to market
was an issue.

RDS should therefore, evolve to a
more flexible, less restrictive methodol-
ogy, which could address more effectively
issues such as time to market, non static
specifications, ever changing require-
ments, change of schedules, competitors
actions, etc. Naturally, RDS practitioners
themselves evolved to adapted methodolo-
gies developed, and in-house procedures
were lapidated to the specific contexts.
After a few experiences, the community
realized they were no longer doing RDS
and decided that a new specification
should be sketched.

This gap is then fulfilled by the
establishment of the Agile Development
Systems (ADS), which, according to its
authors, better addresses the new chal-
lenges of the modern software develop-
ment environment. Other segments of

the Software Engineering community,
however, question their arguments. This
judgment is not in the scope of this work.

In this state of development for both
software engineering and steel construc-
tion industry, this work goes towards the
direction of sharing an experience the
authors had in developing an application
for such a highly technological segment,
which is the steel construction industry,
immersed on the paradigms of ADS and
actually sticking to its rules.

The application's main functionality
is to process a set of possible configura-
tions of trusses for a given span and load
cases. Combinations of all possible designs
are automatically projected and subjected
to structural analysis and design. After-
wards all the results are sorted according
to a specific parameterization, and the best
qualified configurations may then be sub-
jected to a deep analysis. The application
receives as input the span it must cover as
well as its accidental loads according to
Brazilian specification / standardization
ABNT NBR8800 (2008), and whatever
possible configurations to vary, including
geometry type, height, planar or 3 dimen-
sional truss. Details of these parameters
are presented in Section 3.

The application was written in Del-
phi and lots of pre-existing classes were
used, also contributing to the development
process, since most of those classes had
already been tested and validated.

Playing by ADS rules allowed the
authors to meet the very restrictive sched-
ule of one week. Extensive use of pair
programming and Test First techniques
were also exploited. Specific topics
throughout the document are dedicated
to both SE and Steel Industry. Such
terms are explained with more detail in
upcoming topics.

The application is then validated
by an application reference in the field
of Steel Structures analysis and its cor-
rectness is confirmed.

2. Agile development systems

Agile Development Systems (ADS)
is a methodology conceived for the
development of software (Highismith
(2002)). It is a methodology used as
a tool for better developing software.
As any methodology, ADS has its own
sets of rules, tools, and processes and is
based on a few paradigms. What most

differentiates the ADS methodology
from other Software Engineering meth-
odologies is the nature of its paradigms.

The paradigms upon which ADS
is conceived are translated in a few,
very important rules. While practic-
ing ADS, these rules are addressed by
a set of techniques. A variety of ADS

methodologies explores the paradigms
in different ways, but agility as its
main goal, and it never neglects mo-
tivation. All ADS methodologies, as
seen in Highismith (2002), advocates:
Individuals and Interactions over
processes and tools; Working software
over comprehensive documentation;

261

Tiago L. D. Forti et al.

REM: R. Esc. Minas, Ouro Preto, 67(3), 259-264, apr. jun. | 2014

Customer collaboration over contract
negotiation; Responding to change over
following a plan.

The first statement addresses the
fact that, while using RDS, processes
and tools overwhelm creativity. RDS
states that, as long as you keep your
work according to what is planned,
chances are that the project will suc-
ceed. ADS assumes a position whereby
Individuals and the interaction among
them are more effective than following
the plan.

For ADS, some processes and tools
are certainly necessary, but after a point
processes and tools start inhibiting
creativity, which by no means should
be inhibited.

The second one states that one
cannot find a software developer who
has never been involved in a project
where the effort for complying with
documentation requirements surpassed
the necessary effort for delivering the
first executable for that project. It is

very common that one spends more time
documenting what the software does
than actually coding its functionalities.

The third statement is also very
reasonable, since arguments on vali-
dating the projects deliverable based
on contracts happen very often. In this
approach, the protection the contrac-
tor has is the contract, which makes its
negotiation mostly an adverse event,
where developer plays against contrac-
tors; this is certainly not useful for the
development process. A more symbiotic
customer/developer relationship must
always be the main objective.

For ADS, this can be accomplished
with a more collaborative arrangement
involving both developers and contrac-
tors, in a sense that both parts share the
responsibility for the resulting schedule,
planning, budget etc. Having the con-
tract as the sole entity for validation of
the project execution is definitely not a
good option.

The last statement addresses the

discipline of playing according to what
was previously planned.

RDS states that you have to plan
the work very carefully and then work
on the plan. Nevertheless, ADS under-
stands that such a strict rule of play-
ing according to the plan prevents the
development process from adapting to
changes, which, by the ADS perspec-
tive is more important than following
a plan.

At the end, if a project does not
adapt to possible changes, at best, one
will have an application that works cor-
rectly but is worthless, since the context
in which it was conceived, is not the
same as that which is delivered.

Further discussions on the subject
of Software Development technologies
are not in the scope of this work. The
message here goes in the direction of
sharing a very effective experience the
authors had on working with a specific
set of ADS rules on the development of
a scientific code.

2.1 - ADS Practices
A few ADS practices, which are

actually defined by eXtreme Program-
ming (Astels et. al. (2002)), or XP,
address the motivations of team work.
Some of the paradigms found for XP
concern the sharing of knowledge which
should be as widespread as possible in
any technical environment.

The more information a team
shares, the more chances are that this
team will be a winning one. Therefore,

XP defines the Pair Programming
practice.

The XP community understands
that, for a wide variety of scenarios,
two engineers (or programmers) work-
ing on the same subject, each one in its
own workstation, are less effective than
the work both engineers perform while
working at the same workstation. In our
experience of developing the truss de-
sign application, we could observe that

our work was more effective because of
this approach.

Another proposal XP brings
concerns the coding methodology. XP
proposes the Test First philosophy, i.e.
the first actions the programmer takes
aims on testing, if the planned model
actually delivers what it was first con-
ceived to accomplish.

These two approaches are de-
scribed in the following topics.

2.1.1 - Pair Programming
Pair programming is not only

the configuration of two programmers
sharing the same workstation. While
sharing the same code, not only pro-
gramming is performed in pairs but
plenty of other things are shared by
those two programmers. Certainly, one
aspect where Pair Programming effec-
tively adds up to the quality of the code
being developed, lies on the fact that
two different persons are solving the
same problem, and, what is more impor-
tant, both tend to agree on the adopted

solution. With this, both persons are
exposed to different approaches while
solving a specific problem. The sharing
of experiences is enormous (Astels et.
al. (2002)).

Another aspect which deserves
some attention concerns error genera-
tion. Two persons reading the same code
may better identify errors, from simple
misspelling to misunderstanding of the
algorithms.

XP also mentions the “double
fun effect”, whenever a code is being

developed concurrently by two persons.
If one of them enters a low productivity
mood, there are chances that the other
is warming up since, for instance, the
upcoming subject is its preferred one.

In the development of the truss
design application, the authors experi-
enced these aspects. The authors experi-
ence while practicing pair programming
was very interesting.

All expectations driven from XP's
pair programming explanations were in
fact observed.

2.1.2 - Test First
According to XP perspectives, the

traditional testing plans to which all
software developers are used to, those
based on final definitions of the class
model according to well written use
cases, somehow lack an effective way of

contributing to the quality of the soft-
ware developed. It solely verifies that
the model is correct, and it behaves ac-
cording to that which was documented
and implemented on the classes that
comprise the model.

In the XP proposal for testing, the
chronological order of task execution
is switched, contrary to mainstream
testing.

One first writes the tests, and then
implements the code, different from the

262 REM: R. Esc. Minas, Ouro Preto, 67(3), 259-264, apr. jun. | 2014

Agility based software development for truss design

former, where one first implements the
code and then the testing.

XP proposes the Test First philoso-
phy, where the first thing a programmer
should implement is the tests which verify
the functionalities of its to-be implemented

code. By doing so, programmers, while
elaborating test cases, also validate their
expectations for the elaborated solutions.
While revisiting those solutions, some
missing points can be clarified and better
addressed.

A process with such iterative charac-
teristics effectively adds up to the quality
of the solution.

The reference Astels et al. (2002)
brings a more in depth information on
the XP subject.

3. The truss design application

The truss design application devel-
oped has a graphical user interface as
shown in Figure 1.

The application is developed in

Delphi language running on Windows
operating system.

The application automatically
generates the truss geometry, applies

the external loads, computes the efforts
acting on each element and designs
them. These steps are described in the
next topics.

3.1 - Truss geometry
The trusses analyzed are girders for

long span roofs. Some types of geometry
are implemented. Figure 2 illustrates
the available geometry types: Warren,
Mounted Warren, Pratt, and Inverted
Pratt. The trusses may also be planar or
multiplanar trusses (Figure 3).

For defining the truss geometry, the
following data is required:

•	 the span to be covered by the
truss; the truss height;

•	 the truss width of multiplanar
trusses. It also indicates the distance be-
tween neighbor trusses, both planar and
multiplanar;

•	 the modulation of the truss which
is defined by the angle of the diagonal ele-
ments.

The application adopts 5 different
modulations within the admissible diago-
nal angle values;

•	 the geometry type: Warren,

Mounted Warren, Pratt, or Inverted Pratt;
planar or multiplanar.

Actually, the user informs a range
for the truss height and a range for the
diagonal angle.

The application then generates all
the possible geometries and designs all
of them. In fact, that is the main goal of
the application: to determine the optimal
geometry for a given set of span, truss
width, and external applied loads.

3.2 - External loads
The user must provide the ac-

cidental loads and their coefficient in
combination cases.

In general, for the purpose of roof
systems, two major external load cases

are considered, based on wind loads.
The first is for the pressure wind case,
and the second is for the suction wind
case. More load cases could certainly
be adopted. Once these values are pro-

vided, the application automatically
applies these loads to the superior chord
of the truss. The self weight loads are,
of course, computed by the application
itself during the design process.

3.3 - Computing internal stresses
The stresses acting on each ele-

ment of the truss are computed in linear
elasticity.

Employed is the direct stiffness
method (DSM), also known as the dis-
placement method or matrix stiffness
method (Gere & Weaver (1965)).

The main assumptions of this
method are:

•	 the truss is a framed structure;
•	 materials are elastic and have

linear behavior: small displacements

and small deformations;
• validity of the Bernoulli prin-

ciple, i.e. a planar cross section remains
planar after loading;

• validity of the effect superposi-
tion principle;

•	 elements are modeled as spatial
beams with axial, torsional, and bend-
ing rigidity.

The DSM computes the displace-
ment and rotation of each node in
the structure and the internal forces

of each element: normal force, shear
forces, bending moments and torsional
moment.

For solving the DSM system of
equations, a Cholesky direct decompo-
sition solver is used (Burden & Faires
(2010)).

A band storage matrix is utilized
(Burden & Faires (2010)).

The equations are sorted to reduce
the band matrix and increase the speed
of the Cholesky solver.

3.4 - Design of elements
The elements must be designed to

support the forces acting on it.
In the developed application, the

elements are designed and checked
against the Brazilian Specification

ABNT NBR8800 (2008), which is
concerned with steel structure analysis,
design and construction.

For the design, all the forces are
taken into consideration: normal force,

bending moments, shear forces, and
torsional moment.

Connections are not designed or
checked in the current version of the
application.

3.5 - Validation
Several tests were applied to verify

the correctness of each part of the devel-
oped application for both graphical user
interface and kernel functionalities.

Moreover, some classes used in the

development of this application had been
previously validated for their use in other
applications. Finally, the application was
validated comparing its results with the
commercial structural analysis and design

application SAP (2000).
The comparison of several examples

confirmed the correctness of the applica-
tion. Details of the validation task will not
be explored in this text.

263

Tiago L. D. Forti et al.

REM: R. Esc. Minas, Ouro Preto, 67(3), 259-264, apr. jun. | 2014

Figure 1
Graphical user interface

of the truss design application

Figure 2
Geometry types: Warren,
Mounted Warren, Pratt,

and Inverted Pratt

Figure 3
Planar and multiplanar truss geometry

4. Numerical example

A numerical example is presented
to illustrate the functionalities of the
developed application. Let us take the
following input data:

•	 Span length = 40 m;
•	 Geometry:
	 0 Truss width = 2.5 m;
	 0 Truss height from 2 m to 4 m

varying of 10 cm, i.e. 2, 2.1, 2.2, … , 3.8,
3.9, 4 m

	 0 Admissible diagonal angles
between 30o and 60o;

	 0 The four available geometry
types: Warren, Mounted Warren, Pratt,
or Inverted Pratt

	 0 Planar and multiplanar geom-
etries

•	 Load cases:
	 0 Q1 = 40 kgf/m2 (vertical down-

ward);
	 0 Q2 = -50 kgf/m2 (vertical up-

ward);
•	 Combination cases:

	 0 Combo 1=1.4 Self weight +
1.4 Q1;

	 0 Combo 2 = 1.0 Self weight +
1.4 Q2;

•	 Design of elements using circu-
lar hollow steel section.

The available possibilities for the
truss geometry lead to a number of 840
different geometries to be analyzed. The
application runs on multithreading, pro-
cessing two cases at the same time. Run-
ning on a personal laptop computer, the
application took 16 minutes to process all
the cases. The computer has an Intel Core
2Duo P8600 2.4 GHz processor and 4
Gb of RAM memory. The operating sys-
tem is a Windows 7 professional 64 bits.

After the cases are run, the ap-
plication sorts them based on their
weight, from the lightest to the heaviest
truss. The application has also the pos-
sibility of sorting the trusses based on
their prices. In order to use this option

one needs to provide the price of each
circular hollow steel section. It was not
the case in this example. The lightest
truss obtained is presented in Figures
4 and 5. Its geometry is given by: truss
width = 2.5 m; truss height = 2.5 m; diagonal
angle = 56.3o which gives 12 modules;
mounted Warren geometry type; multi-
planar geometry.

The weight of this truss is 1603 kg
which gives a weight per square meter
of roof of 8.01 kg/m2. For instance,
the worst solution obtained produces
40.4 kg/m2.

It is important to note that the
best solution obtained is for the given
load and its combination cases, span
length and truss width. For other data,
different solutions would be obtained.
However, the example illustrates how a
great number of possibilities (840 cases)
may be analyzed in a few minutes when
design automation is employed.

264 REM: R. Esc. Minas, Ouro Preto, 67(3), 259-264, apr. jun. | 2014

Agility based software development for truss design

Figure 4
The best geometry found for the
example – perspective view

Figure 5
The best geometry found for the
example – 2D view

5. Conclusions

This work describes an experience
of a scientific code development under
the methodology of Agile Development
Systems (ADS). A review of software
engineering techniques such as ADS and
Rigorous Developments Systems was
presented. The text describes the rules of
ADS employed in the development of a
truss design application.

The authors recognize that the use of
the ADS methodology was very important
for the success of this project which had
a very tight schedule of only one week to
be accomplished. Techniques like pair
programming played a very effective role
in the development process.

Along with pair programming, test
first techniques contributed a lot to the
development process. One can say that
test first techniques sharpen the engineers
focus on the problem being solved. It
enforces just-in-time development, i.e.
implement just what you need now, and
do not implement anything for the future.
Such practice certainly yields a code which
is simpler when compared to generic
implementations.

ADS techniques are certainly very
suitable for the development of scientific
code. The paradigms upon which ADS
is built are very aligned to the paradigms
dictating the way knowledge should be

shared in the academic environment. At
least, in the academic environment, if one
is playing by the ADS rules, it will prob-
ably benefit from it.

The application was implemented
from some already validated structural
analysis classes that were extended to this
project. A graphical user interface was also
developed for helping the input of data
and the analysis of results. A numerical
example is presented.

Finally, the article contributes with
a witnessed experience of how different
disciplines like computer science and civil
engineering can be combined to produce
an effective solution.

6. Acknowledgments

The authors would like to thank the
V&M do Brasil company for the support

and funding and the professors of the
School of Civil Engineering (FEC) in State

University of Campinas (UNICAMP) for
their provided help and availability.

7. References

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR8800:2008.
Projeto de estruturas de aço e de estruturas mistas de aço e concreto de edifícios.
Brasil, 2008.

ASTELS, D., MILLER, G., NOVAK, M. Practical guide to eXtreme programming.
Computer Software - Development. Prentice Hall PTR, first edition, 2002.

BURDEN, R. L. FAIRES, J. D. Numerical analysis, ed. Brookes-Cole, 2010.
COMPUTER AND STRUCTURES INC. SAP2000 Users guide. Computers &

Structures, 2000.
GERE, J. M. WEAVER, W. Jr. Analysis of framed structures. D. Van Nostrand Com-

pany, 1965.
HIGHSMITH, J. Agile software development ecosystems. Computer software - Deve-

lopment. Addison Wesley, 2002.
JACOBSON, I., BOOCH, G., RUMBAUGH, J. The unified software development

process. Addison-Wesley Professional, 1999.
KROLL, P. and KRUCHTEN, P. The rational unified process made easy. Addison-

-Wesley Professional, 2003.

Received: 25 July 2013 - Accepted: 25 July 2014.

