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Univariate and multivariate nonlinear models in productive traits of
the sunn hemp1

Modelos não lineares univariados e multivariados em caracteres produtivos de
crotalária juncea

Cláudia Marques de Bem2*, Alberto Cargnelutti Filho3, Fernanda Carini4 and Rafael Vieira Pezzini4

ABSTRACT - Multivariate analysis helps to understand the relationships between dependent variables; this methodology
has great potential in several areas of knowledge. The aim of this study was to adjust and compare the univariate and
multivariate Gompertz and Logistic nonlinear models to describe the productive traits of sunn hemp (Crotalaria juncea L.).
Two uniformity trials were performed, and the following productive traits were analyzed in 376 sunn hemp plants along 94
days of observations (four plants per day): the fresh mass of leaves (FML), the fresh mass of stem (FMS), and the fresh mass
of the aerial parts (FMAP). The Gompertz and Logistic univariate models were adjusted for each productive trait. To adjust
the multivariate models, the errors covariance matrix was calculated. The     matrix (Cholesky factor) was obtained for each
trait, and the multivariate Gompertz (GG) and Logistic (LL) nonlinear models were generated, together with the combination
of both models (GL and LG). To define the best model, the residual standard deviation (RSD), the determination coefficient
(R2), the Akaike information criterion (AIC), the mean absolute deviation (MAD), and the measures of intrinsic nonlinearity
(INL) and parametric nonlinearity (PNL) were calculated. The nonlinear multivariate model LL was adequate and achieved
satisfactory results to describe the productive traits of sunn hemp.
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RESUMO  - A necessidade de entender o relacionamento entre variáveis dependentes faz da análise multivariada uma
metodologia com grande potencial de aplicação em várias áreas do conhecimento. Objetivou-se ajustar e comparar os
modelos não lineares univariados e multivariados de Gompertz e Logístico, utilizados na descrição dos caracteres produtivos
de crotalária juncea (Crotalaria juncea L.). Foram realizados dois ensaios de uniformidade. Foram avaliados os caracteres
produtivos: massa de matéria fresca de folha (MFF), massa de matéria fresca de caule (MFC) e massa de matéria fresca de
parte aérea (MFPA), durante 94 dias, sendo avaliadas quatro plantas por dia, totalizando 376 plantas. Os modelos univariados
de Gompertz e Logístico foram ajustados para cada caractere produtivo. Para o ajuste dos modelos multivariados, calculou-
se a matriz de covariância dos erros. Obteve-se a matriz (fator de Cholesky) para cada caractere e foram gerados os
modelos não lineares multivariados de Gompertz (GG), Logístico (LL) e a combinação de ambos os modelos (GL e LG).
Para definição do melhor modelo, utilizou-se o desvio padrão residual (DPR), o coeficiente de determinação (R²), critério
de informação de Akaike (AIC), desvio médio absoluto (DMA), medida de não linearidade intrínseca (LI) e medida de
não linearidade paramétrica (LP). O modelo não linear multivariado LL foi adequado e obteve resultados satisfatórios para
descrever os caracteres produtivos de crotalária juncea.

Palavras-chave: Crotalaria juncea L.. Análise multivariada. Massa de matéria fresca. Modelagem do crescimento.
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INTRODUCTION

Sunn hemp (Crotalaria juncea L.) is a fast-
growing legume, especially under high temperatures
(LEAL et al., 2012). This crop is being increasingly
used to suppress weeds development (TIMOSSI et al.,
2011). Though being an excellent alternative crop for
fresh manure production, it is still scarcely used because
there are no data to allow production estimates of this
species in Brazil. A promising approach to analyze crop
behaviors is the use of nonlinear regression analysis,
more precisely, the application of nonlinear regression
models (LÚCIO; NUNES; REGO, 2015).

The need to understand the relationships
between multiple variables makes nonlinear regression
a tool of paramount importance, which can assist in
the understanding of biological interactions and the
achievement of practical solutions while allowing the
characterization of crops’ behavior (REIS et al., 2014).
The use of nonlinear regression models provides a
comprehensive viewpoint, which may increase the
inferences obtained regarding the productive behavior of
a given crop throughout its life cycle.

Several statistical models can quantify plant
production and describe plant growth patterns, both at
the whole-plant level and organ (leaf, stem, and root)
level, with nonlinear models being more commonly
used (BATES; WATTS, 1988). As the behavior of
mass traits presents a sigmoid shape, growth models
are recommended for their modeling (SEBER; WILD,
2003). In this context, the Gompertz and Logistic models
stand out because they may contribute to or facilitate
the interpretation of the processes involved in plant
growth, since their parameters allow efficient, practical
interpretations (SEBER; WILD, 2003).

Most studies using nonlinear regression models
to assess the growth pattern of various crops included a
single response variable (univariate models), generating
specific models for each variable tested (BEM et al.,
2018). Multivariate nonlinear regression models allow the
assessment of more than one response variable in a specific
experimental unit through the use of a single model (HAIR
JÚNIOR et al., 2009), and can, therefore, contribute to a
better understanding of the entire crop productive cycle.
The designation of “multivariate analysis” comprises
a large number of methods and techniques in which all
variables are simultaneously used for the theoretical
interpretation of a given data set (MOITA NETO, 2004).
The purpose of multivariate analysis is to measure,
explain, and predict the degree of relationship between
different variable combinations, allowing to preserve
the natural correlations between the variables without
isolating any of them (HAIR JÚNIOR et al., 2009). When

a multivariate technique is used, it is necessary to estimate
a significant and representative model of the population
under study as a whole, so that reliable results can be
obtained (MOITA NETO, 2004). The use of multivariate
analysis in agriculture has enabled the comprehension
of many complex phenomena and the achievement of
valuable answers to several questions, which further
became the rationale of different practices. The efficiency
of this methodology prompted its widespread application
(OLIVEIRA; PADOVANI, 2017). By using multivariate
analysis, researchers may obtain deeper knowledge about
the productive behavior of sunn hemp, attaining a dynamic
approach of fresh aerial mass production throughout the
plant cycle.

In previous works, we modeled several sunn hemp
productive traits separately using the Gompertz and
Logistic univariate nonlinear models (BEM et al., 2018). It
may be assumed that the combined analysis of these traits
through multivariate nonlinear models could yield a more
comprehensive snapshot of this crop, thus contributing
to a better understanding of its behavior as a whole. No
reports on the calibration of multivariate nonlinear models
to study sunn hemp biomass production were found in the
scientific literature.

The purpose of this study was to adjust and compare
the performance of the univariate and multivariate
Gompertz and Logistic nonlinear models to describe the
productive traits of sunn hemp as a function of the number
of days after sowing.

MATERIALS AND METHODS

The data used were obtained from an experiment
conducted in 2014/2015 in the experimental area of the
Department of Plant Science of the Federal University
of Santa Maria (Rio Grande do Sul, Brazil). Two
uniformity trials without treatments (blank experiments)
were performed. Sunn hemp seeds were sown in 0.5 m-
spaced rows at a density of 20 seeds per row meter in
an experimental area of 52 m × 50 m (2,600 m²). The
base fertilization was 15 kg ha-1 N, 60 kg ha-1 P2O5, and
60 kg ha-1 K2O.

After the emergence of sunn hemp seedlings (about
seven days after sowing), four plants were collected daily
and randomly, totaling 94 days of assessment and 376
plants sampled. The traits evaluated were the fresh mass
of leaves (FML, in g plant-1), the fresh mass of stem (FMS,
in g plant-1), and the fresh mass of the aerial parts (FMAP
= FML+FMS, in g plant-1).

The following expression was used for the
univariate Gompertz model:
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yi = a exp [- exp (b - cxi)]                                             (1)

where a is the asymptotic value; b is the allocation
parameter without direct practical interpretation, but
important to maintain the sigmoidal shape of the model;
and c is the parameter associated with plant growth,
which indicates the precocity or maturity index (SEBER;
WILD, 2003). The parameter c is the growth rate and
represents the velocity with which fresh and dry mass
accumulates over time; this velocity can be measured by
the second-order partial derivative (MISCHAN et al.,
2011; MISCHAN et al., 2015), while xi is the independent
variable (days after sowing).

For the univariate Logistic model, the following
expression was used:

yi = a/[1 + exp (- b - cxi)]                                             (2)

where a is the asymptotic value; b is the allocation
parameter with direct practical interpretation, but
important to maintain the sigmoidal shape of the model;
and c is the parameter associated with plant growth,
which indicates the precocity or maturity index (SEBER;
WILD, 2003). The parameter c is the growth rate and
represents the velocity with which fresh and dry mass
accumulates over time; this velocity can be measured
by the second-order partial derivative (MISCHAN et al.,
2011; MISCHAN et al., 2015), while xi is the independent
variable (days after sowing).

For the univariate Gompertz model, the inflection
point (ip) was calculated:

xi = b/c and yi = a/e                                                       (3)

the maximum acceleration point (map):

xi = (b - ln (2.62))/c and yi = a * e (-2.62))                       (4)

the maximum deceleration point (mdp):

xi = (b - ln (0.38))/c and yi = a * e (-0.38))                       (5)

and the asymptotic deceleration point (adp):

xi = (b - ln (0.17))/c and yi = a * e (-0.17))                       (6)

using the model parameters a, b, and c, and
the constant e = base of the neperian logarithm
(2.1782) (MISCHAN; PINHO, 2014). Also, for the
univariate Logistic model, the inflection point (ip) was
calculated:

xi = -b/a and yi = a/2                                                     (7)

the maximum acceleration point (map):

xi = (-b/c) - (-1/c * 1.3170)) and yi = a/4.7321             (8)

the maximum deceleration point (mdp):

xi = (-b/c) - (-1/c * 1.3170)) and yi = a/1.2679             (9)

and the asymptotic deceleration point (adp):

xi = (-b/c) - (-1/c * 2.2924)) and yi = a/1.1010           (10)

using the model parameters a, b, and c (MISCHAN;
PINHO, 2014). These two models were subsequently
adjusted for each trait (FML, FMS, and FMAP).

For the adjustment of the multivariate nonlinear
models, the residual vector of the univariate nonlinear
models was first calculated for each productive trait to
obtain the error covariance matrix, from which the
matrix (Cholesky factor) for each traits and multivariate
model was obtained. Cholesky decomposition is the
inverse of the error covariance matrix, given by the
following equation: -1 = T , where   is an upper
triangular matrix with strictly positive diagonal elements
(GALLANT, 1987; FERREIRA, 2011). The new trait
for each multivariate model was obtained based on the
matrix given by the equation:

yi = p1 * FML + p2 * FMS (11)

The multivariate models tested were the following:
GG) Gompertz model for both traits, FML and FMS;
LL) Logistic model for both traits, FML and FMS; GL)
Gompertz model for FML and Logistic model for FMS;
and LG) Logistic model for FML and Gompertz model
for FMS. These multivariate models feature the following
equations:

GG) yi={a1 exp [-exp b1 - c1xi)]} +

       {a2 exp [-exp b2 - c2xi)]} (12)

LL) yi={a1 exp [-exp b1 - c1xi)]} +

       {a2 exp [-exp b2 - c2xi)]} (13)

GL) yi={a1 exp [-exp b1 - c1xi)]} +

       {a2 exp [-exp b2 - c2xi)]} (14)

LG) yi={a1 exp [-exp b1 - c1xi)]} +

       {a2 exp [-exp b2 - c2xi)]} (15)

where yi is the new trait (which would correspond
to FMAP); a1 and a2 are asymptotic values; b1 and b2
are the allocation parameters without direct practical
interpretation, but important to maintain the sigmoidal
shape of the model, c1 and c2 are the parameters associated
with growth, values that indicate the precocity or maturity
index, and xi is the independent variable (days after
sowing). In these multivariate models, yi corresponds to
the sum of FML and FMS, that is, the FMAP.
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In order to verify the goodness of fit of the
univariate and multivariate Gompertz and Logistic models,
several estimators were calculated. The residual standard
deviation (RSD) was determined by the expression:

RSD = √MSE                                                               (16)

where MSE = RSS/n-p, and RSS is the residual sum
of squares, p is the number of parameters of the model, and
n is the number of observations; the best model will be that
one which shows the lowest RSD value; the determination
coefficient (R²) is given by the expression:

R2 = (1 - RSS)/TSS                                                       (17)

where RSS is the residual sum of squares, and
TSS is the total sum of squares; the best model will be
that one which provides the greatest R² value; the Akaike
information criterion (AIC) is given by the expression:

AIC = ln (s2) + 2 (p + 1)/n                                          (18)

where (s2)  is the logarithm of the errors variance,
p is the number of model parameters, and n is the
number of observations; the best model will be that one
which presents the lowest AIC value; the mean absolute
deviation (MAD) is calculated by this expression:

                                                                                  (19)

where yi is  the observed value,  is the value
estimated by the model, and n is the number of
observations; the lower the value, the better the fit of the
model.

The use of nonlinear regression models should
take  into  account  two  aspects  to  allow  the  use  of
parameters as explanatory variables of crop behavior.
The degree of intrinsic non-linearity (INL) of the model
is the most important one, and is calculated by the
expression:

C1 = √F(a;p,n - p)                                                  (20)

where p is  the  number  of  parameters  of  the
model; n is the number of observations; and F(a;p,n
- p) is the quantile (α) of the F distribution with p and
n  -  p degrees of freedom. The values must be low to
represent approximately non-biased estimators; values
smaller than 0.3 indicate a good linear approximation.
Another point is the parametric nonlinearity (PNL)
degree, calculated by the expression:

CP = √F(a;p,n - p)                                                  (21)

where p is the number of parameters of the model;
n is the number of observations; and F(a;p,n - p) is the

quantile (α) of the F distribution with p and n - p degrees
of freedom. Parametric nonlinearity values smaller than
1 indicate a good linear approximation. The smaller the
value, the greater the linear approximation of the function
(BATES; WATTS, 1988; SEBER; WILD, 2003). All
calculations were performed with Microsoft Office Excel®
and the statistical software R (R DEVELOPMENT CORE
TEAM, 2019).

RESULTS AND DISCUSSION

For the criterion of residual standard deviation
(RSD), the lowest values found corresponded to the trait
FML adjusted by the Gompertz model and the Logistic
model. This result indicates that the observed data points
tended to be close to the mean or estimated value. Muianga
et al. (2016) used RSD to evaluate the fit quality of their
nonlinear models to describe cashew fruit growth and
stressed the importance of this criterion to evaluate the
quality adjustment of statistical models.

For the univariate Gompertz model, the
determination coefficients (R2) ranged from 0.82 to 0.86,
while for the univariate Logistic model, these values
ranged from 0.82 to 0.85 (Table 1). These values are
considered good, as they are above 0.7. The assessment
of the goodness of fit of the models tested through
the Akaike information criterion (AIC) and the mean
absolute deviation (MAD) revealed differences between
models. For the trait FML, the lowest value was found in
the Gompertz model. For the traits FMS and FMAP, the
results were similar to those found for FML. Therefore,
the univariate Gompertz model is that which fits best to
the data obtained for productive traits in sunn hemp.

Some studies have emphasized the usefulness of
these quality estimators such as that of Reis et al. (2014),
who studied garlic accessions groups, as well as that
published by Lúcio et al. (2015), who analyzed nonlinear
models to predict pumpkin and pepper production and that
of Deprá et al. (2016), who evaluated the Logistic model
to describe the growth pattern of local corn cultivars and
half-sib maternal progenies.

The analysis of the nonlinearity of the models
demonstrated an appropriate intrinsic nonlinearity (INL)
for both models, as the values found were below 0.3,
indicating a good linear approximation. However, for
FML, the Gompertz model generated an INL slightly
above the optimum (INL=0.3102). In the assessment of
the parametric nonlinearity (PNL), for all traits analyzed,
this quality indicator was above 1 when the Gompertz
model was applied (Table 1), demonstrating a good linear
approximation. However, for the Logistic model, the
values were below 1 for the traits FML and FMAP.
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Table 1 - Fit quality evaluation criteria: residual standard deviation (RSD), determination coefficient (R²), Akaike information
criterion (AIC), mean absolute deviation (MAD), degree of intrinsic non-linearity (INL) and parametric nonlinearity (PNL) from
univariate models for productive traits fresh mass of leaves, fresh mass of stem, and fresh mass of the aerial parts as a function of
days after sowing

Univariate Gompertz model
Traits* RSD R2 AIC MAD INL PNL
FML 8.8538 0.82 4.4250 5.8530 0.3102 1.0943
FMS 17.5043 0.86 5.7879 11.1795 0.2764 2.2472

FMAP 24.8938 0.86 6.4922 16.8389 0.2662 1.8159
Univariate Logistic model

FML 9.1161 0.82 4.4813 6.2396 0.2619 0.7012
FMS 17.8957 0.85 5.8291 12.2593 0.2084 1.0949

FMAP 25.6379 0.85 6.5476 18.5407 0.2022 0.9677
*FML = fresh mass of leaves; FMS = fresh mass of stem; FMAP = fresh mass of the aerial parts (FMAP = FML+FMS)

It should be noted that these nonlinearity estimates
are of utmost importance because they indicate how close
to linearity the behavior of a nonlinear regression model
is. When a nonlinear function is approximately linear,
the estimators of the parameters acquire characteristics
close to those displayed by the estimators of a linear
model. However, when the behavior is not approximately
linear, the estimates of the parameters become biased,
the confidence intervals are not estimated accurately, and
the hypotheses about the statistical parameters cannot be
tested (BATES; WATTS, 1988; RITZ; STREIBIG, 2008;
SEBER; WILD, 2003). In a study on nonlinear models
for hybrid corn seeds germination, Gazola et al. (2011)
studied the nonlinearity of the adjusted models. Likewise,
in a study on the biological parameters involved in tomato
production using a Logistic model SARI et al. (2019),
described the importance of nonlinearity measures and
they used nonlinearity estimators to evaluate the goodness
of fit of their models to describe tomato’s growth pattern.
Our results are reliable because they meet the nonlinearity
measurements, in this context, the univariate Logistic
model yielded better adjustment quality considering the
nonlinearity measures (Table 1).

For the adjustment of the multivariate models,
the Cholesky factor (  ) was obtained for the combined
models GG, LL, GL, and LG, taking into account the
traits FML and FMS. The values found in each matrix
were subsequently used to obtain the “new” trait, and the
multivariate models were adjusted for this “new” trait for
the adjustment of the multivariate models GG, LL, GL and
LG. Estimate are given below:

GG) Gompertz model for both traits FML and FMS

LL) Logistc model for the both traits FML and FMS

GL) Gompertz model for FML and Logistic model for FMS

LG) Logistic model for FML and Gompertz model for FMS

The criteria of quality adjustment were also
calculated for the multivariate models in order to select
the best multivariate model able to express the productive
traits of the sunn hemp. It can be observed that RSD was
similar for all models and lower when compared with the
values found for the univariate models, indicating that the
points are very close to the average or estimated value;
these results can be tested statistically by the F test. In
addition, it may be noticed that the multivariate model LL
generated the lowest (RSD=0.9952).

The determination coefficients R2 were the
same for all multivariate models tested (Table 2) and
lower than those calculated for the univariate models.
Notwithstanding, it should be emphasized that these
results are also satisfactory, as they all are above 0.7.

The values for the Akaike information criterion
(AIC) were similar for the four multivariate models tested,
with the lowest value found for the multivariate model LL.
It may be appreciated that all these values are smaller as
compared with the values found for the univariate models,
suggesting the superiority of the multivariate models
regarding this evaluation criterion (Table 2). In relation to
the criterion MAD, were lower in the multivariate models
as compared to the univariate models, ranging between
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0.6300 and 0.6456, and yielding the lowest value in the
multivariate model GG.

Comparing the MAD values of the multivariate
models with the values for the univariate models, it
is noted that the values were lower for the multivariate
models (Table 2). However, it should be noted that the new
“trait” of each multivariate model was constructed based
on the Cholesky matrix, and this may have generated
interferences. Also, it is important to emphasize that the
new trait is composed of the sum of the traits FML and
FMS.

As already indicated, the use of quality estimators
to assess the goodness of fit of multivariate models is
essential when such models will be applied to describe the
productive traits of sunn hemp, confirmed the goodness
of fit of these models. In this context, it can be concluded
that the multivariate models GG and LL are those that fit
best to the productive traits of the sunn hemp, taking into
account all evaluation criteria of quality adjustment. It
should be emphasized that as well as univariate models,
the GG and LL multivariate models are appropriate and
can be used to adjust the productive traits of sunn hemp,
being the multivariate model LL the best one based on
the evaluation criteria used in this study, because it was
that which yielded the lowest RSD and AIC values, with
identical R2 as compared to the other models and MAD
was the 3º lowest value. Therefore, the conclusion was
based on the set of values of these criteria.

Table 2 - Fit quality evaluation criteria: residual standard deviation (RSD), determination coefficient (R2), Akaike information criterion
(AIC), and mean absolute deviation (MAD), for the multivariate models GG, LL, GL, and LG for productive traits fresh mass of leaves,
fresh mass of stem and fresh mass of the aerial parts as a function of days after sowing

Multivariate models* RSD R2 AIC MAD
GG 1.0047 0.79 0.0568 0.6300
LL 0.9952 0.79 0.0366 0.6456
GL 0.9999 0.79 0.0471 0.6540
LG 1.0002 0.79 0.0474 0.6305

*GG = FML (Gompertz) + FMS (Gompertz); LL = FML (Logístico) + FMS (Logístico); GL = FML (Gompertz) + FMS (Logístico) e LG = FML
(Logístico) + FMS (Gompertz)

Few studies highlight the importance of
multivariate models to achieve an adequate approach
to biological processes. Among them, Teixeira Neto
et al. (2016), described sheep growth using nonlinear
models selected by multivariate techniques and Veloso
et al. (2016), carried out the selection and multivariate
classification of nonlinear models for broiler chickens.
It should be emphasized that the higher the number
of quality criteria assessed, the more accurate is the
identification of the best models (PUIATTI et al.,
2013).

For both the univariate (Table 3) and the
multivariate (Table 4) models, the parameters a, b, and
c were calculated. These estimators are relevant since
each parameter has its meaning in the adjustment of
these models. The parameter a represents the maximum
value that each trait can reach at the end of the sunn
hemp productive cycle. Increments in this parameter
modify the ordinate’s values, changing, therefore, FML,
FMS, and FMAP values. However, the parameter b has
no biological interpretation in the Gompertz model,
and therefore, does not change trait values. However,
in the Logistic model, the parameter b, it has pratical
interpretation, in wich the change of values of this
parameter interferes with the change of curve concavity.
Lastly, increments in the parameter c lead to increases in
the slope of the growth curve. The same considerations
are valid for the multivariate models.

Table 3 - Estimate of the parameters in the adjustment of productive traits: fresh mass of leaves, stem and aerial parts of sunn hemp

Univariate Gompertz model Univariate Logistic model
Parameters Parameters

Traits* a b c a b c
FML 49.32 3.3865 0.0712 46.56 -5.9506 0.1146
FMS 128.89 2.9037 0.0498 115.80 -5.5369 0.0871

FMAP 179.18 2.8618 0.0521 164.36 -5.2828 0.0871
*FML = fresh mass leaves; FMS = fresh mass stem, and FMAP = fresh mass of the aerial parts (FMAP = FML+FMS)
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Table 4 - Estimate of the parameters in the adjustment of productive traits: fresh mass of leaves, stem and aerial parts of sunn hemp

Parameters
Multivariate models* a1 b1  c1 a2  b2 c2

GG 48.45 3.6439 0.0769 115.45 3.5320 0.0634
LL 46.52 -5.9501 0.1147 105.84 -6.5132 0.1084
GL 50.17 3.1826 0.0665 108.85 -6.3741 0.1039
LG 44.75 -7.2091 0.1430 108.47 3.8218 0.0709

*GG = FML (Gompertz) + FMS (Gompertz); LL = FML (Logístico) + FMS (Logístico); GL = FML (Gompertz) + FMS (Logístico) e LG = FML
(Logístico) + FMS (Gompertz)

The multivariate models’ estimates yielded more
similar values than the univariate models, the values of
these estimates will compose the adjusted equations. The
most common way to compare the parameters is by using
the F test because it maintains the type I errors at a lower
level, even in small samples (REGAZZI; SILVA, 2004).
The comparison may also be performed based on the
confidence interval of the parameters. Estimator values in
our multivariate models indicate that sunn hemp productive
traits may be adequately described by these models since
these values are close to the values observed.

Univariate models curves display some important
points, which help in the practical interpretation of sunn
hemp growth pattern. These points are called “influential
points” and they comprise the maximum acceleration point
(map), the inflection point (ip), the maximum deceleration
point (mdp), and the asymptotic deceleration point (adp)
(Table 5).

The influential points delimit significant phases
in the growth of sunn hemp. The ip determines the time
at which the growth rate is maximum, i.e., at this stage,
the plants are increasing their fresh mass of leaves and
fresh mass of stem at an increasing rate. It should be
emphasized that the ip occurs when the crop reaches

Table 5 - Influential points of the univariate Gompertz and Logistic models adjusted for the productive traits: fresh mass of leaves
(FML), stem (FMS), and aerial parts (FMAP) of the sunn hemp

map* ip* mdp* adp* map* ip* mdp* adp*
Univariate Gompertz model Univariate Logistic model

FML
Xi 28.94 47.60 66.26 80.05 40.37 52.07 63.77 72.44
Yi 10.43 24.69 38.94 44.85 9.86 24.69 36.81 42.39

FMS
Xi 31.84 58.28 84.71 104.29 48.45 63.57 78.69 89.89
Yi 27.23 64.44 101.65 117.06 24.47 64.44 91.32 105.17

FMAP
Xi 29.66 54.94 80.22 98.95 45.51 60.63 75.74 86.93
Yi 37.86 89.57 141.28 162.72 34.73 89.57 129.61 149.27

*map: maximum acceleration point; ip: inflection point; mdp: maximum deceleration point; and adp: asymptotic deceleration point

half of its productive cycle. The map and mdp are short
phases, but they are responsible for approximately 60% of
the total leaf and stem fresh mass production (MISCHAN;
PINHO, 2014). However, before the map and after the
mdp, this production is very slow, because at the map,
the plant is beginning its growth, and after the mdp fresh
mass accumulation decreases. Finally, at the adp phase,
the acceleration of plant growth tends to stabilize towards
the end of its production cycle.

For the traits FML, FMS, and FMAP, the adjusted
curves are sigmoidal with both the univariate Gompertz
model and the univariate Logistic model. These curves
represent the behavior of each productive trait throughout
the sunn hemp production cycle, therefore the conclusions
are achieved individually for each trait. This a disadvantage
compared to the adjusted multivariate models (Figure 1).

For the multivariate models GG, LL, GL, and LG,
composed by the sum of FML and FMS traits equations
(FML+FMS=FMAP), a sigmoid growth curve was also
observed, providing also a notion of the behavior of the
crop along its productive cycle based on the graphical
identification of sunn hemp growth phases. Based on
these models, it can be concluded that sunn hemp crop
attains approximately 140 g of fresh shoot mass at about
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Figure 1 - Critical points of the univariate Gompertz model (left column) and univariate Logistic model (right column) for the productive
traits: fresh mass of leaves (FML), fresh mass of stem (FMS) and fresh mass of the aerial parts (FMAP) of the sunn hemp

*■ maximum acceleration point; ● inflection point;  ▲ maximum deceleration point;  asymptotic deceleration point

90 days after sowing. Therefore, these models provide a
global view of the sunn hemp cycle, assisting farmers in
crop management, as they allow estimating fresh shoot
mass production and deciding which is the best harvest
time (Figure 2).

Taking into consideration the complete set
of criteria used to assess the goodness of fit of the
models, the multivariate models GG, LL GL, and LG
also yielded satisfactory results for FMAP in sunn
hemp, as compared with the univariate models, and
therefore are suitable to describe the productive traits
of sunn hemp, allowing adequate inferences about
total crop production. It is noteworthy that among the

multivariate models here studied, the model that best
represented the trait FMAP was the multivariate model
LL.

In a previous study with this crop, Bem et al.
(2018), fitted the Gompertz and Logistic models for
each productive trait and assessed them individually. In
the present work, it  is demonstrated that GG, LL, GL,
and LG multivariate models allow a global vision on
the productivity of sunn hemp at the end of the cycle.
However, it is necessary to emphasize that these results
are specific to this data set, being influenced by the
season in which the sunn hemp was sown and the local
conditions.
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Figure 2 - Multivariate models for the traits of fresh mass of the aerial parts (FMAP) for sunn hemp

* GG = FML (Gompertz) + FMS (Gompertz); LL = FML (Logistic) + FMS (Logistic); GL = FML (Gompertz) + FMS (Logistic) e LG = FML (Logistic)
+ FMS (Gompertz)

Some published studies also used multivariate
analysis to adjust research data: Rosas et al. (2016)
estimated coffee productivity using multiple
regression, and Bittencourt et al. (2018) determined
the productivity features of cotton and soybeans using
multiple linear regression models. However, no studies
were found on multivariate linear models applied to
sunn hemp.

Therefore, the present research is important,
since a global conclusion about the crop productivy was
obtained and these results may serve as references for
future research with sunn hemp.

CONCLUSIONS

1. The present study demonstrates that an overall
prediction of sunn hemp productivity can be attained
through the use of the multivariate nonlinear models
GG, LL, GL, and LG, as they are adequate to describe

the productive traits of sunn hemp and may, therefore,
serve as a reference for future research;

2. Additionally, we verified that the nonlinear multivariate
model LL, based on the use of the Logistic model for
both traits FML and FMS, is the most suitable among
the multivariate models tested to describe the productive
traits of sunn hemp, under the local conditions under
which the experiment was conducted.
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