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ABSTRACT - Genomic selection has been a valuable tool for increasing the rate of genetic improvement in purebred 
dairy cattle populations. However, there also are many large populations of crossbred dairy cattle in the world, and multi-breed 
genomic evaluations may be a valuable tool for improving rates of genetic gain in those populations. Multi-breed models are 
an extension of single-breed genomic models in which a genomic relationship matrix is used to account for the breed origin 
of alleles in the population, as well as allele frequency differences between breeds. Most studies have found little benefit from
multi-breed evaluations for pure breeds that have large reference populations. However, breeds with small reference populations 
may benefit from inclusion in a multi-breed evaluation without adversely affecting evaluations for purebred performance. Most
research has been conducted in taurine breeds, so additional research is needed to determine the value of multi-breed reference 
populations for composite and synthetic breeds that include both indicine and taurine cattle adapted to tropical climates.
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Introduction

Genomic selection was rapidly adopted in purebred 
cattle populations (Hayes et al., 2009b; Wiggans et al., 
2011), but there are many populations that include crossbred 
animals which can contribute to genetic progress, including 
crossbred bulls used in New Zealand (Harris and Johnson, 
2010; Olson et al., 2012). There also are many breeds 
with small reference populations that could potentially be 
combined with similar breeds from other countries (e.g., 
Pryce et al., 2011). When the number of individuals in a 
reference population is limited, genomic breeding values are 
not accurately estimated, and predictions made in one breed 
do not perform well when applied to other breeds (Hayes 
et al., 2009a; Olson et al., 2012). Lund et al. (2014) recently 
provided a comprehensive review of genomic selection in 
multiple breed populations. Research conducted to date has 
focused on several problems, including use of information 
from one breed to improve predictions in one or more other 
breeds (Boerner et al., 2014; Porto-Neto et al., 2015), use 
of data from crossbreds to improve purebred predictions 

(Grevenhof and Werf, 2015), use of data from purebreds to 
improve crossbred predictions (Esfandyari et al., 2015a), use 
of data from crossbreds to improve crossbred predictions 
(Esfandyari et al., 2015b), and use of genomic information 
to estimate genomic predicted transmitting ability (PTA) 
for both purebred and crossbred animals (Christensen et al., 
2014; Hozé et al., 2014). The objective of this review is 
to describe how genomic selection can be applied to dairy 
cattle populations that include purebred and crossbred 
animals.

Principles underlying multi-breed genomic selection

The fundamental principle underlying genomic 
selection is that linkage disequilibrium (LD) can be 
exploited to track causal variants using a large number of 
DNA markers (Nejati-Javaremi et al., 1997; Meuwissen et al., 
2001; Dekkers, 2007), and phenotypes measured in one 
population may be used to accurately compute breeding 
values in other populations (de los Campos et al., 2013).
Genomic relationships (e.g., Hayes et al., 2009b) and 
Mendelian sampling also (Cole and VanRaden, 2011) can 
be predicted using DNA marker data. However, most 
causal variants are unknown, and prediction accuracy 
in genomic selection programs is driven largely by the 
size of the reference population (Goddard, 2008) and 
the linkage disequilibrium (LD) between markers and 
quantitative trait loci (QTL) (Daetwyler et al., 2012). The 
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size of reference populations can be limited for smaller 
breeds because there may be few animals with traditional 
evaluations that have high reliabilities, as well as due to 
financial constraints. The use of reference populations
that include animals from multiple breeds help improve 
accuracies by using information from large populations to 
improve predictions for small ones. Veroneze (2015) also 
noted that genomic selection of purebreds for crossbred 
performance is expected to be successful because 
crossbred animals are typically closely related to their 
pure line ancestors.

The consistency of the LD phase is very important 
for genomic selection, as well as the amount of LD in 
the population. The accuracy of across- and multi-breed 
genomic prediction is influenced by the consistency of the
LD phase between populations. Characterizing LD patterns 
in different pig populations, Veroneze (2015) verified that an
inconsistent LD phase can explain why a marker associated 
with an important effect in one population may not be 
effective for selection in another.

Linkage disequilibrium between markers and causal 
variants may arise in several ways, including de novo 
mutation, genetic drift, strong selection pressure, and 
differential use of animals as parents. When breeds are 
closely related, composite reference populations are useful 
because the LD relationships are similar. For example, 
Zhou et al. (2013) found that the use of a combined Nordic 
and Chinese reference population resulted in substantial 
gains in reliability. However, when breeds are distantly 
related or unrelated, the linkage relationships differ, and 
the ability of a predictor population of one breed to predict 
genetic merit of animals in another is very limited (e.g., 
Olson et al., 2012).This is due to the decay in LD due to 
within-breed selection following breed divergence, as well 
as crossbreeding. In a study using pure-breed and multi-
breed beef cattle data, Kizilkaya et al. (2010) found that 
LD was retained over greater genomic distance in pure-
breed than in multi-breed populations, and that some 
markers were less informative when used in another breed. 
They also showed that QTL can account for a substantial 
amount of within-breed variation when the number of QTL 
is small, but predictive ability decreases as the number of 
QTL increases. This is consistent with expectations under 
an infinitesimal model for quantitative traits, which Cole
et al. (2009) validated using dairy traits, and differing LD 
between breeds.

The use of high-density single nucleotide 
polymorphism (SNP) platforms with hundreds of thousands 
of markers has been proposed as a possible solution for 
problems due to breed-specific LD and ascertainment bias

on SNP arrays (de Roos et al., 2008). Erbe et al. (2012) 
reported small gains in accuracy when using a high-density 
panel with a combined Holstein and Jersey reference panel, 
but they found that a panel constructed using only SNP 
from transcribed genes was more promising. In breeding 
programs, causal mutations might be important and could 
aid genomic selection and genetic gain (Snelling et al., 
2012). According to Fortes et al. (2014), causal mutations 
have an advantage in comparison to random SNP: they are 
not dependent on LD, and so they can be used for selection 
over generations, across breeds, and in breeds that were not 
in the reference population.

Theory of multi-breed genomic selection

The principal difference between single-breed and 
multiple-breed genomic prediction is in the relationship 
matrix used to relate SNP effects to phenotypes. The 
following discussion is based on the derivation of a 
genomic best linear unbiased prediction  (GBLUP) model 
presented in Harris and Johnson (2010), who used 
three breed groupings, New Zealand Holsteins, foreign 
Holsteins, and Jerseys, and some intermediate steps have 
been omitted for brevity. The model does not include a 
polygenic effect to account for additive genetic variance 
not explained by the markers. This material can be 
extended to an arbitrary number of breeds without loss 
of generality. While the discussion focuses on GBLUP, 
there are several other approaches that can be used to 
estimate genomic breeding values, including the single-
step approach (Misztal et al., 2009; Liu et al., 2014) and 
various Bayesian methods (Gianola et al., 2006; Moser et al., 
2009; Habier et al., 2011).

The linear mixed model:
                       [1]

relates phenotype y to fixed effects b and random SNP 
effects u through design matrices X and Z, respectively. 
The residual variance e has a diagonal variance matrix R. 
The m-th column of Z corresponds to genotypes for the 
m-th SNP, which are coded −1, 0, and 1 for homozygotes, 
heterozygotes, and other homozygotes, respectively. The 
vector of breeding values, a = Zu, is assumed to equal the 
sum over all SNP effects. If we assume that fixed effects
(Xb) are known, then a may be estimated as:

         
                                                [2]

and all SNP are assumed to have equal variances.
The matrix ZZ' has an expectation of
                                                                                 [3]
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in which pm is the frequency of the m-th allele, qm = 1 – pm; 
A is the average relationship matrix; and 1 are m-by-1 
vectors of 1s (Habier et al., 2007). The diagonal elements 
of ZZ′ are counts of the number of homozygous loci for 
each individual, and the off-diagonals measure the number 
of alleles shared by two individuals. A genomic relationship 
matrix can be estimated from [3] using the regression 
method of VanRaden (2008):

                        
                             [4]

in which E includes differences between the true and 
expected fractions of DNA shared by individuals, as well 
as measurement error due to the use of a subset of SNP in 
place of the full DNA sequence. While E(E) = 0, E would 
probably be non-zero in practice even if full sequence data 
were used because relatives do not share exactly the same 
fraction of DNA as expected. (Note that [3] was rewritten 
to emphasize its similarity to [4].) The regression model in 
[4] does not require estimates of founder population allele 
frequencies. The expectations of the regression coefficients,
b1 and b2, are:

                                               
[5]

                 

The matrix A in [4] is the expected value of the genomic 
relationship matrix, G, and can be estimated by:
                           

[6]                   

See VanRaden (2008) and VanRaden et al. (2011) for 
additional discussion related to estimation of G. When 
ZZ' from [6] is substituted into [2] and the regression 
coefficients are replaced with their expectations from [5]
we obtain the estimated breeding value based on the SNP 
effects:

                 
                                                                                     [7]

in which
                                                            [8]                                    

In practice, the markers do not account for all of the additive 
genetic variance associated with a trait, and a random 
polygenic term commonly is added to models to account 
for this (Calus and Veerkamp, 2007).

The genomic relationship matrix estimated in [6] 
can now be generalized to the case of a multi-breed 
population. In order to properly account for breed-
specific allele frequencies, equation [6] must be replaced
with a multiple regression equation that accounts for 
different expected means and variances. If we let λik 

denote the fraction of breed k in individual i, then, in 
the two-breed case, we can sum over breeds k and l. 
This results in the generalization of equation [6] to:

                                                                                        [9]

in which J(kl) and K(kl) are the covariates for the intercepts 
and regressions associated with the (co)variances among 
relatives, respectively.  The diagonals in K differ from those 
in the relationship matrix of a purebred population because 
they are now partitioned into breed fractions to account for 
different variances and allele frequencies among breeds. 
The generalization of equation [4] shown above in equation 
[9] accounts for breed-specific founder population allele
frequencies. The expectations of b1 and b2 in equation [9] 
are analogous to those in equation [5]. If pkm is the allele 
frequency of marker m in breed k:

   

                                                                                     [10]

When k is equal to l, the expectations are identical to 
the purebred case. This emphasizes that the new information 
being added in the multi-breed case is information about 
(co)variances among the breeds. If two breeds are closely 
related in a phylogenetic sense and have not been separated 
for very long, then the (co)variances will be close to 0 and 
the expectations of b1 and b2 in the multi-breed case will be 
very similar to those in the single-breed case. When breeds 
have a low relationship to one another, then the expectations 
in the multiple-breed case may differ substantially from 
those in the single-breed cases, and information from one 
breed may contribute little or no information about the 
other.

Finally, omitting several intermediate steps discussed 
in Harris and Johnson (2010), the multi-breed genomic 
relationship matrix can be written as:
                                                                                      [11]

                                                                                                                             

The L and F matrices are derived from Cholesky 
factorization of A1, the submatrix of the pedigree 
relationship matrix that includes the genotyped animals in 
the population. The resulting G has the same general form 
as in equation [6], with ZZ' being adjusted to account 
for the intercepts and regressions associated with the 
(co)variances among relatives.

As mentioned above, methodologies other than 
GBLUP can be used to predict genomic estimated breeding 
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values (GEBV). Of particular interest is the single-step 
GBLUP method (ssGBLUP; Misztal et al., 2009; Aguilar 
et al., 2010), which permits the simultaneous estimation 
of SNP effects and GEBV. In the single-step model, the 
relationship matrix, A, is replaced with a matrix, H, 
which includes both pedigree-based relationships and 
differences between pedigree-based and genomic-based 
relationships, and many different forms of the relationship 
matrix can be accommodated (Forni et al., 2011). However, 
the extension of two-step GBLUP models to ssGBLUP 
has not been straightforward. Poultry populations 
that include two distinct lines have been successfully 
evaluated using ssGBLUP and appropriately scaled G 
(Simeone et al., 2012), and Carillier et al. (2014) applied 
a similar strategy to French dairy goats, but neither 
analysis included crossbred individuals. Misztal et al. 
(2013) demonstrated that unknown-parent groups can 
be used in ssGBLUP to accommodate crossbred animals 
because unknown parents of different breeds are assigned 
to different groups. Christensen et al. (2014) extended the 
model of Wei and van der Werf (1994), which models two 
purebred lines and their F1 crosses to ssGBLUP using 
partial relationship matrices.

Applications of multi-breed genomic selection

A number of authors have reported one aspect or another 
of genomic selection in multi-breed populations. Hayes et al. 
(2009a) used single-breed and multiple-breed reference 
populations to predict breeding values for purebred 
Holsteins and Jerseys and found that the agreement of 
realized with expected reliabilities was lower with crossbred 
than purebred predictor sets under GBLUP; predictions 
of opposite-breed genomic predicted transmitting ability  
(GPTA) had accuracies near 0; the G matrix for multi-
breed populations must be scaled to achieve appropriate 
expected accuracies; and Bayesian approaches produce 
higher accuracies for some traits, particularly when a 
large QTL is segregating (e.g., DGAT1). These results 
were generally consistent with those of Ibáñez-Escriche 
et al. (2009), who simulated 6,000 SNP and 30 QTL in four 
breeds and reported that SNP effects depend on their line of 
origin when purebred lines are not closely related, as is the 
case with Gir and Holstein, for instance. They concluded 
that breed-specific models rarely out-perform across-breed
models, and models with breed-specific allele effects may
not be necessary when many SNP are used because high-
density panels are likely to have markers in tight LD with 
the causal variants.

Kizilkaya et al. (2010) performed a study that 
combined real genotypes with simulated phenotypes, 
reporting results which support the earlier findings that 
multiple-breed training sets produce higher correlations 
of predicted genetic merit with phenotype, but also 
reported that purebred training sets produce higher 
correlations of predicted with actual genetic merit. A 
simulation study by Toosi et al. (2010) suggested that the 
use of multi-breed reference populations could produce 
better evaluations for crossbred cattle without adversely 
affecting the purebred cattle in the evaluation. Harris 
and Johnson (2010) showed that use of a multi-breed 
genomic evaluation rather than a single-breed produced 
similar reliabilities for proven bulls, and slightly higher 
reliabilities for young bulls, and Harris et al. (2011) 
subsequently reported that increasing SNP density in a 
reference population including purebred and crossbred 
animals improved prediction accuracy of one pure breed 
from another, but not crossbred animals.

Pryce et al. (2011) compared single- and multi-breed 
reference populations for Fleckvieh, Holstein, and Jersey 
cattle, concluding that gains were minimal when using a 
multi-breed reference population. However, a multi-breed 
reference population produces better results than a single-
breed reference population when predicting breeding 
values for a breed with no genotyped individuals in 
the reference population. This is in agreement with the 
results of Olson et al. (2012), who compared three methods 
of multi-breed evaluation against single-breed results. 
They found that application of single-breed SNP effects 
estimates in other breeds performed quite poorly; estimates 
from a multi-breed population performed better than parent 
average but more poorly than single-breed estimates; and a 
multiple trait model in which breeds were treated as traits 
performed similarly to single-breed estimates. Weber et al. 
(2012) also reported that accuracies were lower when using 
single-breed beef cattle reference populations, but that gains 
in accuracy were highest for the breeds best represented in 
the multi-breed training population.

More recently, Makgahlela et al. (2013) concluded 
that models which include breed-specific effects were
not notably better than models that ignored breed effects. 
In a follow-up study, there was no increase in prediction 
accuracy when the breed origin of alleles in an admixed 
population of Nordic cattle was accounted for in the model 
(Makgahlela et al., 2014). Hozé et al. (2014) recently 
showed that multi-breed genomic evaluation can be very 
helpful for breeds with small (<500 animals) reference 
populations, but that the gains decrease as the size of the 
reference population increases.
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VanRaden and Cooper (2015) showed that genomic 
evaluations for crossbreds can be computed by taking 
a weighted sum of purebred marker effects based on the 
breed composition of the admixed animals. Recent work by 
Wientjes et al. (2015) has found that some of the discrepancy 
between results predicted in simulation and those achieved 
in real populations may be attributable to trait architecture. 
While Cole et al. (2009) showed that most traits of interest 
in dairy cattle improvement programs are well-described 
by an infinitesimal model in which all markers have
small effects, Hayes et al. (2010) reported that prediction 
accuracies are higher for traits with some large-effect loci 
if the model accounts for those effects. Tiezzi and Maltecca 
(2015) also showed that rescaling G to account for realized 
marker variance increases prediction accuracy. If models 
are not capable of reflecting the architecture of traits,
for example, by constraining all marker effects to have 
equal variance, then there will be discrepancies between 
expectations based on simulation and actual performance.

Recently, Christensen et al. (2014) extended the two-
breed model of Wei and van der Werf (1994) to include 
genomic information, using partial relationship matrices 
to combine pedigree and marker information. Their results 
showed promising results, and could be readily applied 
to a population such as the Girolando breed because the 
method allows information from crossbred animals to be 
incorporated in a coherent manner for such a crossbreeding 
system, but additional validation of their approach is 
desirable.

Strandén and Mäntysaari (2013) used a random 
regression model to include breed composition information 
and genetic variances of origin breeds in multi-breed analyses 
as a computationally tractable approximation for use in 
admixed populations. Using the same data, they reported 
a correlation of 0.987 with results of García-Cortés and 
Toro (2006). This approach may be more computationally 
appealing in large genotyped populations, but their model 
focused only on prediction of purebred performance 
in admixed populations, not prediction of crossbred 
performance. The model would need refinement for use
in populations composed almost entirely of crossbred 
individuals.

While early results suggested that higher SNP density 
might be a solution to challenges with across-breed 
evaluation because they depend on similar LD among SNP 
and QTL in training and test data, high-density data have not 
improved predictions in multi-breed populations (Ibáñez-
Escriche et al., 2009; Olson et al., 2012; Makgahlela et al., 
2013). Whole genome sequencing is rapidly dropping in 
price and will support the discovery of many causal variants, 

and replacing markers with causal variants should increase 
the accuracy of genomic prediction. This will eliminate 
many issues related to different patterns of LD in different 
populations, but variants may differ across breeds.

Discussions and Conclusions

Ibáñez-Escriche et al. (2009) discussed four reasons 
to favor genomic selection for crossbred performance over 
more conventional breeding programs that incorporate 
purebred and crossbred animals:

1) Genomic selection does not require pedigree 
information on crossbreds;

2) Once SNP effects have been estimated, prediction 
can continue for several generations without the need to 
collect additional phenotypes (Meuwissen et al., 2001);

3) Rates of inbreeding can be better managed under 
genomic selection (Daetwyler et al., 2007); and

4) It is easier to accommodate non-additive gene action 
in a genomic selection program (Dekkers, 2007).

Each of these points is relevant to dairy production in 
Brazil, particularly with respect to the Girolando breed. The 
dairy sector plays a significant part in Brazilian agribusiness,
with approximately 80% of the milk produced by crossbred 
cows, mostly Girolando cows. While many farmers do 
record pedigree information, there are many who do not, 
and with genomics the performance data for animals with 
no pedigree still can be used because relationships can be 
estimated using genotypes.

With some breeds that have only a small number of 
animals on test, as in the Girolando breed, there are not 
enough new data to support frequent computation of 
genetic evaluations and updating of SNP effects, so the 
ability to potentially use allele substitution effects for 
several years allows the breeder to maximize the value of 
genotyping. However, it is not possible, as thought early in 
the development of genomic selection, to use marker effects 
predicted in a population that is distant in time from the 
population where they are being applied because prediction 
accuracy decreases as the LD between the true QTL and the 
markers decays (e.g., Goddard, 2008). The use of the method 
of VanRaden and Cooper (2015) for computing genomic 
breed composition might be useful in such populations as 
well, perhaps with genomic breed composition included as 
a fixed effect in the genomic prediction model.

Daetwyler et al. (2007) showed that inbreeding should 
be reduced under genomic selection, but this has not been 
observed in practice (e.g., Cole and VanRaden, 2011), 
although new tools for managing inbreeding under genomic 
selection are now available (Pryce et al., 2012). Some work 
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has been done recently on the use of non-additive effects in 
genomic selection (Sun et al., 2013; Da et al., 2014), but it 
is still a challenge to obtain good estimates of non-additive 
genetic (co)variances.

While comparisons of single- to multi-breed genomic 
evaluations in dairy cattle have consistently shown that 
there were no substantial gains in prediction accuracy for 
most populations, there are gains for animals with small 
reference populations when combined with large reference 
populations from other breeds. However, most studies in 
dairy cattle have focused on the use of multi-breed animals 
to predict the performance of pure-breed animals, rather than 
using all available information to predict the performance 
of composite animals, and additional research is needed to 
extend the utility of genomic selection to those populations. 
Key points that need to be better understood include the 
value of extensive pedigree data on multi-breed as well as 
pure-breed animals, and the effectiveness of imputation 
in multi-breed populations. Most of this research has been 
conducted in taurine breeds, not in indicine or taurine-indicine 
crossbred populations, so additional research is needed to 
determine the value of multi-breed reference populations for 
use in mixed-breed cattle adapted to tropical climates.

Large multi-breed populations can implement genomic 
predictions with their own data; smaller multi-breed 
populations may include information from larger purebred 
populations; and haplotype-based models may be more 
helpful than SNP-based models because the effective 
number of chromosome segments is estimated to be fairly 
small (e.g., Misztal, 2015). Bastiaansen et al. (2014) recently 
used haplotypes to determine the genetic background of 
SNP based on the parent (breed) of origin. In so doing, 
they were able to identify interactions among SNP and 
the environment, as well as among SNP and their genetic 
background. The use of haplotypes, rather than individual 
SNP, appears likely to provide more computationally 
tractable, and accurate predictions with genetic merit that 
will remain stable over time.
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