Acessibilidade / Reportar erro

In vitro gas production from pearl millet cultivars under nitrogen levels

Produção de gases “in vitro” de cultivares de milheto sob doses de nitrogênio

ABSTRACT

This study aimed to evaluate the in vitro gas production from three pearl millet cultivars submitted to four nitrogen levels. The treatments consisted of three pearl millet cultivars (ADR 500, ADR 7020, and LABH 70732) and four nitrogen levels (0, 50, 100, and 200 kg/ha), using urea as the nitrogen source. A 3 x 4 factorial experimental design, employing a randomized block setup, was used to assess both gas production and digestibility. No interaction was observed between nitrogen doses and fermentative parameters on in vitro gas production from the dry matter of pearl millet cultivars. Nitrogen had no impact on the dry matter content or chemical composition of the cultivars. Consistency prevailed in the chemical composition across the various cultivars, a trend that extended to the gas production rates for both soluble and insoluble contents. Notably, nitrogen fertilizer exerted an influence on the fermentation pattern of organic matter, gas production, and lag time for the cultivars. Nitrogen fertilization is advised solely for enhancing fermentative attributes in the case of the cultivar ADR 7020.

Keywords
Fermentation; Nitrogen fertilization; Pennisetum glaucum

RESUMO

Objetivou-se avaliar a produção “in vitro” de gás de três cultivares de milheto forrageiro sob adubação nitrogenada. Os tratamentos foram constituídos por três cultivares de milheto: (ADR 500, ADR 7020 e LABH 70732) e quatro doses de N(ureia) (0; 50; 100 e 200 kg/ha). Para as avaliações da produção de gases e digestibilidade o delineamento experimental foi blocos casualizados em esquema fatorial 3 x 4, com quatro repetições. Não houve interação entre as doses de adubação nitrogenada e os parâmetros fermentativos da produção de gases “in vitro” da matéria seca das cultivares de milheto. A adubação nitrogenada não influenciou os teores de matéria seca ou a composição bromatológica das cultivares. Não houve diferenças na composição bromatológica entre as cultivares. O mesmo foi observado para as taxas de produção de gás a partir do conteúdo solúvel e insolúvel. A adubação nitrogenada influenciou o padrão de fermentação, a produção de gases e o tempo de colonização por bactérias da matéria orgânica das três cultivares. A adubação nitrogenada é recomendada para incrementar as características fermentativas apenas da cultivar ADR 7020.

Palavras-chave
Adubação Nitrogenada; Fermentação; Pennisetum glaucum

INTRODUCTION

Pearl millet is a forage originally from Africa with a short cycle, tolerant to water deficit, fast-growing, good regrowth capacity, forage potential, high nutritional value, appreciated by ruminants, and absence of anti-nutritional factors such as hydrocyanic acid (Pereira et al., 1993PEREIRA, O.G; OBEID, J,A; GOMIDE, J.A. Produtividade e valor nutritivo de aveia (Avena sativa), milheto (Pennisetum americanum) e de um híbrido de Sorghum bicolor XS sudanense. Revista da Sociedade Brasileira de Zootecnia, v.22, p.22-30, 1993.).

The Brazilian ruminant production system is mainly based on the use of annual or perennial native or cultivated pastures and pearl millet (Pennisetum glaucum (L.) R. Br) is considered one of the forages that can be used for this purpose (Brum et al., 2008BRUM, M.S; QUADROS, L.F.L; MARTINS, J.D; ROSSI, G.E; DANIEL, E; MAIXNER, A.R; BRANDINELLI, D.G. Sistemas de alimentação para recria de ovinos a pasto: avaliação do desempenho animal e características da forragem. Ciência Rural, v.38, n.1, p. 191-198, 2008.).

The chemical-bromatological composition of pearl millet depends on variables such as soil and climate conditions, sowing time, cultivar, and maturation stage (Silva et al., 1999SILVA, F.F.; GONÇALVES, L.C.; RODRIGUES, J.A.S.; CLOVIS, E.S.C.; RODRIGUEZ, N.M.; BRITO, A.F., MOURÃO, G.B. Qualidade de silagens de híbridos de sorgo (Sorghum bicolor (L.) Moench) de portes baixo, médio e alto com diferentes proporções de colmo mais folha/panícula, Avaliação do processo fermentativo, Revista Brasileira de Zootecnia, v. 28, n. 1, p. 14-20, 1999.). Furthermore, its nutritional value is directly related to its chemical composition.

The nutritional value and aspects related to the extent of digestion and fermentation rate are of great relevance in animal nutrition, as these parameters are directly involved in the control of voluntary intake (Djikstra et al., 2005DIJKSTRA, J.; KEBREAB, E.; BANNING, A.; FRANCE, J.; LÓPEZ, S. Application of the gas evaluation systems for ruminants. Animal Feed Science and Technology, p.123-124 e 561-578, 2005.). In turn, it is closely related to animal performance, and one of the techniques used to characterize the fermentative pattern of forages is the in vitro production of gases.

The use of the gas production technique to evaluate feed for ruminants is based on fermentation by ruminal microorganisms, producing mainly CO2 gas.

In this context, this study aimed to evaluate the in vitro gas production of three pearl millet cultivars under four nitrogen levels.

MATERIAL AND METHODS

The research was carried out on the facilities of the Department of Animal Science of the Schools of Veterinary and Animal Science of the Federal University of Goiás, Campus II, in the city of Goiânia – GO, Brazil, from January to April 2020, located at latitude 16°35′52″ S and longitude 49°17′11″ W, with an altitude of 723 m. The regional climate is classified as semi-humid tropical (Aw), according to the classification of Köppen (1948)KOEPPEN, W. Climatologia: con un studio de los climas de la tierra. 1° edición em español. México: Fundo de Cultura Económica, 1948., with a well-defined dry season from May to October. The mean annual temperature was 23.2 °C, with a minimum mean of 17.9 °C, a maximum mean of 28.9 °C, and annual precipitation of 1578 mm (Pereira et al., 2010PEREIRA, S.A; OLIVEIRA, G.C; KLIEMANN, H.J; BALBINO, L.C; FRANÇA, A.F.S; CARVALHO, E.R. Influence of different grazing systems on physical properties and agregation in savannah soils. Pesqisa Agropecuária Tropical, v. 40, n. 3, p. 274-282, 2010.).

The experimental area was prepared for sowing using a tractor equipped with a harrow, totaling two harrowing operations. Phosphate and potassium fertilization was performed with the application of 60 kg of P2O5 per ha (SS) and 30 kg of K2O per ha (KCl), in addition to micronutrients – 50 kg of K2O per ha of FTE BR 16, according to recommendations by Martha Júnior et al. (2007)MARTHA J.R., G.B; VILELA, L.; SOUSA, D.M.G. Adubação nitrogenada. In: Martha Jr GB; Vilela L; Sousa DMG. eds. Cerrado: Uso eficiente de corretivos e fertilizantes em pastagens. Planaltina, Embrapa Cerrados, 2007. p.117-144.. Nitrogen and potassium fertilization was divided into two applications: half the dose at 10 days after germination and the other half at 20 days after germination.

The treatments consisted of three pearl millet cultivars (ADR 500, ADR 7020, and LABH 70732) and four N levels (0, 50, 100, and 200 kg/ha), using urea as the nitrogen source.

The experimental plots consisted of five rows of five linear meters, with a spacing of 0.30 m between rows, with an area of 6.0 m2 for each plot, totaling 288 m2 of experimental area. The three central rows of each experimental unit, disregarding 0.50 m from the ends, were used for evaluation purposes. Sowing was conducted manually on January 6, 2020, using a density of 20 pure live seeds per linear meter.

The manual cut for evaluation was conducted on April 8, 2020, 87 days after germination, at 0.15 m from the soil level and using steel scissors when the plants presented an average of 27% dry matter (DM), that is, the grains were at the dough stage. Monitoring of the plant’s dry matter content was conducted from 75 days, after germination, using the microwave technique (Lacerda et al., 2009LACERDA, M.J.R; FREITAS, K.R.; SILVA, J.W. Determinação da matéria seca de forrageiras pelos métodos de microondas e convencional.Bioscience Journal, v.25, n.3, p.185-190, 2009.).

After cutting and identification, the forage was crushed and a sample weighing approximately 500 g was taken and dried in a forced-air ventilation oven at 55 °C, aiming to determine the pre-dried matter. Then, the samples were ground in a Willey mill, using a 1-mm opening sieve, for laboratory analysis.

Dry matter (DM), crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), cellulose (CEL), lignin (LIG), ether extract (EE), and ash (ASH) contents were determined according to the methodology described by Silva & Queiroz (2002)SILVA, D.J.; QUEIROZ, A.C. Análise de alimentos: métodos químicos e biológicos. 3.ed. Viçosa, MG: Editora UFV, 2002. 235p.. Neutral detergent fiber (NDF) and acid detergent fiber (ADF) were determined according to the methodology described by INCT-CA F-002/1 and acid INCT-CA F-004/1, respectively (Detmann et al., 2012DETMANN, E; SOUZA, M.A; VALADARES FILHO, S.C. Métodos para análise de alimentos. Instituto Nacional de Ciência e Tecnologia de Ciência Animal, Visconde do Rio Branco, MG, Suprema, 2012. 214p.). Hemicellulose (Hem) contents were estimated using the formula Hem (%DM) = NDF (%DM) − ADF (%DM). Organic matter contents were obtained from ash contents using the formula: OM (%DM) = 100 − Ash (%DM). Non-fibrous carbohydrate (NFC) contents were obtained using the methodology described by Sniffen et al. (1992)SNIFFEN, C. J; O’CONNOR J.D; VAN SOEST, P,J; FOX, D.G.; RUSSELL, J.B. A net carbohydrate and protein system for evaluating cattle diets: carbohydrate and protein availability. Journal of Animal Science, v.70, n.12, p.3562-3577, 1992., where NFC = 100 − (NDF + CP + EE + Ash). Laboratory analyses were performed according to methodologies described by Silva & Queiroz (2002)SILVA, D.J.; QUEIROZ, A.C. Análise de alimentos: métodos químicos e biológicos. 3.ed. Viçosa, MG: Editora UFV, 2002. 235p..

The in vitro production of gases was obtained using the methodology by Theodorou et al. (1994)THEODOROU, M.K.; WILLIAMS, B.A.; DHANOA, M.S.; MCALLAN, A.B.; FRANCE, J. Simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds, Animal Feed Science and Technology, v.48, p.185-197, 1994., modified by Maurício et al. (1999)MAURÍCIO, R.M.; MOULD, F.L.; DHANOA, M.S.; OWEN, E.; CHANA, S.K.; THEODOROU, M.K. A semi- automated in vitro gas production technique for ruminant feedstuff evaluation, Animal Feed Science and Technology, n. 79 p. 321-330, 1999., using a Delta DHM HD 21241 pressure gauge.

Eight bottles were incubated per treatment to measure gas production and organic matter digestibility. Each 110-mL glass bottle contained 0.2 g of sample with 30 mL of inoculum plus McDougal’s buffer solution (McDougal, 1949MCDOUGAL, E.I. STUDIES ON RUMINAL SALIVA. 1. The composition and output of shee’s saliva. The Biochemical Journal, v. 43, n.1, p. 99-109, 1949.).

The bottles were sealed and kept at 39 °C in a water bath and the gas pressure was measured at times 0, 2, 4, 8, 10, 12, 24, 26, 28, 30, 32, 36, 48, 52, 56, 60, and 72 hours post-incubation. Bottles containing the incubation solutions without substrate and one containing a standard (Tifton 85 grass hay) with a known gas production profile were incubated for variation adjustments.

The rumen inoculum was obtained from three Nellore cattle with a mean weight of 280 kg and a mean age of 26 months, fitted with a ruminal cannula. The animals were fed twice a day with a diet based on corn silage. During the period, the animals were housed in individual stalls and the rumen contents were collected manually from the dorsoventral sac, stored in thermos bottles preheated to 39 °C, and immediately taken to the laboratory. The inoculum was filtered through two layers of mesh fabric and kept in a water bath at 39 °C with CO2 saturation until inoculation.

The data were adjusted to France (V(t) = 𝑉𝑓{1 − 𝑒[−𝑏(𝑡−)−𝑐(𝑡 −√𝑔]}), modified logistic (V(t) = 𝑉𝑓/(1 + 𝑒[2−4𝑘(𝑡−𝑔)]), two-compartmental logistic (𝑉(𝑡) = 𝑉𝑓1[1 − 𝑒(−𝑘1(𝑇−𝑔))] + 𝑉𝑓2[1 − 𝑒(−𝑘2(𝑇−𝑔))]), Gompertz (V(t) = 𝑉𝑓𝑒(−𝑏𝑒 [−𝑘𝑡]), Brody (V(t) = 𝑉𝑓[1 − 𝑏𝑒(−𝑘𝑡)], and Von Bertalanffy (V(t) = 𝑉𝑓[1 − 𝑏𝑒−𝑘𝑡]3) models as parameters for choosing the mathematical model to be used to estimate gas production patterns.

The two-compartmental logistic model (Schofield et al., 1994SCHOFIELD, P.; PITT, R.E.; PELL, A.N. Kinetics of fiber digestion from in vitro gas production, Journal of Animal Science, v.72, p.2980-2991, 1994.) presented the best fitting to the data to estimate the patterns of microbial fermentation, adopting as a basis the AIC and BIC values, with the following parameters: V(t) = accumulated gas volume produced over time (T), Vf1 = gas volume produced by the fermented soluble fraction, K1 = gas production rate produced by the fermented soluble fraction, g = lag time, Vf2 = gas volume produced by the fermented insoluble fraction, and K2 = gas production rate produced by the fermented insoluble fraction.

The in vitro digestibility of organic matter and the percentage of total digestible nutrients were estimated using the equations proposed by Chenost et al. (2001)CHENOST, M; AUFRERE, J; MACHEBOEUF, D. The gas-test technique as a tool for predicting the energetic value of forage plants. Animal Research. v. 50, p.349–364 2001., setting a time of 24 hours to obtain these estimates.

The experimental design for the evaluations of gas production and digestibility consisted of a randomized block design in a 3 x 4 factorial scheme (three cultivars and four nitrogen levels), with four replications per sample. The results of gas production were adjusted to the model and the models were compared using the test to verify the equality of parameters and identity of non-linear regression models (REGAZZI, 2003), using the statistical program R (R Core Team, 2013R Development Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3- 90005107. 0, URL http://www.R-project.org. Acesso em: 02 de abril de 2013.
http://www.R-project.org...
) at a 5% significance.

The results of chemical composition and estimates of in vitro digestibility and total digestible nutrients (TDN) were subjected to analysis of variance and the means were compared using the Tukey test at a 5% probability.

RESULTS

No interaction was observed between N levels and the fermentative parameters of dry matter of the in vitro gas production of pearl millet cultivars (Table 1).

Table 1
Mean values of gas production from dry matter (DM), determined in pearl millet cultivars under N levels.

A significant interaction was observed between nitrogen fertilization and dry matter (DM) between cultivars (P<0.05) (Table 2).

Table 2
Mean values of dry matter (DM), determined in pearl millet cultivars under N levels.

The values of the chemical composition of the cultivars were not influenced by nitrogen fertilization and showed no differences between cultivars (Table 3).

Table 3
Mean values of chemical composition, determined in pearl millet cultivars under N levels.

Nitrogen fertilization influenced the fermentation pattern and gas production of the cultivars (Table 4). Gas production from the soluble content of organic matter (OM) was not affected by nitrogen fertilization, but the cultivar ADR 7020 showed higher gas production from the soluble content compared to the cultivar LABH 70732 at levels of 100 and 200 kg N/ha.

Gas production rates from soluble and insoluble contents were similar between cultivars and were not affected by nitrogen fertilization (P<0.05). An increase in gas volume production due to the insoluble content was observed in the cultivar ADR 500 at the level equivalent to 200 kg N/ha relative to levels of 50 and 100 kg N/ha. The level of 100 kg N/ha for the cultivar ADR 7020 showed higher gas production due to the insoluble content at levels compared to the control treatment. The cultivar LABH 70732 had higher gas production due to the insoluble content in the control treatment and at the level of 100 kg N/ha compared to the others.

Table 4
Mean values of gas production parameters from organic matter (OM), determined in pearl millet cultivars under N levels.

A significant effect (P<0.05) was observed between the estimated in vitro digestibility of organic matter and the percentage of TDN only between the cultivars ADR 500 and ADR 7020 at a level equivalent to 100 kg N/ha, with no influence of nitrogen fertilization (Table 5).

Table 5
Mean values of in vitro digestibility of organic matter (IVDOM) and the total digestible nutrients (TDN), determined in pearl millet cultivars under N levels.

Figure 1 shows the gas production, determined in pearl millet cultivars, as a function of N levels. The lag time by bacteria (g) relative to fermented organic matter (OM) was influenced by nitrogen fertilization.

Figure 1
Gas production (ml/g DM) as a function of N levels: A) 0, B) 50, C) 100, and D) 200 kg N/ha.

DISCUSSION

The pearl millet cultivars have similar dry matter fermentation characteristics, regardless of the N level. The cultivar ADR 7020 showed higher lag time values than the cultivar ADR 500 at the level of 100 kg N/ha, and possibly did not affect the gas production rate of the soluble and insoluble fractions, as this variable is a measure estimated by mathematical models. Guimarães Jr et al. (2008) reported mean lag time values of 2.25 h for millet cultivars, values lower than those of the present study, probably because they are estimated by different statistical models based on different prerogatives (Mello et al., 2008MELLO, R.; MAGALHÃES, A.L.R; BREDA, F.C.; REGAZZI, A.J. Modelo para ajuste de produção de gases em silagem de girassol e milho, Pesquisa Agropecuária Brasileira, v.43, n.2, p.261-269, 2008.).

The cultivar LABH 70732 with no nitrogen fertilization produced a higher gas volume through the fermentation of insoluble material than the cultivar ADR 7020. However, the cultivar LABH 70732 produced a higher gas volume through the fermentation of insoluble material under fertilization of 100 kg N/ha than the cultivar ADR 7020 (P<0.05).

Guimarães Jr et al. (2008)GUIMARÃES JÚNIOR, R.; GONÇALVES, L.C.; MAURÍCIO, R.M.; PEREIRA, L.G.R.; TOMICH, T.R.; PIRES, D.A.A.; JAYME, D.G.; SOUZA, L.F. Cinética de fermentação ruminal de silagens de milheto, Arquivo Brasileiro de Medicina Veterinária e Zootecnia, v.60, n.5, p.1114-1180, 2008. observed no significant effect on gas production from silages of millet cultivars, with a mean of 148.7 mL of gases g/DM.

Nitrogen fertilization at the level of 50 kg N/ha accelerated the drop of moisture in the cultivar ADR 7020, thus presenting a higher dry matter content, but not influencing the fermentative characteristics of gas production of the pearl millet cultivars.

According to Amaral et al. (2008)AMARAL, P.N.C; EVANGELISTA, A.R; SALVADOR, F.M; PINTO, J.C. Qualidade e valor nutritivo da silagem de três cultivares de milheto. Ciência e Agrotecnologia, v. 32, n. 2, p. 611-617, 2008., the DM content of millet varies according to its phenological stage. The authors observed DM values in millet plants of 21.34, 27.70, and 36.83% at 70, 90, and 110 days after planting, respectively, showing that senescence increases the dry matter content, mainly due to grain production and physiological stage.

The mean values of crude protein for pearl millet are similar to those found by Guimarães Jr et al. (2008)GUIMARÃES JÚNIOR, R.; GONÇALVES, L.C.; MAURÍCIO, R.M.; PEREIRA, L.G.R.; TOMICH, T.R.; PIRES, D.A.A.; JAYME, D.G.; SOUZA, L.F. Cinética de fermentação ruminal de silagens de milheto, Arquivo Brasileiro de Medicina Veterinária e Zootecnia, v.60, n.5, p.1114-1180, 2008., remaining above the minimum 7% recommended for minimum rumen fermentation (Mehrez & Orskov, 1978MEHREZ, Z.; ORSKOV, E.R. Protein degradation and optimum urea supplementary feed. British Journal of Nutrition, v. 40, p.337, 1978.).

The NDFap contents found in this study corroborate the mean content found by Pinho et al. (2013)PINHO, R.M.A; SANTOS, E.M.; RODRIGUES, J.A.; MACEDO, C.H.O.; CAMPOS, F.S.; RAMOS, J.P.F.; BEZERRA, H.F.C.; PERAZZO, A.F. Avaliação de genótipos de milheto para o semiárido. Revista Brasileira de Saúde e Produção Animal, v.14, n.3, p.426-436, 2013. in a study conducted with millet cultivars 42 days after sowing. The forage NDFap is inversely related to the voluntary intake of dry matter by the animal, the digestion rate, and the passage rate of rumen contents (Siqueira Campos et al., 2010SIQUEIRA CAMPOS, P.R.S; VALADARES FILHO, S.C.; DETMANN, E.; CECON, P.R.; LEÃO, M.I; LUCCHI, B.B; SOUZA, S.M.; PEREIRA, O.G. Consumo, digestibilidade e estimativa do valor energético de alguns volumosos por meio da composição química. Revista Ceres, v. 57, n.1, p. 079-086, 2010.).

Guimarães Júnior et al. (2005)GUIMARÃES JÚNIOR, R.; GONÇALVES, L.C.; RODRIGUES, J.A.S.; JAYME, D.G.; PIRES, D.A.A.; BORGES, A.L.C.C.; RODRIGUEZ, N.M.; SALIBA, E.O.S.; BORGES, I. Matéria seca, proteína bruta, nitrogênio amoniacal, e pH das silagens de três genótipos de milheto [Pennisetum glaucum (L). R. BR.] em diferentes períodos de fermentação, Revista Brasileira de Milho e Sorgo, v.4, n.2, p.251-258, 2005. evaluated three millet genotypes harvested and ensiled 100 days after planting and found mean ADFap values of 42.5%. The ADFap and lignin contents are inversely related to the degradation potential of the forage, influencing the availability of energy and nutrients for the ruminant (Orskov et al., 1980ØRSKOV, E.R.; HOVELL, F.D.B; MOULD, F. The use of the nylon bag technique for evaluation of feedstuffs. Tropical Animal Production, v. 5, p. 195-213, 1980.).

Hemicellulose is an important carbohydrate used by ruminal microorganisms for the fermentative process in gas production and corresponds to the majority of the gaseous fraction produced by the fermentation of insoluble carbohydrates (Kozlosky, 2009KOZLOSKI, V.G. Bioquímica microbiana ruminal. In: Bioquímica dos ruminantes. 1 ed. Santa Maria: UFMS, cap. 1, p. 124p. 2009.). The mean value of hemicellulose of all cultivars found in this experiment was 29.05%, a value close to that found by Guimarães Junior et al. (2005)GUIMARÃES JÚNIOR, R.; GONÇALVES, L.C.; RODRIGUES, J.A.S.; JAYME, D.G.; PIRES, D.A.A.; BORGES, A.L.C.C.; RODRIGUEZ, N.M.; SALIBA, E.O.S.; BORGES, I. Matéria seca, proteína bruta, nitrogênio amoniacal, e pH das silagens de três genótipos de milheto [Pennisetum glaucum (L). R. BR.] em diferentes períodos de fermentação, Revista Brasileira de Milho e Sorgo, v.4, n.2, p.251-258, 2005. for three millet cultivars, with a mean value of 27.18%.

Non-fibrous carbohydrates showed no influence on the gas production of the soluble content of the cultivars and N levels. Carbohydrates that have high solubility are the main carbon sources for fermentation and gas production in the first hours of fermentation (Kozlosky, 2009KOZLOSKI, V.G. Bioquímica microbiana ruminal. In: Bioquímica dos ruminantes. 1 ed. Santa Maria: UFMS, cap. 1, p. 124p. 2009.).

The soluble content has a higher gas production rate and the higher the soluble fermentable content, the higher the gas production from this substrate. The most appropriate fitting model for interpreting the parameters for substrates that have soluble and insoluble fermentable fractions, such as millet and corn in the grain production phase, is the dual substrate model (Mello et al., 2008MELLO, R.; MAGALHÃES, A.L.R; BREDA, F.C.; REGAZZI, A.J. Modelo para ajuste de produção de gases em silagem de girassol e milho, Pesquisa Agropecuária Brasileira, v.43, n.2, p.261-269, 2008.).

The point that defines gas production by the soluble and insoluble fractions is the inflection point of the nonlinear regression curve (Figure 1), defined by the principles and assumptions of each regression model. Therefore, the time in which it occurs is variable and may not be the same for all curves, with the comparison being made on the absolute values of gas production from the soluble fraction (Schofield et al., 1994SCHOFIELD, P.; PITT, R.E.; PELL, A.N. Kinetics of fiber digestion from in vitro gas production, Journal of Animal Science, v.72, p.2980-2991, 1994.). The higher the gas production rate, the shorter the time taken for fermentation of the soluble and insoluble substrates.

The highest nitrogen level for the cultivar ADR 500 provided a longer lag time by bacteria (g) compared to 0 and 50 kg N/ha (P<0.05), thus characterizing a difficulty in colonization by rumen bacteria with nitrogen fertilization in this cultivar. The cultivar LABH 70732 showed a longer lag time at the level of 0 kg N/ha compared to levels equivalent to 50 and 200 kg N/ha, indicating higher difficulty in colonization by rumen bacteria with the lowest N level. Among the cultivars, ADR 7020 presented the longest lag times by rumen bacteria at all N levels, which can be seen in the four quadrants of Figure 1, but this difficulty did not interfere with gas production due to the soluble content.

Assuming that gas production reflects the sample degradation by ruminal microorganisms, the volumes of gases produced and production rates are the main parameters for evaluating the quality of the tested forages (Guimarães Júnior et al., 2008GUIMARÃES JÚNIOR, R.; GONÇALVES, L.C.; MAURÍCIO, R.M.; PEREIRA, L.G.R.; TOMICH, T.R.; PIRES, D.A.A.; JAYME, D.G.; SOUZA, L.F. Cinética de fermentação ruminal de silagens de milheto, Arquivo Brasileiro de Medicina Veterinária e Zootecnia, v.60, n.5, p.1114-1180, 2008.).

The control treatment (0 kg N/ha) (P<0.05) showed a higher gas production due to the insoluble content of the cultivar LABH 70732, while the cultivar ADR 7020 produced more gas from the insoluble content at a level equivalent to 50 kg N/ha. The cultivars ADR 500 and LABH showed lower gas production due to the insoluble content at levels of 100 and 200 kg N/ha, respectively.

Guimarães Jr et al. (2008)GUIMARÃES JÚNIOR, R.; GONÇALVES, L.C.; MAURÍCIO, R.M.; PEREIRA, L.G.R.; TOMICH, T.R.; PIRES, D.A.A.; JAYME, D.G.; SOUZA, L.F. Cinética de fermentação ruminal de silagens de milheto, Arquivo Brasileiro de Medicina Veterinária e Zootecnia, v.60, n.5, p.1114-1180, 2008. found no differences between the in vitro digestibility of silage from three millet cultivars. Unlike the present study, Costa et al. (2011)COSTA, K.A.P.; ASSIS, R.L.; PERIM, R.C.; GUIMARÃES, K.C.; PALUDO, A.; PRIVADO, C.J.T.; VIEIRA, T.P. Qualidade e valor nutritivo de silagem de genótipos de milheto produzidas com e sem inoculante bacteriano. Revista Brasileira de Saúde e Produção Animal, v.12, n.2, p.286-295, 2011. evaluated five millet cultivars and reported lower TDN content in the cultivar ADR 500 when compared to other cultivars using bacterial inoculants.

CONCLUSIONS

The best N level aiming to increase the fermentative characteristics of the cultivar ADR 7020 was equivalent to 100 kg N/ha, with no recommendation of nitrogen fertilization to increase the fermentative characteristics of the cultivars ADR 500 and LABH 70732.

REFERENCES

  • AMARAL, P.N.C; EVANGELISTA, A.R; SALVADOR, F.M; PINTO, J.C. Qualidade e valor nutritivo da silagem de três cultivares de milheto. Ciência e Agrotecnologia, v. 32, n. 2, p. 611-617, 2008.
  • BRUM, M.S; QUADROS, L.F.L; MARTINS, J.D; ROSSI, G.E; DANIEL, E; MAIXNER, A.R; BRANDINELLI, D.G. Sistemas de alimentação para recria de ovinos a pasto: avaliação do desempenho animal e características da forragem. Ciência Rural, v.38, n.1, p. 191-198, 2008.
  • CHENOST, M; AUFRERE, J; MACHEBOEUF, D. The gas-test technique as a tool for predicting the energetic value of forage plants. Animal Research v. 50, p.349–364 2001.
  • COSTA, K.A.P.; ASSIS, R.L.; PERIM, R.C.; GUIMARÃES, K.C.; PALUDO, A.; PRIVADO, C.J.T.; VIEIRA, T.P. Qualidade e valor nutritivo de silagem de genótipos de milheto produzidas com e sem inoculante bacteriano. Revista Brasileira de Saúde e Produção Animal, v.12, n.2, p.286-295, 2011.
  • DETMANN, E; SOUZA, M.A; VALADARES FILHO, S.C. Métodos para análise de alimentos. Instituto Nacional de Ciência e Tecnologia de Ciência Animal, Visconde do Rio Branco, MG, Suprema, 2012. 214p.
  • DIJKSTRA, J.; KEBREAB, E.; BANNING, A.; FRANCE, J.; LÓPEZ, S. Application of the gas evaluation systems for ruminants. Animal Feed Science and Technology, p.123-124 e 561-578, 2005.
  • GUIMARÃES JÚNIOR, R.; GONÇALVES, L.C.; RODRIGUES, J.A.S.; JAYME, D.G.; PIRES, D.A.A.; BORGES, A.L.C.C.; RODRIGUEZ, N.M.; SALIBA, E.O.S.; BORGES, I. Matéria seca, proteína bruta, nitrogênio amoniacal, e pH das silagens de três genótipos de milheto [Pennisetum glaucum (L). R. BR.] em diferentes períodos de fermentação, Revista Brasileira de Milho e Sorgo, v.4, n.2, p.251-258, 2005.
  • GUIMARÃES JÚNIOR, R.; GONÇALVES, L.C.; MAURÍCIO, R.M.; PEREIRA, L.G.R.; TOMICH, T.R.; PIRES, D.A.A.; JAYME, D.G.; SOUZA, L.F. Cinética de fermentação ruminal de silagens de milheto, Arquivo Brasileiro de Medicina Veterinária e Zootecnia, v.60, n.5, p.1114-1180, 2008.
  • KOEPPEN, W. Climatologia: con un studio de los climas de la tierra. 1° edición em español. México: Fundo de Cultura Económica, 1948.
  • KOZLOSKI, V.G. Bioquímica microbiana ruminal. In: Bioquímica dos ruminantes. 1 ed. Santa Maria: UFMS, cap. 1, p. 124p. 2009.
  • LACERDA, M.J.R; FREITAS, K.R.; SILVA, J.W. Determinação da matéria seca de forrageiras pelos métodos de microondas e convencional.Bioscience Journal, v.25, n.3, p.185-190, 2009.
  • MCDOUGAL, E.I. STUDIES ON RUMINAL SALIVA. 1. The composition and output of shee’s saliva. The Biochemical Journal, v. 43, n.1, p. 99-109, 1949.
  • MAURÍCIO, R.M.; MOULD, F.L.; DHANOA, M.S.; OWEN, E.; CHANA, S.K.; THEODOROU, M.K. A semi- automated in vitro gas production technique for ruminant feedstuff evaluation, Animal Feed Science and Technology, n. 79 p. 321-330, 1999.
  • MARTHA J.R., G.B; VILELA, L.; SOUSA, D.M.G. Adubação nitrogenada. In: Martha Jr GB; Vilela L; Sousa DMG. eds. Cerrado: Uso eficiente de corretivos e fertilizantes em pastagens. Planaltina, Embrapa Cerrados, 2007. p.117-144.
  • MEHREZ, Z.; ORSKOV, E.R. Protein degradation and optimum urea supplementary feed. British Journal of Nutrition, v. 40, p.337, 1978.
  • MELLO, R.; MAGALHÃES, A.L.R; BREDA, F.C.; REGAZZI, A.J. Modelo para ajuste de produção de gases em silagem de girassol e milho, Pesquisa Agropecuária Brasileira, v.43, n.2, p.261-269, 2008.
  • ØRSKOV, E.R.; HOVELL, F.D.B; MOULD, F. The use of the nylon bag technique for evaluation of feedstuffs. Tropical Animal Production, v. 5, p. 195-213, 1980.
  • PEREIRA, O.G; OBEID, J,A; GOMIDE, J.A. Produtividade e valor nutritivo de aveia (Avena sativa), milheto (Pennisetum americanum) e de um híbrido de Sorghum bicolor XS sudanense. Revista da Sociedade Brasileira de Zootecnia, v.22, p.22-30, 1993.
  • PEREIRA, S.A; OLIVEIRA, G.C; KLIEMANN, H.J; BALBINO, L.C; FRANÇA, A.F.S; CARVALHO, E.R. Influence of different grazing systems on physical properties and agregation in savannah soils. Pesqisa Agropecuária Tropical, v. 40, n. 3, p. 274-282, 2010.
  • PINHO, R.M.A; SANTOS, E.M.; RODRIGUES, J.A.; MACEDO, C.H.O.; CAMPOS, F.S.; RAMOS, J.P.F.; BEZERRA, H.F.C.; PERAZZO, A.F. Avaliação de genótipos de milheto para o semiárido. Revista Brasileira de Saúde e Produção Animal, v.14, n.3, p.426-436, 2013.
  • R Development Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3- 90005107. 0, URL http://www.R-project.org Acesso em: 02 de abril de 2013.
    » http://www.R-project.org
  • SCHOFIELD, P.; PITT, R.E.; PELL, A.N. Kinetics of fiber digestion from in vitro gas production, Journal of Animal Science, v.72, p.2980-2991, 1994.
  • SILVA, F.F.; GONÇALVES, L.C.; RODRIGUES, J.A.S.; CLOVIS, E.S.C.; RODRIGUEZ, N.M.; BRITO, A.F., MOURÃO, G.B. Qualidade de silagens de híbridos de sorgo (Sorghum bicolor (L.) Moench) de portes baixo, médio e alto com diferentes proporções de colmo mais folha/panícula, Avaliação do processo fermentativo, Revista Brasileira de Zootecnia, v. 28, n. 1, p. 14-20, 1999.
  • SILVA, D.J.; QUEIROZ, A.C. Análise de alimentos: métodos químicos e biológicos. 3.ed. Viçosa, MG: Editora UFV, 2002. 235p.
  • SNIFFEN, C. J; O’CONNOR J.D; VAN SOEST, P,J; FOX, D.G.; RUSSELL, J.B. A net carbohydrate and protein system for evaluating cattle diets: carbohydrate and protein availability. Journal of Animal Science, v.70, n.12, p.3562-3577, 1992.
  • SIQUEIRA CAMPOS, P.R.S; VALADARES FILHO, S.C.; DETMANN, E.; CECON, P.R.; LEÃO, M.I; LUCCHI, B.B; SOUZA, S.M.; PEREIRA, O.G. Consumo, digestibilidade e estimativa do valor energético de alguns volumosos por meio da composição química. Revista Ceres, v. 57, n.1, p. 079-086, 2010.
  • THEODOROU, M.K.; WILLIAMS, B.A.; DHANOA, M.S.; MCALLAN, A.B.; FRANCE, J. Simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds, Animal Feed Science and Technology, v.48, p.185-197, 1994.

Publication Dates

  • Publication in this collection
    01 Mar 2024
  • Date of issue
    2024

History

  • Received
    23 Oct 2023
  • Accepted
    15 Jan 2024
UFBA - Universidade Federal da Bahia Avenida Adhemar de Barros nº 500 - Ondina , CEP 41170-110 Salvador-BA Brasil, Tel. 55 71 32836725, Fax. 55 71 32836718 - Salvador - BA - Brazil
E-mail: rbspa@ufba.br