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ABSTRACT

Hydrological modeling in decision-making is particularly challenging in tropical countries such as Brazil. There are numerous modeling 
tools; however, many applications have focused on watersheds with a total area of  <20,000km2. Here we tailored a customized SWAT 
(Soil and Water Assessment Tool) ecohydrological model application using the SWAT CUP tool for calibration and validation of  the Rio 
das Velhas, a relatively large, complex Brazilian basin (~28,000km2). The Rio das Velhas is the longest tributary of  the São Francisco River 
and contains heterogeneous landforms, soils, vegetation, and land uses. A multisite calibration method obtained specific regionalized 
parameters for each sub-basin group for successfully simulating Rio das Velhas streamflows. Our results showed a suitable adjustment of  
the model. Nash-Sutcliff  (NS) model performance values were 0.73-0.97 (calibration) and 0.51-0.98 (validation). The percent bias (PBIAS) 
was -11.3 to 19.4 (calibration) and -18.6 to 24.6 (validation), and the coefficient of  determination values (R2) were >0.6 in all sub-basins 
on a monthly basis. We also explored how four contrasting land use scenarios affected four water-flow variables (surface runoff, base flow, 
percolation, and total streamflow). Our results show that by using multiple flow-monitoring stations and multisite calibration approaches, 
ecohydrological models can be useful for managing basin-extent water resources in countries of  continental dimensions such as Brazil.

Keywords: Water resources management; Water governance; GIS spatial tools; Rio das Velhas.

RESUMO

O uso de ferramentas de modelagem hidrológica na tomada de decisão é particularmente desafiador em países tropicais como o Brasil. 
Existem inúmeras ferramentas de modelagem disponíveis; entretanto muitas aplicações destas ferramentas são focadas em bacias 
hidrográficas com área total <20.000 km2. Neste trabalho, adotamos e customizamos o modelo ecohidrológico SWAT (Soil and Water 
Assessment Tool) usando a ferramenta SWAT CUP para calibração e validação do Rio das Velhas, uma relativamente grande e complexa 
bacia brasileira (~ 28.000 km2). O Rio das Velhas é o maior afluente da bacia do rio São Francisco e contém formas de relevo, solos, 
vegetação e usos da terra heterogêneos. Usando um método de calibração multi-site, parâmetros regionalizados específicos foram 
obtidos para cada grupo de sub-bacias para simular com sucesso as vazões do Rio das Velhas. Nossos resultados mostraram um bom 
ajuste do modelo. Os valores do coeficiente de performance Nash-Sutcliff  (NS) foram 0,73-0,97 (calibração) e 0,51-0,98 (validação). 
A porcentagem de viés (PBIAS) foi de -11,3 a 19,4 (calibração) e -18,6 a 24,6 (validação) e os valores do coeficiente de determinação 
(R2) foram >0,6 em todas as sub-bacias considerando uma escala mensal. Também exploramos as maneiras pelas quais quatro cenários 
contrastantes de uso da terra impactam às quatro variáveis de vazões avaliadas (escoamento superficial, fluxo de base, percolação e fluxo 
total). Nossos resultados mostram que, usando múltiplas estações de monitoramento de vazão e abordagens de calibração multi-site, 
os modelos ecohidrológicos podem de fato ser úteis para gerenciar os recursos hídricos da extensão da bacia em países de dimensões 
continentais como o Brasil.

Palavras-chave: Gestão de recursos hídricos; Governança da água; Ferramentas espaciais SIG; Rio das Velhas.
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INTRODUCTION

Water management is high on environmental and 
political agendas (Carvalho et al., 2019; Loch et al., 2020). Water 
provisioning and water flow regulation directly affect human 
well-being, particularly across tropical biomes in the Global South 
(Yan  et  al., 2020). However, planning and governing tropical 
landscapes for effective water management in tropical countries 
is very challenging for at least four key reasons (Haberlandt, 2010; 
Ponette-González et al., 2015; Souffront Alcantara et al., 2019). 

First, hydrological cycles encompass a diversity of  complex 
processes that together influence physical, chemical, biological, 
and ecological processes. Furthermore, current computational 
development has produced many alternative tools and algorithms 
for calibration, simulation, and validation of  modeling those 
hydrological cycles (Gharari et al., 2013; Ghoreishi et al., 2021; 
Moreira et al., 2020). 

Second, the availability of  spatially explicit environmental 
databases (i.e., geospatial information) and free software expand 
the analytical possibilities for water resources management 
(Macedo et al., 2018). This raises challenges for estimating variations 
of  water-related services across different scales, both geographical 
(grain and extent) and temporal (dry and rainy seasons), to inform 
policymaking and water governance. 

Third, vegetation cover influences processes in the water 
cycle through its structural effects on essential ecosystem functions 
in watersheds (Ponette-González et al., 2015). This is key for tropical 
countries such as Brazil, which are experiencing unprecedented 
land use changes (Souza Junior  et  al., 2020). Land Use Cover 
Change (LUCC) influences watershed evapotranspiration regimes, 
changing retention of  precipitation in forest canopies, soil infiltration 
capacity, and the volume and timing of  water runoff  (Fletcher et al., 
2013; Yang et al., 2012). To explore the consequences of  land use 
change driven by increasing demand for agricultural products, land 
cover maps for 2050 have been developed. In Brazil, agricultural 
scenarios include SimBrasil (2023) and the Brazilian Land Use 
Model (BLUM). These spatially explicit estimates of  land use 
patterns for future decades can be used for exploring the impacts 
of  land cover patterns on water management.

Fourth, although ecohydrological modeling integrated 
with GIS is essential for dealing with complex processes in highly 
dynamic land uses across continental extents such as Brazil, 
there are still issues to overcome to incorporate ecohydrological 
modeling in policymaking. It is particularly challenging to use 
ecohydrological modeling for relatively large river basins and 
explore future scenarios that assist decision-making in water 
resource management in the medium to long term. 

Ecohydrological models are widely acknowledged as 
important decision-support tools among hydrologists (Devia et al., 
2015). However, it remains to be demonstrated that they can deliver 
robust estimates and perform accurately via relatively simple and 
straightforward calibration procedures before being widely accepted 
by governmental bodies and water planning institutions (Haberlandt, 
2010; Ponette-González et al., 2015). Three issues still need to be 
overcome. 1) What are the most appropriate modeling tools and 
algorithms for targeting specific hydrological processes (runoff, 
sediment load, etc.)? 2) What are the most appropriate available 
data for meeting specific model data demands? 3) How does 

one develop a step-by-step calibration procedure that effectively 
estimates processes and is feasibly integrated into routine water 
management institutional practices? 

Thus, a multisite calibration, which consists of  using two 
or more fluviometric stations to calibrate the model, is a strategy 
that can achieve better results versus models based on one station 
(Andrade et al., 2019; Wi et al., 2015). To do so, ecohydrological 
models integrated into geographic information systems (GIS) have 
been widely used in recent years (Khalid, 2018; De Mello et al., 2020; 
Schumann et al., 2000; Schuol et al., 2008). Four improvements 
have been made in developing this integrated approach. 1) River 
basins are characterized by their lithology, morphology, soils, 
and land cover variations. 2) The estimates of  conceptual model 
parameters are more precisely and accurately quantified. 3) Models 
are parameterized by sub-basins. 4) Model operations are simplified 
to make them more widely applicable.

Numerical hydrological models have been implemented 
in geographic information systems (GIS) frameworks; however, 
the Soil and Water Assessment Tool (SWAT) ecohydrological 
model (Arnold & Fohrer, 2005; Arnold et al., 2012a, 2012b) is 
the most used worldwide in scientific works (Paul et al., 2021). 
Furthermore, SWAT stands out for (1) allowing multisite modeling 
(Arnold et al., 2012b); (2) being open source (Arnold et al., 2012b); 
(3) facilitating deployment in several GIS and statistical softwares 
(e.g., ArcGis, Qgis, and R; Soil & Water Assessment Tool, 
2023b); (4) being actively supported by the scientific community 
(Soil & Water Assessment Tool, 2023a); (5) being regularly 
updated (Tan et al., 2020); (6) being widely used in the academic 
and management world (Paul et al., 2021; Tan et al., 2020); and 
(7) being used worldwide in different contexts (i.e., watersheds with 
various sizes, different land uses and cover, regulated catchments, 
etc; Soil & Water Assessment Tool, 2023c). 

There are many examples of  SWAT’s versatility. SWAT 
has been used for estimating soil erosion susceptibility in India by 
comparing different multicriteria decision-making methods (MCDM) 
(Bhattacharya et al., 2020). It has been applied to understand the 
sources and drivers of  microbial (Sowah et al., 2020) and chemical 
(Schilling & Wolter, 2009) water quality in USA watersheds. It was 
used in an integrated approach to estimate streamflow, soil loss, and 
water contamination in the Tiete watershed of  Sao Paulo, Brazil 
(Santos et al., 2020). It helped determine critical erosion-prone areas 
for selecting best management practices (BMPs) and conservation 
programs for a USA reservoir (White et al., 2010). 

However, despite the large extent of  many Brazilian river 
basins, more than 75% of  studies using SWAT in Brazil have focused 
on basins <20,000 km2 (Soil & Water Assessment Tool, 2023c). In 
Brazil, SWAT has been used since the 1990s, and between 1999 and 
2013, over 100 academic studies used SWAT to explore its ability 
to capture the complexity of  hydrological processes at basin scales 
(Bressiani et al., 2015). Considering that land use changes are the 
greatest threat to water resources in Brazil (De Mello et al., 2020) 
and the water resources management in the country is carried out 
through large hydrographic basins (average size ~ 20,000 km2; 
Agência Nacional de Águas, 2020), it is necessary to demonstrate 
how SWAT can be used for assessing large basins and land use 
changes in Brazil. Particularly important is to explore how major 
drivers of  land use change, associated with both native vegetation 
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loss (urbanization and agricultural expansion) and native vegetation 
gain (forest recovery) might influence streamflows in such large 
basins and the ways in which these might be accounted for in 
watershed planning and management.

One essential issue is to customize the highly time-
consuming and data-demanding calibration approaches to 
facilitate and enhance the robustness of  SWAT estimates from 
small to large geographical extents. This is critical for improving 
SWAT predictive performance and making it possible for 
water management agencies to consider SWAT cost-effective 
enough to use as an ecohydrological modeling and planning 
tool. Because of  inherent complexities with data availability 
and model calibration approaches, ecohydrological modeling in 
support of  water resource planning and management is rare in 
Brazil (Bressiani et al., 2015). Calibration issues are particularly 
problematic in Brazil because of  the existing GIS data, such as 
the coarse resolution (map scale > 1:500,000) of  soil, lithology, 
and geomorphology maps and the heterogeneity and varying 
resolution of  the mapped hydrographic network. Also, there are 
relatively few complete hydrological data collection stations for 
a nation the size of  Brazil (De Mello et al., 2020). In addition to 
data issues, there is still the need to explore which calibration 
approaches likely will make SWAT more robust and appealing 
to planning and managing large watersheds.

To fulfill these research gaps, we explored how a distributed 
and continuous ecohydrological model coupled with GIS such 
as SWAT can be used to estimate surface runoff  dynamics in a 
heterogeneous and relatively large hydrographic basin (~28,000 km2). 
We mainly aimed to explore how multisite calibration approaches 
can enhance the performance of  runoff  estimates in a large basin 
as a function of  varying land use change scenarios. We then 
customized a calibration approach to make SWAT more appealing 
for decision-making for large tropical basins.

MATERIALS AND METHODS

Study area

We used SWAT coupled with GIS to simulate hydrological 
processes in the Rio das Velhas basin, the longest tributary of  
the São Francisco River. The study area covers 27,850 km2 in 
Minas Gerais state (Brazil) and its tributaries drain water from 
51 municipalities (Figure 1). The basin covers most of  the Belo 
Horizonte Metropolitan Area (RMBH), which is the third-largest 
metropolitan area in Brazil (Instituto Brasileiro de Geografia 
e Estatística, 2020), with approximately 4.8 million inhabitants 
representing 25% of  the population of  Minas Gerais and 32% of  
the population of  the São Francisco basin (Instituto Brasileiro de 
Geografia e Estatística, 2010, 2020).

This basin covers parts of  the Atlantic Forest and Brazilian 
Savanna biomes. Most of  the region’s climate is tropical (Cwb, Cwa, 
and Aw Koppen climate types), with annual average temperatures 
between 18ºC and 22ºC, annual total rainfall of  ~1500 mm, and a 
six-month dry season (April to September) (Alvares et al., 2013). The 
basin comprises four distinct geomorphological units (Fundação 
Centro Tecnológico de Minas Gerais, 1983; United States Geological 
Survey, 2015). 1) The headwaters are situated in the southern part 

of  the Quadrilátero Ferrífero, with elevations ranging from 800 
to 1875 m. 2) The mainstem flows through the São Franciscana 
Depression (470-800m). 3) The São Francisco Plateaus border 
the western region (800-1000m). 4) The Espinhaço Meridional 
Mountain Range dominates the eastern side (1000-1875m). The 
most prevalent soil types are Argisols (~ 30%), but Latosols 
(~ 22%), Neosols (~ 22%), Cambisols (~ 17%), and Plinthosols 
and Gleisols (~ 1%) also occur (Instituto Brasileiro de Geografia 
e Estatística, 2018). The land use and land cover (LULC) is 
predominately Pasture (~ 27%), followed by Forest-Evergreen 
(~ 24%), Range-Grasses (~ 15%), Agricultural Land-Generic 
(~ 14%), and Range-Brush (~ 12%). Urban infrastructure occupies 
about 2% of  the total area (Souza Junior et al., 2020).

Datasets and their sources

We calibrated and tested the SWAT ecohydrological model 
using the flow series (1993-2015) obtained from 15 streamflow 
monitoring stations available at ANA’s HIDROWEB (Agência 
Nacional de Águas, 2020) (Supplementary Material S1; see Figure 1). 
Simple regression models were used to fill the gaps in the flow 
series, in the form of  potential regression, as recommended by 
Euclydes et al. (2005) (Supplementary Material S2).

The model used information from four environmental 
dimensions: climate, topography, soils, and land use and cover 
(Figure 2). The climatic data were obtained through the analysis of  
historical series using five weather stations (temperature, humidity, 
solar radiation, wind speed, and precipitation) of  the National 
Institute of  Meteorology (Instituto Nacional de Meteorologia, 
2020) and 29 rainfall stations (daily data from 1993 to 2015) of  
the National Water Agency (Agência Nacional de Águas, 2020) 
(Supplementary Material S3; Figure  2d). The gaps were filled 
using the weather generator model developed for the United 
States (SWAT WXGEN model; Sharpley and Williams, 1990). 
Therefore, to be applicable to the study area, it was necessary to 
calculate different climatic parameters (Supplementary Material S4) 
and format them for input to the SWAT model. The topography 
features (Figure 2a) were taken from the digital elevation model 
(DEM) generated by the Shuttle Radar Topographic Mission 
(~30m; United States Geological Survey, 2015). The land use 
and cover map (Figure 2b) was generated from the pixel-by-pixel 
classification of  satellite images from Landsat (30m resolution) and 
Sentinel (10m resolution) through machine learning algorithms 
such as deep learning and convolutional neural networks 
(Souza Junior  et  al., 2020). The original land use map classes 
were made compatible with the SWAT database, resulting in the 
following land use classes: Agricultural Land-Generic, Barren, 
Eucalyptus, Forest-Evergreen, Industrial, Pasture, Range-Brush, 
Range-Grasses, Residential-Medium Density, Wetlands-Non-
Forested, and Water (Supplementary Material S5). The soil 
characterization (Figure 2c) was obtained through the Brazilian soil 
map (scale 1:250,000; Instituto Brasileiro de Geografia e Estatística, 
2018) that was complemented with soil physical-hydro characteristics 
classified through a survey conducted by experts in the upper 
Rio das Velhas basin (Mello et al., 2020; Supplementary Material S6). 
The GIS data were inserted in the SWAT model using the ArcSWAT 
interface (Winchell et al., 2013).
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Figure 2. Inputs for SWAT a) topography, b) land use classes, c) soil types, and d) weather stations.

Figure 1. The Rio das Velhas basin, the sub-basins, and their respective streamflow stations group and streamflow monitoring stations.
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Hydrological modeling

The entire basin was divided into sub-basins (hydrologic units), 
and the confluence of  rivers was generated through the DEM and 
using the streamflow measurement points (each streamflow monitoring 
station was assigned as a river mouth sub-basin). The establishment 
of  the minimum contribution drainage area and the size of  sub-basins 
was based on preliminary tests and recommendations by Jha et al. 
(2004): minimum drainage area should be between 2% to 5% of  
the total area for basins between 2,000 km2 and 18,000 km2, so we 
used the value of  200 km2 (about 1% of  the area). Thus, nearly 
half  the sub-basins are simply hydrologic polygons, particularly 
those on the mainstem Rio das Velhas and its major tributaries, 
which receive streamflows from upriver sub-basins, and others 
are aggregates of  multiple small tributaries (Omernik et al., 2017). 
The model is sensitive to the accuracy of  the basin’s sub-basins, 
making it an important step. Thus, the Rio das Velhas basin was 
divided into 80 sub-basins and grouped according to 15 streamflow 
stations that allowed calibrations, simulation, and validation of  
the hydrologic processes occurring (see Figure 1; Supplementary 
Material S7). The main springs are in sub-basins 79 (Cachoeira 
das Andorinhas) and 80 (Itabirito river) and the river mouth is in 
sub-basin 1 (Barra do Guaiçuí).

Each sub-basin was parameterized by the model generating 
the hydrological response units (Hydrological Response Units; 
HRUs), corresponding to a single combination of  LULC, soil, and 
slope within the sub-basin. The slope classes for defining HRUs 
were based on 5 classes that homogeneously covered the basin 
area: <4%; from 4 to 7%; from 7 to 13%; from 13 to 25%; and 
> 25%. The distribution of  HRUs in the sub-basins employed 
the multiple HRU method, which facilitates creating various 
combinations of  uses and soil types for each sub-basin, according 
to the level of  sensitivity chosen by the user (Neitsch et al., 2011). 

Model sensitivity determines the minimum percentage a slope 
or land-use class needs to occupy in a sub-basin to create a HRU. 
This step is important to avoid creating very small, unrepresentative 
HRUs. The model’s default values for sensitivity levels are 20% for 
land use, 10% for soil type, and 20% for slope class (Winchell et al., 
2013). After preliminary tests, we adopted 15%, 20%, and 20% for 
land use, soil type, and slope class, respectively. This means that the 
categories of  land use and cover that occupy an area of  more than 
15% (i.e., Forest-Evergreen, Pasture, or Range-Grasses) in the basin 
were considered in the combinations for the creation of  HRUs; 
similarly, 20% for soil type (i.e., Argisol, Oxisol, or Litolic Neosol) 
and 20% for slope class (i.e., <4%, 7 to 13%, or 13% to 25%) were 
used to create HRUs. This process generated a total of  701 HRUs.

Runoff  in each sub-basin was estimated by the Soil Conservation 
Service (SCS) Number Curve method (United States Department 
of  Agriculture, 2004). Subsurface flow was simulated for two types 
of  aquifers in each sub-basin: (i) shallow (non-confined), which 
contributed to the runoff  in the main channel or sections of  the 
sub-basins; and (ii) deep (confined) aquifer, which contributed flow 
out of  the simulated subbasin. Groundwater flow (Equation 1) was 
simulated in a steady-state regime (Neitsch et al., 2011):

2
8,000.   . sat

gw wtbl
gw

KQ h
L

=  	 (1)

where Qgw is the underground (base) flow of  the main channel 
on a day i (mm), Ksat is the saturated hydraulic conductivity of  the 
aquifer (mm.day-1), L2

gw is the distance from the underground 
basin divide to the main channel (m), and hwtbl is the water head 
of  groundwater flow (m). Potential evapotranspiration (PET) 
was estimated by the Penman-Monteith method, which requires 
solar radiation, air temperature, relative humidity, and wind speed 
as input data. The model calculates the actual evapotranspiration 
after the PET determination.

Calibration and validation

Flow series and parameters

The historical streamflow series were divided following 
the 70/30 proportion method proposed by Klemeš (1986) and 
widely used in hydrologic modeling studies (Paul  et  al., 2021): 
(1) years 1995 to 2008 were used for calibration and (2) years 2009 
to 2015 were used for validation. An aggregated monthly time 
step for the streamflow comparisons was used, and both periods 
(calibration and validation) had rainy and dry years. The years 
used for the initial warm-up period included 1993 and 1994 for 
calibration and 2007 and 2008 for validation.

In this study, only streamflow (runoff) was calibrated. 
SWAT has twenty-six parameters associated with this variable 
(Arnold  et  al., 2012a). There are many input parameters, but 
most of  them do not influence the hydrologic output. Thus, we 
performed a literature search to identify the parameters that tend 
to be more sensitive, which resulted in selecting 11 parameters 
(Abbaspour  et  al., 2015; Gharari  et  al., 2013; Ghoreishi  et  al., 
2021; Moreira et al., 2020).

Those eleven parameters were used throughout the calibration 
process, namely: base flow recession constant (ALPHA_BF), 
Manning roughness coefficient (CH_N2), runoff  curve number 
for moisture condition II (CN2), calculation of  water demand by 
plants (EPCO), calculation of  soil evaporation demand (ESCO), 
aquifer recharge time (GW_DELAY), water return coefficient from 
the aquifer to the root zone (GW_REVAP), the limit between water 
depth in the shallow aquifer and the surface (GWQMN), water limit 
in the shallow aquifer to return to the root zone or percolation to 
the deep aquifer (REVAPMN), available water capacity in the soil 
horizon (SOL_AWC), and saturated hydraulic conductivity in the 
soil horizon (SOL_K) (Supplementary Material S8).

Multisite calibration

SWAT-CUP (Abbaspour, 2015; Abbaspour et al., 2015) was 
used to proceed with the calibration and validation steps. We opted for 
the SUFI-2 algorithm among those available in SWAT-CUP because 
it is the one that needs the fewest iterations to achieve a satisfactory 
performance (Yang et al., 2008). We used an interactive approach to 
adjust the model, changing the parameter intervals until the model 
was calibrated (Arnold et al., 2012b). We executed 100 iterations for 
calibration using the 1995-2008 data. The validation process was 
carried out through a new simulation with 100 iterations for each 
previously calibrated sub-basin, using the period from 2009 to 2015. 
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We employed 100 iterations based on preliminary tests, as they 
demonstrated that values beyond 100 iterations (i.e., 200, 500, 
and 1,000) did not yield significant improvements in adjustments 
that would warrant the additional computational effort involved.

The use of  few stations to calibrate a model can lead 
to poor spatial accuracy (Daggupati et al., 2015), so we chose 
a multisite calibration for the Rio das Velhas basin because of  
its size (~28,000 km2) and the availability of  15 streamflow 
measurement stations. We used the 15 stations, parameterized 
individually or stepwise, because this method proves efficient 
(Andrade et al., 2019; Franco & Bonumá, 2017; Wi et al., 2015).

Thus, the stations upstream were initially calibrated so 
that the values of  the parameters obtained in the calibration of  
these sub-basins were fixed. Therefore, in subsequent calibration 
steps, those values did not change. Then the stations further 
downstream were calibrated until all stations in the basin 
were calibrated (Figure 3). Respecting this calibration order is 
essential because, although the calibration is gauge specific, the 
processes in the basin are integrated and always from upstream 
to downstream (Wi et al., 2015). Otherwise, when calibrating 
the upstream basin, the flow values in the downstream basin 
will be changed again, increasing the computational effort and 
compromising model performance. The non-instrumented 
sub-basins were grouped to receive the same parameter values 
as an instrumented sub-basin with a hydrological connection 
(Figure 3a). Additionally, we grouped the sub-basins in the three 
major upstream areas to understand which specific characteristics 
may have influenced the hydrologic processes between those 
areas (Figure 3b).

Performance analysis

Model performance was evaluated (calibration and validation) 
by the Nash and Sutcliffe coefficient (NS; Equation 2):

( )

( )

2
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n
m si

n
mi

E E
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E E
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−
= −

−

∑
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where Em is the observed event, Es is the event simulated by 
the model, E is the average of  the observed event, and n is the 
number of  events. Values of  NS close to one (Table 1) indicate 
satisfactory results.

The percent bias (PBIAS; Equation 3) of  the simulated 
data was calculated as above or below that of  the observed data. 
The optimal value of  this statistical index is zero (Table 1), and 
values with low magnitude indicate simulation accuracy. Positive 
values indicate a tendency to underestimate the simulated results, 
whereas negative values indicate overestimating the simulated 
values (Gupta et al., 1999).
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Additionally, we used the coefficient of  determination 
(R2) obtained from linear regression between the measured and 
observed values. R2 values >0.6 are considered acceptable for 
monthly simulations in modeling using SWAT (Moriasi et al., 2015).

Figure 3. a) Calibration order of  the Rio das Velhas sub-basins. A: subbasin area (km2); AC: accumulated upstream subbasin area (km2). 
b) three major upstream areas, subbasins, and respective water flow stations group.



RBRH, Porto Alegre, v. 28, e33, 2023

Almeida et al.

7/17

Land use and land cover change scenarios

We used four scenarios to assess the extent to which 
land use changes can be associated with water balance, runoff, 
and total discharge. In the scenarios, we explored how major 
drivers of  land use change associated with native vegetation gain 
(to the level of  human occupation in the 16th century) and native 
vegetation loss (extreme urbanization and agricultural expansion) 
might influence streamflows in the basin. Scenario 1 (S1) is the 
“baseline” scenario that includes the land use map in the year 2018. 
The second scenario (S2) explores a pristine circumstance where 
original native vegetation (i.e., forest-evergreen, range-brush, and 
range-grasses) replaces all anthropogenic land uses. In this case, 
the anthropogenic uses observed in 2018 were replaced by the 
natural coverage according to the original distribution through 
inference based on topography, geomorphology, climate, and 
land cover. The third scenario (S3) reflects an extreme increase 
of  agricultural lands across the landscape. In this scenario 
(S3), agricultural land use replaces forest-evergreen, range-
brush, and range-grasses. Finally, in the fourth scenario (S4) 
urban infrastructure replaces forest-evergreen, range-brush, 
and range-grasses (Table 2).

The water balances for each scenario with the average annual 
values of  the components of  precipitation, evapotranspiration, 
surface runoff, percolation, lateral flow, base flow, capillary rise, and 
aquifer recharge were generated using the SWAT Check software. 
We used the relations among (1) surface runoff/total flow; (2) 
base flow/total flow; and (3) surface runoff/percolation to assess 
the influences of  the land cover scenarios in the water balance 
(White  et  al., 2014). Furthermore, we evaluated the statistical 
differences among streamflow estimates across the four scenarios 
differentiating wet and dry seasons using t-tests on paired samples.

RESULTS

Using overall streamflow data from 1995-2015, we 
initially underestimated the base flow and overestimated peak 
flows, highlighting the need for additional calibration (Figure 4, 
Supplementary Material S9). Subsequent calibrations included 
using the minimum and maximum values for each parameter and 
optimal values, which were obtained using the best fit between the 
calibrated and the simulated flows (Supplementary Material S10). 
When we used multisite calibration, the calibrated range and the 
optimal values were obtained for each group of  sub-basins (Figure 3).

Table 1. Classification of  model performance according to Nash and Sutcliffe coefficient (NS) and percent bias (PBIAS) 
(Moriasi et al., 2007, 2015).

Model performance NS PBIAS
Very good 0.75 < NS ≤ 1.00 PBIAS ≤ ±10%

Good 0.65 < NS ≤ 0.75 ±10% < PBIAS ≤ ±15%
Satisfactory 0.50 < NS ≤ 0.65 ±15% < PBIAS ≤ ±25%

Unsatisfactory 0.0 < NS ≤ 0.50 ±25% < PBIAS ≤ ±30%
Unacceptable NS ≤ 0.0 PBIAS > ±30%

Table 2. Land use and land cover in simulated scenarios in the Rio das Velhas basin.
Baseline (S1) Natural (S2) Agricultural (S3) Urbanization (S4)

Agriculture 14.47% 0% 51.35% 14.47%
Urban Infrastructure 2.41% 0% 2.41% 39.29%

Natural vegetation cover1 36.88% 100% 0% 0%
Others 46.24% 0% 46.24% 46.24%

1 Forest-evergreen, range-brush, and range-grasses.

Figure 4. Observed and simulated flows before and after calibration to sub-basin.
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Thus, each of  these groups has specific calibration 
estimates consistent with the characteristics of  that region. The 
major difference between the three main groups of  sub-basins is 
related to climate type (Table 3). Sub-basin groups 31 and 43 have 
the same predominant soils and slope class (Argisols and 13-25% 
slopes). The same natural vegetation cover (forest-evergreen, 
range-brush, and range-grasses) and altitude class (600-800 m) 
are dominant in all three sub-basin groups.

After calibration and validation, the NS values ranged from 
0.73 to 0.97 (calibration) and from 0.51 to 0.98 (validation). PBIAS 
ranged between -11.3 and 19.4 (calibration) and between -18.6 
and 24.6 (validation), which are considered satisfactory to very 
good (Moriasi et al., 2007). The R2 values also remained above 
0.6 in all sub-basins, as recommended by Bonumá et al. (2014), 
Moriasi et al. (2015) and Santhi et al. (2001) (Table 4).

As shown in Table  4, the pre-calibration results were 
unsatisfactory for all stations, except for station 41890000 
(sub-basin 15), in which NS and PBIAS were “satisfactory” 
and “good,” respectively. The remaining PBIAS values were all 
negative and considerably above an absolute value of  25, the 
limit for the model to be satisfactory, indicating a strong tendency 
to overestimate peak streamflows (also shown in Figure  4). 
The upstream sub-basins, which were the first group to be calibrated 
(sub-basin 15 to sub-basin 76), showed lower performance than the 
lower sub-basins because the calibration started in the headwater 
sub-basins and proceeded towards the basin outlet. Over the 
analyzed period (1995 to 2015), the simulated streamflow graphs 
showed that the calibrations of  the downstream sub-basins resulted 
in better adjustments (Supplementary Material S11).

The simulations of  the four land-use scenarios revealed 
differing proportions amongst water balance components (total 

flow, base flow, surface runoff, and percolation) (Table  5). 
The sum of  the lateral flow, base flow, and surface flow was 
considered as total flow. Ratio (1) refers to how much of  the 
total flow was composed of  surface runoff, and the higher 
this ratio, the greater the runoff  generated in the basin. The 
ratio for the “urbanization” scenario (S4) is higher than for the 
“agricultural” (S3), modeled, and natural scenarios (S2), respectively, 
indicating that more intensive land use generates more surface 
runoff  and less groundwater flow. Ratio (2) is the relationship 
between baseflow and total flow, so a high ratio indicates that a 
large part of  the total flow was comprised of  subsurface flow 
pathways. In this case, we found that the highest value for ratio 
2 occurred in the natural scenario (S2), followed by “baseline” 
(S1), “agricultural” S3, and “urbanization” (S4), reinforcing the 
results from ratio 1. Ratio 2 indicates that more intensive land 
use generates less subsurface flow relative to total flow. Ratio 
(3) describes the ratio between surface runoff  and percolation, 
which means that the higher this ratio, the more surface runoff  
is generated, and less water infiltrates the soil. Like ratio (1), it 
is higher for the “urbanization” scenario (S4), followed by the 
“agricultural” scenario (S3), the “baseline” scenario, and lastly, 
the “natural” scenario. Again, ratio (3) indicates that the less 
natural scenarios favor the generation of  surface runoff  and 
less soil infiltration, which is undesirable for aquifer recharge 
and maintaining base flows.

Almost 80 sub-basins showed significantly different simulated 
average flows (paired t-test, italicize p < 0.01) between the adjusted 
model and the land use change scenarios, both in the dry and wet 
seasons (Table 6). In general, there was a decrease in the average 
flow in the dry period with increasing anthropogenic land covers 
(back-to-nature > baseline > agricultural > urbanization). On the 

Table 3. Principal characteristics of  the three major sub-basin groups.

Three major subbasin groups Number of  HRUs Predominant class
Soil type Climate type Land use and cover Elevation class Slope class

04 276 Neosoil AW Natural cover 600-800m < 4%
31 144 Argisoil CWb Natural cover 600-800m 13-25%
43 259 Argisoil CWa Natural cover 600-800m 13-25%

Table 4. Verification of  the model before and after calibration and validation.

Sub-basin Order of  calibration Pre-calibration Calibration Validation
NS PBIAS R2 NS PBIAS R2 NS PBIAS R2

15 1st 0.59* -14.27** 0.62 0.73*** 12.2** 0.76 0.51* -2.1*** 0.62
22 1st -2.96 -149.28 0.79 0.77*** 17.0 0.79 0.81*** -18.6* 0.85
34 1st -20.46 -394.8 0.71 0.78*** 10.7** 0.78 0.57* -15.6* 0.65
42 1st 0.42 -51.29 0.90 0.92*** -11.3** 0.94 0.86*** -14.3** 0.87
59 1st -6.28 -115 0.81 0.78*** -4.8*** 0.81 0.90*** -7.0*** 0.90
61 1st -1.06 -87.37 0.88 0.85*** 13.2** 0.86 0.90*** 8.2*** 0.91
64 1st -4.38 -91.25 0.76 0.76*** 19.4* 0.85 0.77*** 24.6* 0.85
68 1st -1.45 -59.31 0.78 0.84*** 1.3*** 0.88 0.73** -2.4*** 0.80
76 1st -2.34 -34.95 0.85 0.88*** -3.1*** 0.88 0.92*** -3.2*** 0.92
67 2nd -4.33 -87.49 0.87 0.94*** -2.5*** 0.95 0.90*** -16.2* 0.93
56 3rd -3.68 -83.52 0.89 0.91*** 7.8*** 0.93 0.97*** 4.7*** 0.97
52 4th -3.97 -83.73 0.89 0.93*** 2.4*** 0.93 0.98*** 4.3*** 0.98
43 5th -3.69 -86.37 0.88 0.93*** -0.1*** 0.93 0.85*** 0.2*** 0.95
31 6th -2.27 -93.33 0.90 0.96*** -6.8*** 0.97 0.94*** -12.0** 0.96
4 7th -1.82 -99.53 0.91 0.97*** 2.3*** 0.98 0.97*** 1.8*** 0.97

All coefficient of  determination (R2) values are acceptable. Nash-Sutcliff  (NS) and percent bias (PBIAS) model performance: *Satisfactory. **Good. ***Very good. 
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other hand, average streamflows and runoff  in the wet season, 
increased with increased land use intensity.

DISCUSSION

We explored how SWAT can be used for planning and 
managing water resources in relatively large (~28,000 km2), 
heterogeneous basins experiencing dynamic land use changes. 
We developed stepwise and multisite procedures to effectively 
tailor and customize the use of  SWAT so it can more likely be 
used for water resource management. Additionally, the model 
effectively estimated the flow responses to changes in land use 
and land cover. Below, we discuss limitations, advantages, and 
ways forward to implement SWAT to inform water resource 
planning and management in continental-extent countries, 
such as Brazil.

Multi-step procedure for multisite calibration in 
large basins

Management and planning of  water resources in Brazil 
are carried out by planning units of  similar size areas as the Rio 
das Velhas basin. Our results show that tailored and customized 
calibration of  ecohydrological models coupled with GIS efficiently 
modeled runoff  in our study area. Using multiple streamflow 
monitoring stations and multisite calibration approaches improves 
water flow modeling.

Even without calibration, the model represented the 
general pattern of  the hydrographic peaks and recessions but 
overestimated peak flows and underestimated base flows, as expected 
in the pre-calibration phase (Abbaspour et al., 2015; Tan et al., 
2020). Changing the values of  some parameters improved model 
estimates. For example, we decreased the value of  the runoff  
curve number for moisture condition II (CN2), the distance 
between the shallow aquifer depth and the surface (GWQMN), 
and the water return coefficient from the aquifer to the root zone 
(GW_REVAP). On the other hand, we increased the values of  
available water capacity in the soil horizon (SOL_AWC) and the 
water limit in the shallow aquifer to return to the root zone or 
percolation to the deep aquifer (REVAPMN) when the base flow 
was very low (Abbaspour et al., 2015; Rouholahnejad et al., 2014). 
We also recalculated soil evaporation demand (ESCO) in the case 
of  overestimated peaks.

In line with other studies, our results also highlight the 
importance of  SWAT calibrations (Andrade et al., 2019; Durães et al., 
2011). After calibration, NS, PBIAS, and R2 were within 95% 
confidence levels. The PBIAS values were greatly improved, ranging 
from satisfactory to very satisfactory. Before calibration, only one 
sub-basin had satisfactory NS estimates, but NS was satisfactory 
for all stations after calibration. The validation results improved 
model performance, indicating that the calibrated model can be 
extrapolated to other periods.

For many reasons, adopting multisite calibration for a large 
and very heterogeneous basin was important. Our results were 
individually calibrated and regionalized for each sub-basin group 

Table 5. Proportional rates between simulated water flows in the Rio das Velhas basin under different scenarios.
Baseline (S1) Natural (S2) Agricultural (S3) Urbanization (S4)

(1) Surface runoff/Total flow 0.178 0.154 0.192 0.479
(2) Base flow/Total flow 0.379 0.415 0.363 0.210

(3) Surface runoff/Percolation 0.190 0.153 0.208 0.847

Table 6. Simulated average flows in the dry (April to September) and wet (October to December) seasons for the 15 adjusted sub-basins 
in the Rio das Velhas basin. Baseline (S1); Natural (S2); Agricultural (S3); Urbanization (S4). Significant differences in mean flows 
(italicize p < 0.01) between land use change scenarios and baseline are in bold.

Sub-basin Area Km2 Dry Wet
S1 S2 S3 S4 S1 S2 S3 S4

15 1,361 2.65 2.88 2.65 2.76 33.98 37.55 36.61 35.34
22 2,041 7.51 6.73 7.16 6.05 24.15 22.43 25.66 32.19
34 812 0.94 1.66 1.16 1.12 4.36 6.16 4.84 7.46
42 3,971 22.76 21.89 22.01 21.91 122.88 120.36 124.26 132.11
59 239 1.73 1.88 1.61 0.76 3.89 3.28 3.75 5.17
61 562 1.31 0.99 1.45 1.24 9.35 8.14 9.39 11.58
64 704 2.07 2.55 2.28 1.82 10.4 8.48 15.45 9
68 615 2.88 3.22 1.5 2.62 14.57 14.8 14.15 17.86
76 1,535 21.61 22.15 21.21 17.72 40.88 40.56 41.06 45.14
67 3,707 35.84 38.86 35.51 29.17 83.88 79.13 81.89 99.7
56 7,048 47 52.14 45.59 35.52 124.92 120.06 121.5 160.1
52 8,021 57.56 65.09 41.28 55.79 138.62 136.21 134.78 174.23
43 10,620 81.38 92.27 79.66 58.04 171.6 179.08 169.65 213.35
31 16,590 107.28 118.16 105.2 83.33 299.36 306.02 299.68 358.16
4 26,390 127.98 139.2 125.74 103.41 405.94 417.32 413.41 497.45
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(see Supplementary Material S10). In this way, the calibration 
data provided a level of  detail that favors water management and 
planning at the sub-basin extent instead of  the entire basin. If  it 
is necessary to calculate the flow from any river in a sub-basin, it 
will be possible to use the calibrated parameters for the group to 
which that sub-basin belongs. Despite the advantages of  using 
multisite calibration, this approach requires considerable processing 
capacity because it is necessary to perform several iterations for 
each station. However, by checking the results step by step and 
then performing the maximum of  iterations reduced processing 
time considerably.

When proceeding with stepwise multisite calibration, we 
saw that it was more difficult to achieve good adjustments for the 
upstream stations than for the downstream stations (see Table 4). 
This occurs because as streamflows were calibrated upstream, the 
modeled streamflows were automatically adjusted downstream, 
facilitating the calibration of  downstream flows and in ever larger 
sub-basins. Also, extreme anthropogenic alterations (e.g., chemical 
spills, urbanization) and natural stochastic events (e.g., floods, 
torrents, fire, droughts) are more intense in smaller catchments 
(e.g., Coles et al., 2012; Shiau, 2003), so it is typically easier to 
model flows in large basins than in small ones.

Comparing the model calibration and validation performance 
with literature values facilitates further understanding of  model 
improvements, despite basin differences. The performance values 
obtained in our study for NS (0.73 to 0.97 in calibration; 0.51 to 0.98 
in validation) and PBIAS (-11.3 and 19.4 in calibration; -18.6 and 24.6 
in validation) are in line with previous work (Arnold et al., 2012b). 
However, if  we analyze the most instrumented sub-basin in 
this study (sub-basin 4, ~25,000 km2), we observed a NS of  
0.97 (calibration and validation) and PBIAS of  2.3 and 1.8, for 
calibration and validation, respectively. Other studies of  relatively 
large basins showed poorer results. For example, Durães et al. 
(2011), studying the 14,000 km2 Paraopeba River basin in Minas 
Gerais, reported NS values of  0.77 and 0.79 in the calibration and 
0.76 and 0.82 in the validation. Githui et al. (2009) used the SWAT 
ecohydrological model to simulate the flow in a 13,000 km2 basin 
in Kenya. Calibration was performed for 5 years (1980 to 1985), 
with monthly and daily time steps. Their model adjustment for 
the monthly calibration (NS of  0.76 in calibration and 0.74 in 
validation) was higher than for the daily calibration (NS of  0.71 
in calibration and 0.63 validation).

Land use and cover change scenarios

Through SWAT simulations, we observed that scenarios 
with increased agricultural and urban areas at the expense of  native 
forest areas caused changes in the basin water balance. Among 
them, runoff  increased, and infiltration and base flow decreased, 
as expected. In addition, the current scenario differed from the 
natural scenario, in which modeled surface runoff  decreased and 
infiltration and base flow increased. Other authors have found 
similar results using SWAT to simulate different land use scenarios 
in Brazil (Andrade et al., 2017; Perazzoli et al., 2013; Rodrigues et al., 
2015). Although the simulated scenarios are extreme, the results 
facilitate us seeing the applied theory by quantifying the impacts 
of  increased anthropogenic interventions seasonally.

The percolation of  water to the deep aquifer supports 
base streamflows in the periods. During droughts, it is critically 
important for sufficient base flows to maintain the watercourse 
permanence, ecosystems, and ecosystem services. However, greater 
human intervention drives base flows in the opposite direction 
(Hudak, 2004). On the other hand, in the wet season, increased 
soil impermeability (represented by the average value of  the curve 
number) hinders infiltration and increases surface water runoff. 
This is not ideal because what is desired in rainy periods is for 
sufficient water to infiltrate to maintain dry season streamflows and 
dampen peak flows to minimize flooding (Paul & Meyer, 2008).

Limitations and advantages of  this approach

Although robust estimates were achieved, there are five input-
data issues. First, the model assigns uninterpolated precipitation 
data to the value of  the nearest measurement station for each 
sub-basin. Szcześniak & Piniewski (2015) assessed the effect of  
entering interpolated precipitation data on the calibration results 
in 11 medium-sized sub-basins. They concluded that in basins 
with few measurement stations and having low variation of  daily 
precipitation, interpolated methods improved estimates. Second, 
climatic series have flawed or gaps in historical data. In our case, 
they were filled with the weather generator model available in 
SWAT (WXGEN) (Sharpley & Williams, 1990). Despite being 
a widely used method to generate climate data, it generates 
uncertainties like any other model (Herman et al., 2018). Third, 
the streamflow data series from monitoring stations contained 
missing data that were filled through regression models, which 
again include uncertainties (Esmaeelzadeh & Dariane, 2014). A 
fourth issue is the national-extent soils data. Because no pedological 
data were available for our entire study area, we used data from 
the upper Rio das Velhas basin (see Supplementary Material S6). 
To overcome data gaps, others using SWAT in Brazil employed 
data from other basins or estimated them from pedotransfer 
equations (Bonumá et al., 2014; Machado & Vettorazzi, 2003). 
Soil mapping is an extremely imprecise data layer in Brazil (De 
Mello et al., 2020). Currently, the country has only general soil 
surveys with low-resolution maps; < 5% of  the nation’s soils are 
mapped at a resolution of  1:100,000. Fifth, only about half  the 
sub-basins are true watersheds, meaning that those sub-basins 
create misleading estimates of  true watershed land use, discharge, 
and water quality (Omernik et al., 2017). Modeling could be 
improved by joining upstream true watersheds and downstream 
HUC sub-basins into true watersheds, by using digital elevation 
modeling to determine true watersheds of  various sizes, or by 
mapping landscape portions where surface flows drain directly 
into a particular stream or river segment (‘catchments’), but 
excluding any upstream contributions (Hill et al., 2016).

Further analyses of  uncertainty propagations in the model 
can contribute to understanding the output variability, which is 
crucial for making water resource decisions. However, the current 
model is a useful tool for managing water resources in the Rio das 
Velhas basin given sufficient calibration and adequately simulated 
flows. Besides, the methodological approach used (creation of  
sub-basins, ottobasins, Hill ‘catchments’, or true watersheds; 
inputting layers of  soil type, slope, and land use; climatic data; 
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delimitation of  HRUs; simulation; calibration; and validation) 
can be developed in other hydrological models coupled in GIS.

Maps and models are simplified representations of  systems 
and processes that attempt to capture key variables of  complex 
systems. Therefore, they have limitations for exploring different 
outcomes useful for evaluating different management scenarios 
(Gregory, 2000). In this work, SWAT was selected not only for its 
ability to simulate the dynamics of  surface runoff  and flow regimes 
but also because it is effective, user-friendly, well-documented, 
available to the public free of  charge, and supported by GIS tools. 
Training workshops on SWAT are frequently held in Brazil, which 
facilitates expanding the knowledge of  the tool’s use and clarifying 
the doubts of  the modelers (Bressiani et al., 2015). The model 
is distributed; therefore, the main basin can be divided into sub-
basins or true watersheds. This approach accounts for spatial 
variation of  the parameters, which is extremely important in 
modeling large basins (Wood & O’Connell, 1985). In addition, the 
tool is versatile and effective and can provide reasonably accurate 
results (NS efficiency values > 0.5) with moderate data entry effort 
(Arnold & Fohrer, 2005; Chaplot et al., 2004; Heuvelmans et al., 
2005). Finally, it offers a wide range of  water body management 
applications, including selecting best management practices 
(BMPs; Behera & Panda 2006).

Implications for water resource management in Brazil

Although numerous modeling tools are available for managing 
water resources, evidence is scarce on the use of  these tools to inform 
water management and planning globally. Hydrological modeling 
tools in decision-making are particularly challenging in tropical 
countries. Here we tailored and customized SWAT calibration and 
validation in the context of  large hydrologic units in Brazil. Despite 
the widespread acknowledgment that hydrological models are 
essential tools for estimating variations of  water-related services 
across different scales, both geographical (grain and extent) and 
temporal (dry and rainy seasons), the use of  hydrological models 
in decision-making and water resource management is lagging. 
Modeling is even more critical in countries such as Brazil, which is 
experiencing unprecedented land use changes and only beginning 
to experience fundamental climate changes. Changes in vegetation 
influence processes in the water cycle through structural effects on 
key ecosystem functions in watersheds (Ponette-González et al., 
2015). Changes in watershed evapotranspiration regimes, resulting 
in changed retention of  precipitated water in tree canopies and soil 
infiltration capacity, affect the volume and timing of  water runoff  
(Fletcher et al., 2013; Yang et al., 2012). Integrating hydrological 
modeling and GIS are important tools for dealing with such 
complex processes in highly dynamic land uses at continental 
extents. However, there are still issues to overcome to incorporate 
hydrological modeling in policymaking. By customizing the calibration 
and validation approaches of  SWAT, we offer decision-makers in 
Brazil a step-by-step guide for overcoming the limitations of  using 
models in water management and planning.

Throughout our study, we presented possible solutions to 
overcome data scarcity: we reduced model complexity by using 
11 of  26 possible water flow parameters. Yet, we showed that 
this customized approach for parametrizing the model adequately 

captured hydrological processes in the Rio das Velhas basin. With this 
calibrated model, water management institutions can explore ex-ante 
management practices, such as the number and size of  permits for 
water use. In the Rio das Velhas basin, 19 municipalities have water 
supply permits, and maintaining minimum flows in the basin’s rivers 
is essential to ensure this supply and support aquatic ecosystem 
structures and functions (https://siga.cbhvelhas.org.br). Therefore, 
water resource management agencies can use models such as ours to 
assist in planning for anticipated future water shortages that could 
affect over 5 million people. These tools are particularly useful for 
analyzing the effects of  demographic growth, land-use changes, and 
water resource availability versus future demands, potential conflicts 
amongst water users, rationing uses, and increasing the quantity and 
quality of  available water resources. All these issues are mandated in 
water resource planning according to Law 9.433/97 (Brasil, 1997).

The water supply of  the Belo Horizonte Metropolitan Region 
(RMBH) is an integrated system, incorporating three reservoirs in 
the Paraopeba River basin and the Upper Rio das Velhas basin with 
direct surface capture. These systems account for approximately 
60% and 40% of  the water supply for the RMBH, respectively 
(Agência Reguladora de Serviços de Abastecimento de Água e 
Esgotamento Sanitário do Estado de Minas Gerais, 2013). During 
droughts, when river flows decrease, the Paraopeba reservoirs can 
be used to maintain supply. When the reservoirs fill during rainy 
periods, the Rio das Velhas basin can become the primary water 
source. Hydrological modeling can be useful in this decision-making 
process by modeling water availability and exploitation scenarios.

Another important contribution of  SWAT ecohydrological 
modeling is to include land use as a layer for defining hydrologic 
response units (HRUs) and, consequently sub-basins or watershed 
potentials. This is very important because of  the highly dynamic 
land use changes occurring in the study basin. Future land use 
maps developed by SimBrasil or BLUM can be used as a layer 
in SWAT simulations to explore the consequences of  those land 
use patterns in providing water in the future. Furthermore, the 
model is flexible regarding insertion of  climate heating scenarios 
in the context of  watershed management (Bressiani et al., 2015).

CONCLUSIONS

The SWAT multisite calibrated model effectively replicated 
the relatively large and heterogeneous basin’s hydrological processes. 
The study results showed that the SWAT ecohydrological model 
was an effective tool that could help manage land use that directly 
affects the amount of  water and its multiple potential uses. Multisite 
calibration improved the accuracy and precision of  the model, and 
it can be used to predict how changes in land use can influence 
water availability and improve water resources management. 
However, water resource management must consider future climate 
scenarios, and thus an adequately calibrated hydrological model 
can be very useful in land and water use planning. The adjustments 
obtained proved to be consistent with other studies carried out in 
large basins in continental-sized countries such as Brazil, China, 
and India. Despite the previously presented limitations, we found 
that using SWAT coupled with a GIS facilitated the simulation 
of  complex hydrological processes. That modeling can serve as a 
tool to better target decision-making by Brazilian water resource 
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management agencies and reduce the impacts of  anthropogenic 
interventions on water flow regimes.
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