Acessibilidade / Reportar erro

Presence of organic compounds in river surface water in a neotropical environment of south Brazil

Presença de compostos orgânicos em água superficial de rio em ambiente neotropical no sul do Brasil

ABSTRACT

Many industrially synthesized human - therapeutic agents, agrochemicals, and additives used by industries are heterocyclic compounds. Many of these contribute to increased environmental contamination in localized and diffuse sources of water bodies, reflecting soil quality, communities, and human health. This concern led us to develop this research to evaluate the presence of organic compounds in the surface waters of the Pirapó river basin, Paraná, Brazil, influenced by the soybean and safflower corn crops that are cultivated in adjacent areas around the river. The water samples were collected from October 2017 to January 2019, at three collection points. Organic compounds were analyzed by GC-MS, after the solid phase extraction (SPE). Two organic compounds were analyzed: azetidine and sarcosine that are used in the pharmaceutical industry. Organic compounds existing in drugs and/or contaminants that were observed in this study reveal the importance of further investigation into their origins and the consequences for the health of the biota and the population.

Keywords:
Pharmaceutical compounds; GC-MS method; Environmental monitoring

RESUMO

Muitos agentes terapêuticos humanos sintetizados industrialmente, agroquímicos e aditivos, são compostos heterocíclicos. Muitos destes contribuem para o aumento da contaminação ambiental em fontes pontuais e difusas dos corpos de água, o que reflete na qualidade do solo, das comunidades e na saúde humana. Com isso, este estudo teve objetivo de avaliar a presença de compostos orgânicos nas águas superficiais da bacia do rio Pirapó, influenciados pelas culturas de soja e milho safrinha que são cultivadas nas áreas adjacentes em torno do rio. As amostras de água foram coletadas no período de outubro de 2017 a janeiro de 2019, em três pontos de coleta. Os compostos orgânicos foram analisados por CG-EM, após a extração em fase sólida (SPE). Dois compostos orgânicos foram detectados: a azetidina e a sarcosina, que são utilizados na indústria farmacêutica. Os compostos orgânicos existentes em medicamentos e/ou contaminantes observados neste estudo revelam a importância de investigações mais aprofundadas sobre suas origens e as consequências para a saúde da biota e da população.

Palavras-chave:
Compostos farmacêuticos; Método CG/EM; Monitoramento ambiental

INTRODUCTION

Water, both a source of life and a limited resource, has been degraded because of the increase in urban population and environmental pollution. Thousands of people around the world, including in Brazil, typically have some kind of disease because of the poor quality of water from the impacts that water bodies have been suffering (Mendes et al., 2017Mendes, M. B., Miranda, M. G., Silva, R. F., Martins, A. M. R., & Avelar, K. E. S. (2017). Carta da Terra e uma nova ética ambiental. In M. G. Miranda, A. L. T. Rezende, A. M. S. Santos, R. Friede & K. E. S. Avelar (Eds.). Cidadania e educação ambiental na prática (pp. 109-129). Rio de Janeiro: Letra Capital.).

Water contamination can be due to numerous causes, among them: deforestation, lack of soil conservation, silting, crops and roads, great urban expansion with the use and disorderly occupation of the soil, absence of adequate environmental planning, discharge of domestic and industrial effluents, solid waste from hospitals, and from domestic and agricultural origin, as well as the introduction of discharges of agrochemical residues and their packaging, and compounds such as those used by the pharmaceutical or chemical industry (Geissen et al., 2015Geissen, V. H., Klumpp, E., Umlauf, G., Nadal, M., Van der Ploeg, M., Van de Zee, E. A. T. M., & Ritsema, C. J. (2015). Emerging pollutants in the environment: a challenge for water resource management. International Soil and Water Conservation Research, 3, 57-65.; Carvalho et al., 2015Carvalho, K. Q., Lima, S. B., Passing, F. H., Gusmão, L. K., Souza, D. C., Kreutz, C., Belini, A. D., & Arantes, E. J. (2015). Influence of urban area on the water quality of the Campo River basin, Paraná State, Brazil. Brazilian Journal of Biology, 75(4), 96-106., 2022Carvalho, A. C. C., Silva, B. F., Machado, A. A., Santarossa, M. A. S., & Paganini, W. S. (2022). A ocorrência de cafeína em águas superficiais para abastecimento público. Engenharia Sanitária e Ambiental, 27(4), 845-852. http://dx.doi.org/10.1590/S1413-415220210201.
http://dx.doi.org/10.1590/S1413-41522021...
; Fernandes et al., 2017Fernandes, A. S., Mello, F. V. C., Thode Filho, S., Carpes, R. M., Honório, J. G., Marques, M. R. C., Felzenszwalb, I., & Ferraz, E. R. A. (2017). Impacts of discarded coffee waste on human and environmental health. Ecotoxicology and Environmental Safety, 141, 30-36. http://dx.doi.org/10.1016/j.ecoenv.2017.03.011.
http://dx.doi.org/10.1016/j.ecoenv.2017....
).

The presence of organic contaminants in an aquatic environment is a growing concern due to their potential effects on human health and the ecosystem (Hansen et al., 2016Hansen, K., Spiliotopoulou, A., Chhetri, R., Escolà, C. M., Bester, K., & Andersen, H. (2016). Ozonation for source treatment of pharmaceuticals in hospital wastewater -Ozone lifetime and required ozone dose. Chemical Engineering Journal, 290, 507-514.; Tomaz et al., 2023Tomaz, A. T., Barthus, R. C., Costa, C. R., & Ribeiro, J. (2023). Descontaminação de águas residuais contendo poluentes orgânicos: uma revisão. Revista Virtual de Química, 15(1), 183-199. http://dx.doi.org/10.21577/1984-6835.20220076.
http://dx.doi.org/10.21577/1984-6835.202...
). They can be divided into several categories, including hydrocarbons, volatile organic compounds (VOCs), persistent organic compounds (POCs), organic waste, pharmaceuticals and/or personal chemicals, and miscellaneous synthetic organic compounds (Liang et al., 2021Liang, Y., Jiao, C., Pan, L., Zhao, T., Liang, J., Xiong, J., Wang, S., Zhu, H., Chen, G., Lu, L., Song, H., Yang, Q., & Zhou, Q. (2021). Degradation of chlorine dioxide bleaching wastewater and response of bacterial community in the intimately coupled system of visible-light photocatalysis and biodegradation. Environmental Research, 195, 110840. https://doi.org/10.1016/j.envres.2021.110840; McBeath et al., 2021McBeath, S. T., Mora, A. S., Zeidabadi, F. A., Mayer, B. K., McNamara, P., Mohseni, M., Hoffmann, M. R., & Graham, N. J. D. (2021). Progress and prospect of anodic oxidation for the remediation of per- and polyfluoroalkyl substances in water and wastewater using diamond electrodes. Current Opinion in Electrochemistry, 31, 100865. https://doi.org/10.1016/j.coelec.2021.100865.; Nas et al., 2021Nas, B., Dolu, T., Argun, M. E., Yel, E., Ateş, H., & Koyuncu, S. (2021). Comparison of advanced biological treatment and nature-based solutions for the treatment of pharmaceutically active compounds (PhACs): a comprehensive study for wastewater and sewage sludge. The Science of the Total Environment, 779, 146344. http://dx.doi.org/10.1016/j.scitotenv.2021.146344.
http://dx.doi.org/10.1016/j.scitotenv.20...
; Tomaz et al., 2023Tomaz, A. T., Barthus, R. C., Costa, C. R., & Ribeiro, J. (2023). Descontaminação de águas residuais contendo poluentes orgânicos: uma revisão. Revista Virtual de Química, 15(1), 183-199. http://dx.doi.org/10.21577/1984-6835.20220076.
http://dx.doi.org/10.21577/1984-6835.202...
).

To address these challenges, governments and environmental organizations around the world develop regulations and guidelines to monitor, control, and reduce the emission and presence of organic contaminants in the environment (Tomaz et al., 2023Tomaz, A. T., Barthus, R. C., Costa, C. R., & Ribeiro, J. (2023). Descontaminação de águas residuais contendo poluentes orgânicos: uma revisão. Revista Virtual de Química, 15(1), 183-199. http://dx.doi.org/10.21577/1984-6835.20220076.
http://dx.doi.org/10.21577/1984-6835.202...
). In addition, sustainable management practices, advanced treatment technologies, public awareness, and analytical methodologies for identifying and quantifying these contaminants play a key role in minimizing the negative impacts by these contaminants (Liang et al., 2021Liang, Y., Jiao, C., Pan, L., Zhao, T., Liang, J., Xiong, J., Wang, S., Zhu, H., Chen, G., Lu, L., Song, H., Yang, Q., & Zhou, Q. (2021). Degradation of chlorine dioxide bleaching wastewater and response of bacterial community in the intimately coupled system of visible-light photocatalysis and biodegradation. Environmental Research, 195, 110840. https://doi.org/10.1016/j.envres.2021.110840; McBeath et al., 2021McBeath, S. T., Mora, A. S., Zeidabadi, F. A., Mayer, B. K., McNamara, P., Mohseni, M., Hoffmann, M. R., & Graham, N. J. D. (2021). Progress and prospect of anodic oxidation for the remediation of per- and polyfluoroalkyl substances in water and wastewater using diamond electrodes. Current Opinion in Electrochemistry, 31, 100865. https://doi.org/10.1016/j.coelec.2021.100865.; Nas et al., 2021Nas, B., Dolu, T., Argun, M. E., Yel, E., Ateş, H., & Koyuncu, S. (2021). Comparison of advanced biological treatment and nature-based solutions for the treatment of pharmaceutically active compounds (PhACs): a comprehensive study for wastewater and sewage sludge. The Science of the Total Environment, 779, 146344. http://dx.doi.org/10.1016/j.scitotenv.2021.146344.
http://dx.doi.org/10.1016/j.scitotenv.20...
).

The proper management, regulation of production, and elimination combined with the development of analytical methodologies capable of identifying and quantifying the presence of these contaminants in water resources are essential to mitigate their negative impacts. In this way, the objective of the present study was to determine the presence of organic contaminants in the surface water of the Pirapó River, a river in the Neotropical region of Southern Brazil.

MATERIALS AND METHODS

Study area

The Pirapó river basin is located in the northern Paraná state mesoregion, within the polygon delimited by the latitudes 22°30' and 23°30' South and longitudes 51°15' and 52°15' West (Schneider et al., 2011Schneider, R. M., Freire, R., Cossich, E. S., Soares, P. F., Freitas, F. H., & Tavares, C. R. G. (2011). Estudo da influência do uso e ocupação de solo na qualidade da água de dois córregos da Bacia Hidrográfica do Rio Pirapó. Acta Scientiarum. Technology, 33(3), 295-303.). Its sources are located in the municipality of Apucarana at an altitude of 1,000 m, extending for 168 km in a north-northwest direction, and its mouth in the Paranapanema River. This basin is the main source of supply for 35 municipalities in the state of Paraná, including Apucarana and the city of Maringá. This is an important regional hub, from economic, industrial, agricultural, services, leisure, and social points of view (Instituto Água e Terra, 2017Instituto Água e Terra – IAT. (2017). Plano das bacias: Pirapó e Paranapanema 3 e 4. Retrieved in 2024, January 19, from https://www.iat.pr.gov.br/Pagina/Comite-das-Bacias-Hidrograficas-dos-rios-Pirapo-Paranapanema-3-e-4-CBH-Piraponema
https://www.iat.pr.gov.br/Pagina/Comite-...
).

Three sampling points (P1, P2 and P3) were selected. P1 is close to the source (23°27'8.57”S - 51°33'25.10”W), the second (P2) upstream of the water intake for public supply of Maringá (23°18'43.92”S-51°50'52.55”W), and the third (P3) near the meeting with the Bandeirantes River (23°11'31.37”S-51°57'57.25”W), all on the Pirapó River (Figure 1).

Figure 1
Drainage basin in the Pirapó river, Paraná State, Brazil. P = Sampling point.

Sampling

To verify the water quality, on-site analyses were carried out using a portable multiparameter probe (HORIBA U50). Electrical conductivity (mS/cm), dissolved oxygen (mg/L), pH, water temperature (ºC), turbidity (NTU) and total dissolved solids (mg/L) were measured.

For the analysis of the presence of organic compounds, 3 liters of water were collected per collection point, at a depth of 10 cm, against the current, in sterile 1-liter vials, between October 2017 and January 2019, totaling four collections per sampling site, corresponding to October 2017, April 2018, October 2018 and January 2019. After collection, the water samples were frozen and stored for further extraction and chromatographic analysis.

Processing of samples

The analysis of organic compounds in the collected water samples (1L) was performed by pre-concentration and purification by Solid Phase Extraction (SPE), with an ElutNexus Bond cartridge as adsorbent and a SupelcoVisiprep SPE vacuum system.

The extraction of the water sample in the SPE cartridge was performed with a flow of 10 mL/min, after adsorption the cartridge was washed with 10 mL of deionized water, drying the cartridge under vacuum for 20 min to eliminate the traces of water and its elution was performed with 3 mL of ethyl acetate, followed by elution with 3 mL of dichloromethane. The final aliquots were combined, concentrated by flow of N2 to dryness, and resuspended to a 2 mL vial with dichloromethane to then be submitted to analysis by GC-MS.

The concentration factor for the water samples was 500, as established by the method applied at the Paraná Institute of Technology – TECPAR (American Public Health Association, 2005American Public Health Association – APHA. (2005). Standard methods for the examination of water and wastewater. Washington, D.C.: APHA.). The analyses in the GC-MS were performed in a gas chromatograph (model Agilent 7890B) coupled to a mass spectrometer (model Agilent 5977A MSD), equipped with HP-5MS UI Agilent column with 5% phenyl methyl siloxane phase (30.0 m x 250 μmd. i. x 0.25 μm film thickness) and one with automatic injector (CTC PAL Control).

For the proper separation of the analytes in the GC-MS system, the following optimized furnace temperature programming was used: initial temperature of 92°C maintained for 2.5 min, then ramp from 15°C min-1 to 175°C maintained for 13 min, and ramp from 20°C min-1 to 280 °C and maintained for 15 min. The other conditions of the analysis were: injection volume of 1.0 μL, the flow of the carrier gas (He, purity 99.99999 1.0 mL min-1, ionization by the electronic impact of 70 eV and temperatures of the ionization source of 230°C, the quadrupole of 150°C, the transfer line of 280°C and the injector of 250°C. Data acquisition was performed by the MassHunter software and qualitative analysis of the mass spectra by the NIST 11 library. The limits of quantification established in the analysis methodology were: 0.0016 μg L-1 (azetidine) and 0.0028 µg L-1 (sarcosine).

RESULTS AND DISCUSSION

The results of the analysis of the parameters involving water quality, based on CONAMA Resolution No. 357 of 2005 (Brasil, 2005Brasil. Conselho Nacional do Meio Ambiente – CONAMA. (2005, March 18). Resolução nº 357 de 17 de março de 2005. Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências. Diário Oficial [da] República Federativa do Brasil, Brasília. Retrieved in 2024, January 19, from http://www.siam.mg.gov.br/sla/download.pdf?idNorma=2747
http://www.siam.mg.gov.br/sla/download.p...
), were compared with the limits established for class II water bodies, since P2 is located upstream of the water bodies for the municipality's supply. The water analysis showed that the temperature was higher along the course of the river and in the last two collection periods. According to INMET (Instituto Nacional de Meteorologia, 2019Instituto Nacional de Meteorologia – INMET. (2019). Retrieved in 2024, January 19, from https://portal.inmet.gov.br/
https://portal.inmet.gov.br/...
), for the year 2019, the month of January presented a temperature variation between 22.4 ºC and 32.5 ºC (Table 1).

Table 1
Results of the physical and chemical analysis of the water at the sampling points in the Pirapó River, during the collection period (October 2017 to January 2019).

Comparing the results with CONAMA resolution 357/2005, which controls several parameters in its resolution, the turbidity was above what is allowed (maximum value up to 100 UNT) for the classification of freshwater class II. The river has sandy soil, collaborating with the transport of particles, and it thus promotes the increase in the number of suspended solids in the water, as observed in this study, since the dissolved solids did not undergo high alteration. In general, the water quality parameters are within the normal range.

In their study, Harfuch et al. (2019)Harfuch, C. A. C., Oliveira, F. R., Meira, B. R., Cagni, G. S., Souza, R. F., Lizama, M. A. P. L., & Velho, L. F. M. (2019). Qualidade da água no trecho superior da bacia do rio Pirapó: um rio urbano no sul do Brasil. Revista Gestão e Sustentabilidade Ambiental, 8, 513-538. analyzed 14 points of the same stretch of coverage, including P1, P2, and P3. The authors observed that the environmental quality indexes, in general, were considered reasonable.

Monitoring of organic contaminants in bodies of water has developed due to the population increase of urban centers over decades, coupled with increasing concern for these water bodies (Lima et al., 2017Lima, D. R. S., Tonucci, M. C., Libânio, M., & Aquino, S. F. D. (2017). Fármacos e desreguladores endócrinos em águas brasileiras: ocorrência e técnicas de remoção. Engenharia Sanitária e Ambiental, 22, 1043-1054.). The presence of these compounds may be associated with remediation and release in these bodies of water (Borrely et al., 2012Borrely, S. I., Caminada, S. M. L., Ponezi, A. N., Santos, D. R., & Silva, V. H. O. (2012). Contaminação das águas por resíduos de medicamentos: ênfase ao cloridrato de fluoxetina. O Mundo da Saúde, 36(4), 558-563.; Fekadu et al., 2019Fekadu, S., Alemayehu, E., Dewil, R., & Der Bruggen, B. V. (2019). Pharmaceuticals in freshwater aquatic environments: a comparison of the African and European challenge. The Science of the Total Environment, 654, 324-337. http://dx.doi.org/10.1016/j.scitotenv.2018.11.072.
http://dx.doi.org/10.1016/j.scitotenv.20...
). Despite their importance, there are still few studies addressing these compounds.

In this study, the presence of two organic compounds in the surface water of the Pirapó River was analysed: Azetidine and Sarcosine (Table 2). These compounds are not described in the Legislation by Resolution 430 of CONAMA (Brasil, 2011Brasil. Conselho Nacional do Meio Ambiente – CONAMA. (2011, May 16). Resolução nº 430, de 13 de maio de 2011. Dispõe sobre as condições e padrões de lançamento de efluentes, complementa e altera a Resolução nº 357, de 17 de março de 2005, do Conselho Nacional do Meio Ambiente-CONAMA. Diário Oficial [da] República Federativa do Brasil, Brasília. Retrieved in 2024, January 19, from http://www.ibama.gov.br/sophia/cnia/legislacao/CONAMA/RE0430-130511.PDF
http://www.ibama.gov.br/sophia/cnia/legi...
), which provides for the classification of water bodies and establishes the conditions and standards for the release of effluents (Brasil, 2011Brasil. Conselho Nacional do Meio Ambiente – CONAMA. (2011, May 16). Resolução nº 430, de 13 de maio de 2011. Dispõe sobre as condições e padrões de lançamento de efluentes, complementa e altera a Resolução nº 357, de 17 de março de 2005, do Conselho Nacional do Meio Ambiente-CONAMA. Diário Oficial [da] República Federativa do Brasil, Brasília. Retrieved in 2024, January 19, from http://www.ibama.gov.br/sophia/cnia/legislacao/CONAMA/RE0430-130511.PDF
http://www.ibama.gov.br/sophia/cnia/legi...
).

Table 2
Compounds identified in chromatographic analyses, in the period between October 2017 and January 2019, along the Pirapó River.

Azetidine is a heterocyclic organic compound, derived from 2-azetidine, and arouses much interest due to its usefulness and biological action; it can be used in medicines, especially those with anticoagulant properties and inhibitory action of cholesterol absorption (Boto et al., 2012Boto, A., Gallardo, J. A., & Álvarez, E. (2012). Proceso de obtención de derivados de azetidinas. EspañaPatent No. 2374352. Madrid: Oficina Española de Patentes y Marcas.). In addition, it is a compound of degradation of drugs, and it is used as an intermediate in the pharmaceutical industry or the chemical industry for various applications, including in the production of agrochemicals (Ganelin, 2013Ganelin, C. R. (2013). Discovery of the cholesterol absorption inhibitor, ezetimibe. In C. R. Ganellin, R. Stanley & J. Roy (Eds.). Biological and small molecule drug research and development: theorie and cases studies (pp. 399-416). Amsterdam: Elsevier.).

Its composition can be used as a synthetic basis for the creation of other compounds. The study conducted by Carrillo et al. (2021)Carrillo, R. E. C., Figueroa, L. V., & Nexticapa, M. R. (2021). Evaluación de la actividad biológica de una nueva azetidina sobre insuficiencia cardiaca. Memorias del Congreso Internacional de Investigación Academia Journals, 13(4), 2021320. demonstrated that this compound can also be used as a pharmacological alternative for the treatment of heart failure (Yoda et al., 2011Yoda, H., Takahashi, M., & Sengoku, T. (2011). Azetidine and its derivatives. In K. C. Majumdar & S. K. Chattopadhyay (Eds.). Heterocycles in natural product synthesis (pp. 41-61). Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.). It can still be used as an antibiotic, since azetidine derivatives are a class of antibiotics widely used in the fight against bacterial infections (Avilés Zepeda, 2008Avilés Zepeda, S. E. (2008). Síntesis y caracterización de nuevas β-lactamas obtenidas mediante la reacción de Staudinger (Doctoral dissertation). Escuela Superior de Ingeniería Química e Industrias Extractivas, Ciudad de México.), in addition to its use as an analgesic (Pereira et al., 2022Pereira, E. A. A., Silva, J. L. B. C., Silva, J. N., Molozzi, J., & Lopes, W. S. (2022). Identificação de poluentes orgânicos em água, sedimento e nível trófico secundário em estuário tropical. Revista DAE, 70(236), 6-19.).

Because of its prominence as a pharmacological alternative, azetidine is one of the compounds that are found in surface waters. In this study, azetidine was observed only at P2, which is situated upstream of the water abstraction for public supply. The presence of this substance may be related to the intense urbanization process of the 37 municipalities that are supplied totally or partially by the waters of this basin.

Azetidine, along with other drugs and derived substances in the environment, can go through different processes, making them biologically active. Chemical synthesis may then be one of the strategies used in the development of new molecules with biological activity (Luna Herrera et al., 2017).

The presence of drugs and organic compounds can increase considerably in sewage treatment plants, due to the disposal of numerous effluents such as fluoxetine, diclofenac, paracetamol, and others (Wilkinson et al., 2017Wilkinson, J., Hooda, P. S., Barker, J., Barton, S., & Swinden, J. (2017). Occurrence, fate and transformation of emerging contaminants in water: an overarching review of the field. Environmental Pollution, 231, 954-970. http://dx.doi.org/10.1016/j.envpol.2017.08.032.
http://dx.doi.org/10.1016/j.envpol.2017....
; Sehonova et al., 2019Sehonova, P., Hodkovicova, N., Urbanova, M., Örn, S., Blahova, J., Svobodova, Z., Faldyna, M., Chloupek, P., Briedikova, K., & Carlsson, G. (2019). Effects of antidepressants with different modes of action on early life stages of fish and amphibians. Environmental Pollution, 254, 1-9.; Dick et al., 2020Dick, V. G., Silva, G. R., Matins, V. T. G., & Gonzalez, F. G. (2020). Análises dos efeitos tóxicos relacionados aos resíduos farmacológicos na água tratada. Revista UNILUS Ensino e Pesquisa, 17(48), 186-197.), and degraded compounds from the use of antibiotics and anticancer can also be found.

In turn, sarcosine was found at all collection points and in all periods of this study. Sarcosine is an amino acid produced by the human body that is essential to the synthesis and composition of muscle, and is the main metabolic source of glutathione, creatine and serine. This amino acid is present in urine, muscles and other structures (Sreekumar et al., 2009Sreekumar, A., Poisson, L., Rajendiran, T., Khan, A. P., Cao, Q., Yu, J., Laxman, B., Mehra, B., Lonigro, R. J., Li, Y., Nyati, M. K., Ahsan, A., Kalyana-Sundaram, S., Han, B., Cao, X., Byun, J., Omenn, G. S., Ghosh, D., Pennathur, S., Alexandre, D. C., Berger, A., Shuster, J. R., Wei, J. T., Varambally, S., Beecher, C., & Chinnaiyan, A. M. (2009). Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature, 457(7231), 910-914. http://dx.doi.org/10.1038/nature07762.
http://dx.doi.org/10.1038/nature07762...
).

Sarcosine can also be used as a biological marker for prostate cancer (PCa) because it is considered an important intermediate metabolite of invasion and aggressiveness of cancer cells, being useful as a potential marker of the disease (Sreekumar et al., 2009Sreekumar, A., Poisson, L., Rajendiran, T., Khan, A. P., Cao, Q., Yu, J., Laxman, B., Mehra, B., Lonigro, R. J., Li, Y., Nyati, M. K., Ahsan, A., Kalyana-Sundaram, S., Han, B., Cao, X., Byun, J., Omenn, G. S., Ghosh, D., Pennathur, S., Alexandre, D. C., Berger, A., Shuster, J. R., Wei, J. T., Varambally, S., Beecher, C., & Chinnaiyan, A. M. (2009). Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature, 457(7231), 910-914. http://dx.doi.org/10.1038/nature07762.
http://dx.doi.org/10.1038/nature07762...
; Khan et al., 2013Khan, A. P., Rajendiran, T. M., Ateeq, B., Asagani, I. A., Thanikar, J. N., Yocum, A. K., Mehra, R., Siddiqui, J., Palapattu, G., Wei, J. T., Michailidis, G., Sreekumar, A., & Chinnaiyan, A. M. (2013). The role of sarcosine metabolism in prostate cancer progression. Neoplasia, 15(5), 491-501. http://dx.doi.org/10.1593/neo.13314.
http://dx.doi.org/10.1593/neo.13314...
; Araújo, 2015Araújo, L. H. D. A. (2015). Aplicação de marcadores urinários no diagnóstico e prognóstico do câncer de próstata (Doctoral dissertation). Universidade de São Paulo, São Paulo.). The use of sarcosine as a marker of early stages of prostate cancer has been little discussed, but in its application as tumor marker new analytical methods are being developed with low cost in its determination in urine, tissue and blood plasma samples (Cernei et al., 2013Cernei, N., Heger, Z., Gumulec, J., Zitka, O., Masarik, M., Babula, P., & Adam, V. (2013). Sarcosine as a potential biomarker of prostate cancer - a review. Jornal Internacional de Ciências Moleculares, 14(7), 13893-13908.).

Wang et al. (2016)Wang, S. E., Seiwert, B., Kästner, M., Miltner, A., Schäffer, A., Reemtsma, T., Yang, Q., & Nowak, K. M. (2016). (Bio) degradation of glyphosate in water-sediment microcosms–a stable isotope co-labeling approach. Water Research, 99, 91-100. demonstrated the relationship between glyphosate and sarcosine. This author observed two routes of glyphosate degradation, and in one of them, sarcosine is formed by the action of the bacterium Enterobacter aeroneges, while in the other route, the sediment itself plays a fundamental role in the microbial degradation of glyphosate by the sarcosine pathway in water (Figure 2). Thus, sarcosine can be found both by degradation in the environment and by biological processes in humans.

Figure 2
Part of the microbial degradation pathways of glyphosate via production of the metabolites aminomethylphosphonic acid (AMPA) and sarcosine. Gray arrows = biogenic residual formation; black arrows = xenobiotic formation; THC (tetracarboxylic cycle); TCC (tricarboxylic acid cycle); SOM (sedimentary organic matter).

However, in this study, it was not possible to observe the presence of glyphosate, since the methodology used does not detect this compound. Even so, the presence of sarcosine may be an indicator of the presence of glyphosate in the environment.

The effect and concentration of these compounds found in surface water may be related to the increase in urbanization, as well as the presence/absence of basic sanitation. In addition, environmental and climatic factors can also influence the accumulation of these compounds by organisms, promoting the process of bioaccumulation and/or biomagnification of these contaminants (Flaherty & Dodson, 2005Flaherty, C. M., & Dodson, S. I. (2005). Effects of pharmaceuticals on Daphnia survival, growth, and reproduction. Chemosphere, 61, 200-207.; Ginebrada et al., 2010Ginebrada, A., Muñoz, I., de Alda, M. L., Brix, R., López-Doval, J., & Barceló, D. (2010). Environmental risk assessment of pharmaceuticals in river: relationships between hazard indexes and aquatic macroinvertebrate diversity indexes in the Llobregat river (NE Spain). Environment International, 36, 153-162.; Canela et al., 2014Canela, M. C., Sodré, F. F., Jardim, W. F., & Grassi, M. T. (Eds.). (2014). Cafeína em águas de abastecimento público no Brasil (96 p.). São Carlos: Editora Cubo. http://doi.org/10.13140/2.1.3543.3289.
http://doi.org/10.13140/2.1.3543.3289...
; Wilkinson et al., 2017Wilkinson, J., Hooda, P. S., Barker, J., Barton, S., & Swinden, J. (2017). Occurrence, fate and transformation of emerging contaminants in water: an overarching review of the field. Environmental Pollution, 231, 954-970. http://dx.doi.org/10.1016/j.envpol.2017.08.032.
http://dx.doi.org/10.1016/j.envpol.2017....
).

Organic contaminants, or those resulting from use by urban or agricultural occupation in surface or deep-water bodies, represent a danger to both human and environmental health (Ritter et al., 2002Ritter, L., Solomon, K., Sibley, P., Hall, K., Keen, Pa., Mattu, G., & Linton, B. (2002). Sources, pathways, and relative risks of contaminants in surface water and groundwater: a perspective prepared for the walkerton inquiry. Journal of Toxicology and Environmental Health, Part A., 65(1), 1-142. http://dx.doi.org/10.1080/152873902753338572.
http://dx.doi.org/10.1080/15287390275333...
). The lack of legislation for pollutants of pharmacological use, as well as its limitations, is an aggravating factor for the monitoring of surface waters. Therefore, to obtain a single health or one health, it is necessary to know and monitor water resources, organisms, and the population.

CONCLUSION

Organic compounds existing in drugs and/or contaminants that were observed in this study reveal the importance of further investigation into their origins and the consequences for the health of the biota and the population supplied by this resource. In addition, future studies regarding agrochemicals and their effect on biota will also serve to confirm the presence of glyphosate and its influence on the presence of sarcosine.

This study, therefore, constitutes an important tool for the management of water resources and public policies regarding the quality of water and quality public supply, in addition to being an important tool for further studies on public health.

ACKNOWLEDGEMENTS

The authors thank ICETI (Instituto Cesumar de Ciência, Tecnologia e Inovação), CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and Fundação Araucária for providing support for conducting this study.

REFERENCES

  • American Public Health Association – APHA. (2005). Standard methods for the examination of water and wastewater Washington, D.C.: APHA.
  • Araújo, L. H. D. A. (2015). Aplicação de marcadores urinários no diagnóstico e prognóstico do câncer de próstata (Doctoral dissertation). Universidade de São Paulo, São Paulo.
  • Avilés Zepeda, S. E. (2008). Síntesis y caracterización de nuevas β-lactamas obtenidas mediante la reacción de Staudinger (Doctoral dissertation). Escuela Superior de Ingeniería Química e Industrias Extractivas, Ciudad de México.
  • Borrely, S. I., Caminada, S. M. L., Ponezi, A. N., Santos, D. R., & Silva, V. H. O. (2012). Contaminação das águas por resíduos de medicamentos: ênfase ao cloridrato de fluoxetina. O Mundo da Saúde, 36(4), 558-563.
  • Boto, A., Gallardo, J. A., & Álvarez, E. (2012). Proceso de obtención de derivados de azetidinas. EspañaPatent No. 2374352 Madrid: Oficina Española de Patentes y Marcas.
  • Brasil. Conselho Nacional do Meio Ambiente – CONAMA. (2005, March 18). Resolução nº 357 de 17 de março de 2005. Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências. Diário Oficial [da] República Federativa do Brasil, Brasília. Retrieved in 2024, January 19, from http://www.siam.mg.gov.br/sla/download.pdf?idNorma=2747
    » http://www.siam.mg.gov.br/sla/download.pdf?idNorma=2747
  • Brasil. Conselho Nacional do Meio Ambiente – CONAMA. (2011, May 16). Resolução nº 430, de 13 de maio de 2011. Dispõe sobre as condições e padrões de lançamento de efluentes, complementa e altera a Resolução nº 357, de 17 de março de 2005, do Conselho Nacional do Meio Ambiente-CONAMA. Diário Oficial [da] República Federativa do Brasil, Brasília. Retrieved in 2024, January 19, from http://www.ibama.gov.br/sophia/cnia/legislacao/CONAMA/RE0430-130511.PDF
    » http://www.ibama.gov.br/sophia/cnia/legislacao/CONAMA/RE0430-130511.PDF
  • Canela, M. C., Sodré, F. F., Jardim, W. F., & Grassi, M. T. (Eds.). (2014). Cafeína em águas de abastecimento público no Brasil (96 p.). São Carlos: Editora Cubo. http://doi.org/10.13140/2.1.3543.3289
    » http://doi.org/10.13140/2.1.3543.3289
  • Carrillo, R. E. C., Figueroa, L. V., & Nexticapa, M. R. (2021). Evaluación de la actividad biológica de una nueva azetidina sobre insuficiencia cardiaca. Memorias del Congreso Internacional de Investigación Academia Journals, 13(4), 2021320.
  • Carvalho, A. C. C., Silva, B. F., Machado, A. A., Santarossa, M. A. S., & Paganini, W. S. (2022). A ocorrência de cafeína em águas superficiais para abastecimento público. Engenharia Sanitária e Ambiental, 27(4), 845-852. http://dx.doi.org/10.1590/S1413-415220210201
    » http://dx.doi.org/10.1590/S1413-415220210201
  • Carvalho, K. Q., Lima, S. B., Passing, F. H., Gusmão, L. K., Souza, D. C., Kreutz, C., Belini, A. D., & Arantes, E. J. (2015). Influence of urban area on the water quality of the Campo River basin, Paraná State, Brazil. Brazilian Journal of Biology, 75(4), 96-106.
  • Cernei, N., Heger, Z., Gumulec, J., Zitka, O., Masarik, M., Babula, P., & Adam, V. (2013). Sarcosine as a potential biomarker of prostate cancer - a review. Jornal Internacional de Ciências Moleculares, 14(7), 13893-13908.
  • Dick, V. G., Silva, G. R., Matins, V. T. G., & Gonzalez, F. G. (2020). Análises dos efeitos tóxicos relacionados aos resíduos farmacológicos na água tratada. Revista UNILUS Ensino e Pesquisa, 17(48), 186-197.
  • Fekadu, S., Alemayehu, E., Dewil, R., & Der Bruggen, B. V. (2019). Pharmaceuticals in freshwater aquatic environments: a comparison of the African and European challenge. The Science of the Total Environment, 654, 324-337. http://dx.doi.org/10.1016/j.scitotenv.2018.11.072
    » http://dx.doi.org/10.1016/j.scitotenv.2018.11.072
  • Fernandes, A. S., Mello, F. V. C., Thode Filho, S., Carpes, R. M., Honório, J. G., Marques, M. R. C., Felzenszwalb, I., & Ferraz, E. R. A. (2017). Impacts of discarded coffee waste on human and environmental health. Ecotoxicology and Environmental Safety, 141, 30-36. http://dx.doi.org/10.1016/j.ecoenv.2017.03.011
    » http://dx.doi.org/10.1016/j.ecoenv.2017.03.011
  • Flaherty, C. M., & Dodson, S. I. (2005). Effects of pharmaceuticals on Daphnia survival, growth, and reproduction. Chemosphere, 61, 200-207.
  • Ganelin, C. R. (2013). Discovery of the cholesterol absorption inhibitor, ezetimibe. In C. R. Ganellin, R. Stanley & J. Roy (Eds.). Biological and small molecule drug research and development: theorie and cases studies (pp. 399-416). Amsterdam: Elsevier.
  • Geissen, V. H., Klumpp, E., Umlauf, G., Nadal, M., Van der Ploeg, M., Van de Zee, E. A. T. M., & Ritsema, C. J. (2015). Emerging pollutants in the environment: a challenge for water resource management. International Soil and Water Conservation Research, 3, 57-65.
  • Ginebrada, A., Muñoz, I., de Alda, M. L., Brix, R., López-Doval, J., & Barceló, D. (2010). Environmental risk assessment of pharmaceuticals in river: relationships between hazard indexes and aquatic macroinvertebrate diversity indexes in the Llobregat river (NE Spain). Environment International, 36, 153-162.
  • Hansen, K., Spiliotopoulou, A., Chhetri, R., Escolà, C. M., Bester, K., & Andersen, H. (2016). Ozonation for source treatment of pharmaceuticals in hospital wastewater -Ozone lifetime and required ozone dose. Chemical Engineering Journal, 290, 507-514.
  • Harfuch, C. A. C., Oliveira, F. R., Meira, B. R., Cagni, G. S., Souza, R. F., Lizama, M. A. P. L., & Velho, L. F. M. (2019). Qualidade da água no trecho superior da bacia do rio Pirapó: um rio urbano no sul do Brasil. Revista Gestão e Sustentabilidade Ambiental, 8, 513-538.
  • Instituto Água e Terra – IAT. (2017). Plano das bacias: Pirapó e Paranapanema 3 e 4 Retrieved in 2024, January 19, from https://www.iat.pr.gov.br/Pagina/Comite-das-Bacias-Hidrograficas-dos-rios-Pirapo-Paranapanema-3-e-4-CBH-Piraponema
    » https://www.iat.pr.gov.br/Pagina/Comite-das-Bacias-Hidrograficas-dos-rios-Pirapo-Paranapanema-3-e-4-CBH-Piraponema
  • Instituto Nacional de Meteorologia – INMET. (2019). Retrieved in 2024, January 19, from https://portal.inmet.gov.br/
    » https://portal.inmet.gov.br/
  • Khan, A. P., Rajendiran, T. M., Ateeq, B., Asagani, I. A., Thanikar, J. N., Yocum, A. K., Mehra, R., Siddiqui, J., Palapattu, G., Wei, J. T., Michailidis, G., Sreekumar, A., & Chinnaiyan, A. M. (2013). The role of sarcosine metabolism in prostate cancer progression. Neoplasia, 15(5), 491-501. http://dx.doi.org/10.1593/neo.13314
    » http://dx.doi.org/10.1593/neo.13314
  • Liang, Y., Jiao, C., Pan, L., Zhao, T., Liang, J., Xiong, J., Wang, S., Zhu, H., Chen, G., Lu, L., Song, H., Yang, Q., & Zhou, Q. (2021). Degradation of chlorine dioxide bleaching wastewater and response of bacterial community in the intimately coupled system of visible-light photocatalysis and biodegradation. Environmental Research, 195, 110840. https://doi.org/10.1016/j.envres.2021.110840
  • Lima, D. R. S., Tonucci, M. C., Libânio, M., & Aquino, S. F. D. (2017). Fármacos e desreguladores endócrinos em águas brasileiras: ocorrência e técnicas de remoção. Engenharia Sanitária e Ambiental, 22, 1043-1054.
  • Luna-Herrera, J., Lara-Ramirez, E. E., Munoz-Duarte, A. R., Olazaran, F. E., Chan-Bacab, M. J., & Moo-Puc, R. (2017). In vitro and in silico analysis of β-lactam derivatives as Antimyco bacterial agents. Letters in Drug Design & Discovery, 14(7), 782-786.
  • McBeath, S. T., Mora, A. S., Zeidabadi, F. A., Mayer, B. K., McNamara, P., Mohseni, M., Hoffmann, M. R., & Graham, N. J. D. (2021). Progress and prospect of anodic oxidation for the remediation of per- and polyfluoroalkyl substances in water and wastewater using diamond electrodes. Current Opinion in Electrochemistry, 31, 100865. https://doi.org/10.1016/j.coelec.2021.100865.
  • Mendes, M. B., Miranda, M. G., Silva, R. F., Martins, A. M. R., & Avelar, K. E. S. (2017). Carta da Terra e uma nova ética ambiental. In M. G. Miranda, A. L. T. Rezende, A. M. S. Santos, R. Friede & K. E. S. Avelar (Eds.). Cidadania e educação ambiental na prática (pp. 109-129). Rio de Janeiro: Letra Capital.
  • Nas, B., Dolu, T., Argun, M. E., Yel, E., Ateş, H., & Koyuncu, S. (2021). Comparison of advanced biological treatment and nature-based solutions for the treatment of pharmaceutically active compounds (PhACs): a comprehensive study for wastewater and sewage sludge. The Science of the Total Environment, 779, 146344. http://dx.doi.org/10.1016/j.scitotenv.2021.146344
    » http://dx.doi.org/10.1016/j.scitotenv.2021.146344
  • Oliveira, A., Piovesani, A. F. A., Bittencourt, P. R. S., Arantes, V. P., & Torquato, A. S. (2012). Análise química da água do rio Pirapó para detecção de coliformes fecais e totais. Uningá Revew, 12(1), 75-84.
  • Pereira, E. A. A., Silva, J. L. B. C., Silva, J. N., Molozzi, J., & Lopes, W. S. (2022). Identificação de poluentes orgânicos em água, sedimento e nível trófico secundário em estuário tropical. Revista DAE, 70(236), 6-19.
  • Ritter, L., Solomon, K., Sibley, P., Hall, K., Keen, Pa., Mattu, G., & Linton, B. (2002). Sources, pathways, and relative risks of contaminants in surface water and groundwater: a perspective prepared for the walkerton inquiry. Journal of Toxicology and Environmental Health, Part A., 65(1), 1-142. http://dx.doi.org/10.1080/152873902753338572
    » http://dx.doi.org/10.1080/152873902753338572
  • Schneider, R. M., Freire, R., Cossich, E. S., Soares, P. F., Freitas, F. H., & Tavares, C. R. G. (2011). Estudo da influência do uso e ocupação de solo na qualidade da água de dois córregos da Bacia Hidrográfica do Rio Pirapó. Acta Scientiarum. Technology, 33(3), 295-303.
  • Sehonova, P., Hodkovicova, N., Urbanova, M., Örn, S., Blahova, J., Svobodova, Z., Faldyna, M., Chloupek, P., Briedikova, K., & Carlsson, G. (2019). Effects of antidepressants with different modes of action on early life stages of fish and amphibians. Environmental Pollution, 254, 1-9.
  • Sreekumar, A., Poisson, L., Rajendiran, T., Khan, A. P., Cao, Q., Yu, J., Laxman, B., Mehra, B., Lonigro, R. J., Li, Y., Nyati, M. K., Ahsan, A., Kalyana-Sundaram, S., Han, B., Cao, X., Byun, J., Omenn, G. S., Ghosh, D., Pennathur, S., Alexandre, D. C., Berger, A., Shuster, J. R., Wei, J. T., Varambally, S., Beecher, C., & Chinnaiyan, A. M. (2009). Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature, 457(7231), 910-914. http://dx.doi.org/10.1038/nature07762
    » http://dx.doi.org/10.1038/nature07762
  • Tomaz, A. T., Barthus, R. C., Costa, C. R., & Ribeiro, J. (2023). Descontaminação de águas residuais contendo poluentes orgânicos: uma revisão. Revista Virtual de Química, 15(1), 183-199. http://dx.doi.org/10.21577/1984-6835.20220076
    » http://dx.doi.org/10.21577/1984-6835.20220076
  • Wang, S. E., Seiwert, B., Kästner, M., Miltner, A., Schäffer, A., Reemtsma, T., Yang, Q., & Nowak, K. M. (2016). (Bio) degradation of glyphosate in water-sediment microcosms–a stable isotope co-labeling approach. Water Research, 99, 91-100.
  • Wilkinson, J., Hooda, P. S., Barker, J., Barton, S., & Swinden, J. (2017). Occurrence, fate and transformation of emerging contaminants in water: an overarching review of the field. Environmental Pollution, 231, 954-970. http://dx.doi.org/10.1016/j.envpol.2017.08.032
    » http://dx.doi.org/10.1016/j.envpol.2017.08.032
  • Yoda, H., Takahashi, M., & Sengoku, T. (2011). Azetidine and its derivatives. In K. C. Majumdar & S. K. Chattopadhyay (Eds.). Heterocycles in natural product synthesis (pp. 41-61). Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.

Edited by

Editor-in-Chief: Adilson Pinheiro
Associated Editor: Ibraim Fantin da Cruz

Publication Dates

  • Publication in this collection
    19 Feb 2024
  • Date of issue
    2024

History

  • Received
    22 Nov 2023
  • Reviewed
    16 Jan 2024
  • Accepted
    19 Jan 2024
Associação Brasileira de Recursos Hídricos Av. Bento Gonçalves, 9500, CEP: 91501-970, Tel: (51) 3493 2233, Fax: (51) 3308 6652 - Porto Alegre - RS - Brazil
E-mail: rbrh@abrh.org.br