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Abstract
This study reports the action of essential oils (EO) from five plants on the activity of native and recombinant 
acetylcholinesterases (AChE) from Rhipicephalus microplus. Enzyme activity of native susceptible AChE extract 
(S.AChE), native resistant AChE extract (R.AChE), and recombinant enzyme (rBmAChE1) was determined. An 
acetylcholinesterase inhibition test was used to verify the effect of the EO on enzyme activity. EO from Eucalyptus 
globulus, Citrus aurantifolia, Citrus aurantium var.dulcis inhibited the activity of S.AChE and R.AChE. Oils from the 
two Citrus species inhibited S.AChE and R.AChE in a similar way while showing greater inhibition on R.AChE. 
The oil from E. globulus inhibited native AChE, but no difference was observed between the S.AChE and R.AChE; 
however, 71% inhibition for the rBmAChE1 was recorded. Mentha piperita oil also inhibited S.AChE and R.AChE, 
but there was significant inhibition at the highest concentration tested. Cymbopogon winterianus oil did not inhibit 
AChE. Further studies are warranted with the oils from the two Citrus species that inhibited R.AChE because of 
the problem with R. microplus resistant to organophosphates, which target AChE. C. winterianus oil can be used 
against R. microplus populations that are resistant to organophosphates because its acaricidal properties act by 
mechanism(s) other than AChE inhibition.

Keywords: Cattle tick, Rhipicephalus microplus, acetylcholinesterase inhibition, acaricide resistance, essential oils.

Resumo
Este estudo relata a ação de óleos essenciais de cinco plantas na atividade de acetilcolinesterases (AChE) nativas e 
recombinantes de Rhipicephalus microplus. A atividade enzimática do extrato de acetilcolinesterase nativa suscetível 
(S.AChE) e resistente (R.AChE) e da enzima recombinante (rBmAChE1) foi determinada. Um teste de inibição da 
AChE foi utilizado, para verificar o efeito dos óleos essenciais sobre a atividade enzimática. Óleos essenciais 
de Eucalyptus globulus, Citrus aurantifolia, Citrus aurantium var. dulcis inibiram a atividade de S.AChE e R.AChE. 
Os óleos das duas espécies de Citrus inibiram S.AChE e R.AChE de maneira semelhante, mas mostraram maior 
inibição sobre R.AChE. O óleo de E. globulus inibiu a AChE nativa, mas sem diferença entre a S.AChE e a R.AChE; 
no entanto, 71% de inibição para rBmAChE1 foi observada. O óleo de Mentha piperita também inibiu S.AChE e 
R.AChE, mas houve inibição significativa apenas nas concentrações mais altas testadas. O óleo de Cymbopogon 
winterianus não inibiu a AChE. Estudos adicionais são necessários com os óleos das duas espécies de Citrus que 
inibiram a R.AChE, devido ao problema de R. microplus resistente aos organofosforados ter como alvo AChE. O 
óleo de C. winterianus pode ser usado contra populações de R. microplus, que são resistentes a organofosforados, 
porque suas propriedades acaricidas agem por mecanismos diferentes.
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Introduction
The tick Rhipicephalus (Boophilus) microplus (Canestrini, 1888) (Acari, Ixodidae) is an economically important 

ectoparasite of cattle that impairs livestock production systems in tropical and subtropical parts of the world (Pérez 
de León et al., 2020). The cattle tick R. microplus causes direct host damage through its obligate blood feeding 
habit and is a vector of pathogens, including species of Babesia and Anaplasma that cause bovine babesiosis 
and anaplasmosis, respectively (Roy et al., 2018). Synthetic chemicals with acaricidal properties are used to treat 
livestock infestation with R. microplus, which is associated with high expenses to farmers (Reginato et al., 2017; 
Ferreira et al., 2018). In Brazil, the annual economic losses of R. microplus is at least $3.2 billion (Grisi et al., 2014).

The indiscriminate use of acaricides has made several classes of these chemical agents ineffective due to 
the development and selection of resistant R. microplus populations (Reck  et  al., 2014; Rodriguez-Vivas  et  al., 
2018). Commercially available classes of acaricides that are used extensively include the organophosphates 
(OP) and carbamates (CB). Synthetic chemicals in these classes of acaricides exert their inhibitory action on 
acetylcholinesterase (AChE) (Anderson & Coats, 2012), which is a hydrolase enzyme that plays a vital role in cholinergic 
neurotransmission. Inhibition of AChE activity results in hyperexcitability of neurons that leads to seizures, nervous 
system collapse, and death of the organism (Sharifi et al., 2017; Temeyer, 2018).

Invertebrates have different AChE isoforms (Baxter & Barker, 2002). In R. microplus three paralogous genes 
encoding AChEs (rBmAChE1, rBmAChE2 and rBmAChE3) were confirmed and expressed in neural and non-neural 
tissues (Temeyer et al., 2010). The different biochemical properties of these isoforms and the variation in enzymatic 
activity between tissues indicates the physiological plasticity of AChE in R. microplus (Temeyer et al., 2020). For 
example, AChE1 is expressed in the salivary glands, ovaries and synganglion whereas AChE2 is only expressed in 
the synganglion (Baxter & Barker, 2002; Temeyer et al., 2013). However, it is known that AChE insensitivity is related 
to resistance to OPs and CBs, and that in R. microplus this is a primary mechanism of resistance to compounds 
belonging to those classes of acaricides (Temeyer et al., 2010).

Essential oils are among the repertoire of natural products that can be used as alternative treatment against 
tick infestations because they offer advantages over synthetic acaricides (Hüe et al., 2015; Valente et al., 2017). 
These include the slow development of resistance by pests, low toxicity to mammals, low environmental impact 
and reduction of residues in products of animal origin (Abdelgaleil et al., 2009; Salman et al., 2020). As compared to 
conventional synthetic acaricides, essential oils that are efficacious can enhance the safety of treatment for livestock 
infested with R. microplus (Gross et al., 2017; Wang et al. 2019). The composition of essential oils includes volatile 
secondary metabolites known for their significant role in plant defense mechanisms (Silva Lima et al., 2018). Essential 
oils are a complex mixture of substances from various chemical families, however the most common compound 
found are terpenes (mono and sesquiterpenes) and phenylpropanoids (Dhifi et al., 2016; Salman et al., 2020).

Essential oils are known to have pesticidal and repellent properties (Pinto et al., 2015; Soares et al., 2016; 
Carroll et al., 2017) and some essential oils have also been investigated for their inhibition capacity of AChE (Salleh & 
Khamis, 2020). As example, essential oil of Origanum syriacum inhibited AChE of Culex quinquefasciatus (López et al., 
2019), and Eucalyptus globulus essential oil inhibited AChE of Rhipicephalus annulatus (Arafa et al., 2020). However, 
there are no scientific reports on the ability of essential oils from Eucalyptus globulus, Citrus aurantifolia, Citrus 
aurantium var. dulcis, Mentha piperita, and Cymbopogon winterianus to inhibit AChE from R. microplus. In this study 
we investigated the action of essential oils from those plants on AChE activity in larvae of acaricide susceptible and 
resistant strains of R. microplus, and on rBmAChE1.

Materials and Methods

Tick populations
Ticks from two populations of R. microplus, a susceptible (Porto Alegre strain) and other resistant (resistant to 

organophosphate, synthetic pyrethroids, phenylpyrazole, amidinic, macrocyclic lactone, and benzoylphenyl urea 
derivatives - Jaguar strain) (Reck et al., 2014) were obtained by artificial infestations of cattle, which were not recently 
exposed to acaricide. The experimental procedures were approved by the animal research ethics committee of 
the Federal University of Maranhão (UFMA) under protocol number 23115.008186/2017-18.

Fully engorged females were naturally detached, and then were collected, washed with distilled water, dried 
on filter paper, weighed and separated into groups containing ten specimens each (maximum weight difference 
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was ± 0.5 g). The ticks were incubated (27 °C and relative humidity ≥ 80%), for 14-21 days, for oviposition (Silva 
Lima et al., 2018) and subsequent hatching to produce larvae used in preparation of crude larval extracts.

Obtaining the native and recombinant AChEs
In order to extract the multiple AChEs present in the larval extracts, R. microplus larvae were macerated using 

a mortar and pestle for 5 min in 100 mM sodium phosphate buffer, pH 7.0, containing 5 mM EDTA, 0.5% (v/v) 
Triton X-100, and 5 μL.mL-1 protease Inhibitor mix (Sigma-Aldrich, St. Louis, MO, USA), at a 1:25 ratio (larva weight/
buffer volume). The extract was left standing for 25 min at 4 °C and centrifuged at 4 °C for 30 min at 15.000 x g. 
The supernatant was recovered, stored at 4 °C, and used as a source of AChEs of susceptible and resistant strain 
named respectively, native susceptible AChE extract (S.AChE) and native resistant AChE extract (R.AChE).

The recombinant enzyme (rBmAChE1) was obtained according to Temeyer et al. (2010). Briefly, total RNA was 
isolated from pooled larvae of susceptible strain. Gene-specific primers were utilized to direct synthesis of first-strand 
cDNA from RNA template using Reverse Transcriptase, and complete BmAChE1 coding regions were amplified by 
high fidelity PCR from cDNA, sequenced, and expressed in baculovirus vectors. Recombinant expression clones 
were assembled, sequenced, and expressed in baculovirus infected Sf21 cell cultures.

Protein concentration was determined using bovine serum albumin (BSA) as standard (Bradford, 1976). Results 
were expressed in milligrams of proteins per milliliter (mg.mL-1).

Determination of AChE activity
The S.AChE, R.AChE and rBmAChE1 activity was determined according to Ellman  et  al. (1961), modified as 

described by Li et al. (2005). The reaction mixture consisted of 10 μL of the S.AChE or R.AChE (1.5 mg protein 
mL-1 final concentration) or rBmAChE1 diluted 30 X with buffer (50mM sodium phosphate, pH 7.5), 100 μL 50 mM 
sodium phosphate buffer, pH 7.5, and 100 μL of the reaction solution. The reaction solution contained 0.24 mM 
acetylthiocholine iodide (Sigma-Aldrich) and 0.64 mM 5,5’-dithiobis-(2-nitrobenzoic acid) (DTNB) (Sigma-Aldrich) 
prepared in the above sodium phosphate buffer. In the blank sample, the AChE aliquot was replaced by the buffer. 
Reaction was conducted in a 96 well microplate for 30 min and monitored every 5 min by recording the absorbance 
(Abs) at 405 nm (Microplate Reader, Biochrom). Activity was calculated using the equation: Activity (abs/mL/min) = 
[(T30-T0)/30] x 100, where T0 and T30 = sample absorbance - blank absorbance measured at zero and 30 min reaction. 
Only linear reactions throughout the monitoring period were considered.

Inhibition of AChE activity
Essential oils from E. globulus (chemical composition - 83% 1.8-cineol, 9% limonene, 4% alfa-pinene, 3% p-cimene), 

C. aurantifolia (chemical composition - 57% limomene, 14% γ-terpinene, 12% β-pinene, 2% α-pinene, 1.5% mircene, 
1.5% geranial), C. aurantium var. dulcis (chemical composition - 96% limonene, 1.8% mircene, 0.5% α-pinene, 0.3% 
sabinene), M. piperita (35% menthol, 26% menthone, 6.0% 1.8-cineol, 5.0% isomenthone, 5.0% methyl acetate, 4.0% 
neomenthol) and C. winterianus (chemical analysis was not performed) were commercially purchased (Ferquima). 
The chemical analysis were performed by company and informed to the authors. The essential oils were individually 
diluted in ethanol to 20 mg.mL-1 (stock solution). From the stock solution, an essential oil solution at 2 mg.mL-1 was 
prepared in 50 mM sodium phosphate buffer, pH 7.5. The final essential oil concentrations tested were 1.00, 0.67, 
0.44, 0.30, 0.20, 0.13, 0.088, 0.058, 0.039, 0.026, 0.017 and 0.012 mg.mL−1. These concentrations were selected by 
a preliminary pilot test performed.

The AChE inhibitory activity was evaluated by mixing 10 μL of the S.AChE, R.AChE or rBmAChE1 with 100 μL 
of the essential oil and 100 μL of the reaction solution described above. Propoxur (Sigma-Aldrich) was used as a 
positive control. It was similarly prepared as the essential oil, but at 0.25, 0.05, 0.025, 0.005, 0.0025 and 0.0005 
mM final concentrations (Prado-Ochoa et al., 2014). In the negative control, essential oils were replaced by the 
phosphate buffer and ethanol. Reactions were conducted in a 96 well microplate for 30 min and monitored every 
5 min by recording the absorbance (Abs) at 405 nm (Microplate Reader, Biochrom).The percentage of enzyme 
inhibition was calculated by comparison with the negative control as follows: AChE inhibition (%) = 100 - [(As / Ac) 
x 100], where: As = AChE activity for each concentration; Ac = negative control (AChE activity without essential oil). 
Only linear regression reactions throughout the monitoring period were considered.
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Statistical analyses
The data were obtained from the triplicate inhibition assays of two independent experiments for each essential 

oil on the S.AChE and R.AChE and rBmAChE1. The data were initially transformed to log (X) and normalized; 
subsequently, nonlinear regression was performed to obtain the IC50 (50% inhibition concentration) and the F 
test was used by pair to compare the curves. All analysis were performed using the GraphPad Prism 7.0 software 
(GraphPad Inc., San Diego, CA, USA).

Results and Discussion
Acaricidal and repellent activities, and egg hatch inhibition are among the biological properties against ticks 

reported for essential oils of plant species in the genus Citrus (Pazinato et al., 2016; Stefanidesova et al., 2017; 
Vinturelle et al., 2017). In our experiments C. aurantium var. dulcis and C. aurantifolia inhibited S.AChE and R.AChE in 
varying degrees. Stronger inhibition against R.AChE was exhibited by C. aurantifolia oil (64.0 ± 13.1%) at 0.44 mg.mL-1 
and C. aurantium var. dulcis (49.8 ± 8.5%) at 0.67 mg.mL-1. However, the inhibition decreased at highest concentrations 
(Figures 1A and 1B). There was statistically significant difference among IC50 of S.AChE, R.AChE and rBmAChE1 
after treatment with C. aurantium var. dulcis, and C. aurantifolia.

Figure 1. Effect of different concentrations of essential oils (mg.mL-1) on the acetylcholinesterase activity of R. microplus expressed 
as percentage of inhibition (%) and its . The essential oils used (A) Citrus aurantifolia; (B) Citrus aurantium var. dulcis; (C) Eucalyptus 
globulus; (D) Mentha piperita, and (E) Cymbopogon winterianus. S.AChE: Native susceptible AChE extract; R.AChE: Native resistant 
AChE extract; rBmAChE1: Recombinant enzyme; IC50: 50 percent inhibitory concentration. Each point represents the mean of 
the values obtained from two independent experiments performed in triplicate.
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The Citrus oil inhibition profiles for S.AChE and R.AChE reported here suggest that structural difference between 
the AChE of susceptible and resistant tick larvae result in different sensitivities to Citrus oils, which is consistent 
with the known mechanism of OP resistance in R. microplus associated with AChE insensitivity (Temeyer, 2018). 
Bioassays are warranted to determine if our in vitro results translate into acaricidal and/or repellent activity against 
R. microplus by the oils of C. aurantifolia and C. aurantium var. dulcis. By comparison, monoterpenes in oils of other 
Citrus plants have been shown to be active against R. microplus and Dermacentor reticulatus (Pazinato et al., 2016; 
Stefanidesova et al., 2017). In this regard, the monoterpene limonene has been shown to be acaricidal against 
R. microplus (Ferrarini et al., 2008; Vinturelle et al., 2017).

Eucalyptus globulus oil inhibited 37.5 ± 7.5 and 45.5 ± 8.3% of S.AChE and R.AChE at 1 mg.mL-1, respectively. 
Significant difference in inhibitory activity was observed between the S.AChE (IC50 = 0.29 mg.mL-1) and R.AChE 
(IC50 = 0.27 mg.mL-1). However, the oil from E. globulus strongest inhibited the rBmAChE1 with IC50 of 0.10 mg.mL-1 
(Figure 1C). Because the other oils tested did not inhibit rBmAChE1, we hypothesize that differences between their 
components afford them various levels of inhibitory activity against the AChE isoforms considering that R. microplus 
has at least three functional AChEs (Temeyer et al., 2010), and that the larval extracts obtained in this study likely 
contained the three native AChEs. The pesticidal activity of this oil was associated with a high content of 1.8-cineole, 
also known as eucalyptol (Miresmailli  et  al., 2006; George  et  al., 2009). In a previous study with R. microplus, 
eucalyptol showed greater AChE inhibition against the resistant strain (IC50 0.36 mg.mL-1) than the susceptible 
strain (IC50 3.41 mg.mL-1) (Cardoso et al., 2020). Furthermore, 0.01 M of eucalyptol inhibited AChE 64.9% in larvae 
of the beetle Tribolium castaneum (Abdelgaleil et al., 2009). The observed differences in rBmAChE1 inhibition by 
essential oils are strongly suggestive as to their role in the total activity of AChE present in tick larvae, indicating 
that rBmAChE1 is only partially responsible for the total AChE pool activity, since C. aurantifolia and C. aurantium 
var. dulcis oils predominantly target other tick AChEs, in contrast, E. globulus oil which inhibited rBmAChE1.

Mentha piperita (popularly known as peppermint) essential oil also showed AChE inhibition. The inhibition rates 
recorded at the highest concentration (1 mg.mL-1) tested were 31.4 ± 5.7%, 19.4 ± 2.2%, and 11.2 ± 3.6% for the R.AChE 
(IC50 = 0.58 mg.mL-1), S.AChE (IC50 = 0.66 mg.mL-1), and rBmAChE1 (IC50 = 0.18 mg.mL-1), respectively (Figure 1D). 
These results suggest that AChE inhibition was caused by a relatively minor component of the peppermint oil or 
the majors component had low activity. Peppermint oil is acaricidal, repellent, and known to contain menthol and 
menthone as major compounds (Chagas et al., 2016). M. piperita oil also has fumigating action and this activity is 
promoted by the rapid volatilization of 1.8-cineole (Mkolo et al., 2011).

Cymbopogon winterianus (popularly known as Citronella) essential oil is widely used and commercialized for 
its repellent and acaricidal activity. These properties of citronella oil are attributed to the presence of volatile 
substances such as citronellal, eugenol, geraniol, which are major components that act synergistically (Olivo et al., 
2008; Singh et al., 2014a, b). Citronella oil did not inhibit the R. microplus AChEs in our experiments (Figure 1E) and 
the IC50 were not obtained. Thus, C. winterianus oil can be used against R. microplus populations that are resistant 
to carbamates and organophosphates because its acaricidal properties act by mechanism(s) other than AChE 
inhibition.

Although the oils tested in this study had shown to be active against ticks of different species including R. microplus 
(George et al., 2009; Singh et al., 2014b; Chagas et al., 2016), questions remained on their mode of action. The 
pesticidal effect of essential oils results from the synergistic interactions between their bioactive components 
(Isman, 2015). Essential oil components can act simultaneously on different molecular targets (Politi et al., 2019). 
Based on our experience (Costa-Júnior et al., 2016; Cardoso et al., 2020), the in vitro assays reported here focused 
on the inhibition of AChE in R. microplus to investigate the mode of action of essential oils from the five plants 
selected for this study.

Conclusion
The oils of E. globulus, C. aurantifolia, C. aurantium var. dulcis and M. piperita showed various degrees of inhibition 

on S.AChE and R.AChE, but only E. globulus oil inhibited rBmAChE1. The profiles of AChE inhibition for the five 
essential oils tested provided useful information to understand their mode of acaricidal activity, corroborating 
for further studies on the use of essential oils as candidates for new acaricides. Further studies are needed to 
determine the utility of these essential oils under field conditions to manage populations of R. microplus that are 
resistant to commercially available synthetic acaricidal chemicals.
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