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ABSTRACT
In this article an evaluation of two semi-analytical techniques is carried out, considering the quality and 
accuracy of these techniques in reproducing the ground-level concentration values of passive pollutant 

of the advection-diffusion equation by the Laplace transform technique. The second is a Lagrangian
model based on solution of the Langevin equation through the Picard Iterative Method. Turbulence 
parameters are calculated according to a parameterization capable of generating continuous values 
in all stability conditions and in all heights of the planetary boundary layer. Numerical simulations 
and comparisons show a good agreement between predicted and observed concentrations values. 
Comparisons between the two proposed techniques reveal that Lagrangian model generated more 
accurate results, but Eulerian model demands a lesser computational time.
Keywords: semi-analytical technique, Eulerian model, Lagrangian model, Laplace transform, Picard 
Iterative Method, model evaluation.

RESUMO: AVALIAÇÃO DE DUAS TÉCNICAS SEMI-ANALÍTICAS EM APLICAÇÕES NA
QUALIDADE DO AR.
Neste artigo é realizada uma avaliação de duas técnicas semi-analíticas, considerando a qualidade e 
a exatidão destas técnicas em reproduzir valores de concentração ao nível da superfície de poluentes 
passivos emitidos a partir de fontes baixas e altas. A primeira técnica é um modelo Euleriano 
baseado na solução da equação advecção-difusão através da técnica de transformada de Laplace. A
segunda é um modelo Lagrangiano baseado na solução da equação de Langevin através do Método 
Iterativo de Picard. Parâmetros da turbulência são calculados de acordo com uma parametrização 
capaz de gerar valores contínuos em todas as condições de estabilidade e em todas as alturas na 
camada limite planetária. Simulações numéricas e comparações mostram uma boa concordância 
entre valores de concentração previstos e observados. Comparações entre as duas técnicas revelam 
que o modelo Lagrangiano gera resultados mais precisos, mas o modelo Euleriano exige um menor 
tempo computacional.
Palavras-chave: técnica semi-analítica, modelo Euleriano, modelo Lagrangiano, transformada de 
Laplace, Método Iterativo de Picard, avaliação de modelos.

1. INTRODUCTION
Currently, the search for analytical solutions for the 

dispersion problems is one of the main research subjects in 
the pollutant dispersion modelling. These solutions become 
important due to the intention to obtain dispersion models that 
generate reliable results in a small computational time, which 
are of great iterest for regulatory air quality applicarions. 

expressed in a mathematical closed form, allow in general a deep 
sensitivity analysis over model parameters. Moreover, computer 
codes based on analytical expressions in general do not have to 
consider prohibitive computational resources.

Analytical solution for the Eulerian and Lagrangian 
particle models are usually obtained just for stationary 
conditions and by making strong assumptions about the wind 



solutions of the diffusion-advection equation they are assumed 
constant along the whole Planetary Boundary Layer (PBL) or 
following a power law (van Ulden, 1978; Pasquill and Smith, 
1983; Seinfeld, 1986; Tirabassi et al., 1986; Sharan et al., 
1996). In Lagrangian particle models, the solution of the 
Langevin equation is normally obtained according to the rulesis normally obtained according to the rules 
of the Ito calculus (Rodean, 1996). Some special solutions of 
the Langevin equation are presented by Gardiner (1985) and 
Rodean (1996). This last author, for instance, describes the 
solution for stationary homogeneous turbulence as suggested 
by Lin and Reid (1963) and Legg and Raupach (1982).

In this paper two semi-analytical techniques are used to 
simulate the pollutant dispersion during two tracer dispersion 

on a discretization of the PBL in N sub-layers; in each sub-
layers the advection-diffusion equation is solved by the 
Laplace transform technique, considering an average value 
for eddy diffusivity and the wind speed. (Vilhena et al.,1998; 
Moreira et al.,1999). The second technique is based on 
solution of the Langevin equation through the Method of 
Successive Approximations or Picard’s Iteration Method 
(Carvalho et al., 2004, 2005). Lagrangian particle models are 
obtained considering the Gram-Charlier Probability Density 
Function (PDF) of turbulent velocity, through which Gaussian 
and non-Gaussian turbulence conditions can be considered 
(Anfossi et al., 1997; Ferrero and Anfossi, 1998). The main 
objective of this paper is to present and discuss the results of 
a model evaluation between two semi-analytical techniques, 
focusing the quality and accuracy of these techniques in 

pollutant emitted from low and high sources. Furthermore, this 
work presents the mathematical and computational features 
of the Eulerian and Lagrangian models to provide a better 
understanding about these two techniques.

The turbulent parameters used as input in Eulerian 
model (diffusion coefficients) and Lagrangian model 

time scales) are parameterized according to a scheme able 
to generate continuous values in all stability and in all 
heights in the PBL (Degrazia et al., 2000). Ground-level 
concentrations measured during Prairie Grass (Barad, 1958) 
and Copenhagen (Gryning and Lyck, 1984) experiments are 
used to compare observed and calculated concentrations. The 
results are evaluated through a statistical analysis ordinarily 
used to evaluate pollutant dispersion models (Hanna, 1989). 
The paper is outlined as follows: in section two we present 
the description of the models, in section three we report the 
turbulence parameterization, in section four we display the 
modelling results attained by the two semi-analytical methods 

2. DESCRIPTION OF THE MODELS

2.1. Eulerian Model

Following Vilhena et al. (1998) and Moreira et al. 
(1999), the steady state advection-diffusion equation is written 
as (Arya, 1995):
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where i = 1, 2, 3, C denotes the average concentration, xi is 
the position, Ui is the mean wind velocity and Ki is the eddy 
diffusivity. The cross-wind integration of the Equation (1), 
in which the longitudinal axis coincides with the direction of 
the average wind and the longitudinal diffusion is neglected, 
leads to:
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PBL top, and a source with emission rate Q at height Hs:
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where now Cy represents the average cross-wind integrated 
concentration,Q is the source term and  is the delta Dirac.

Bearing in mind the dependence of the K3 and U1 on the 
variable z, the height h of PBL is discretized in N sub-intervals 
in such a manner that inside each interval Kz(z) and U(z) assume 
the average value:
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Therefore, the solution of problem (2) is reduced to the 
solution of N problems of the type:
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for n = 1:N, where Cn
y denotes the concentration at the nth

subinterval. To determine the 2N integration constants the 
additional (2N-2) conditions namely continuity of concentration 
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Applying the Laplace transform in Equation (7) 
results:
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where C s x L C x x x sy
n

p y
n( , ) ( , );3 1 3 1  and Lp is the operator 

of the Transform Laplace. The well-known solution of the 
Equation (10) is (Boyce and DiPrima, 1999):
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Finally, applying the interface and boundary conditions 
we come out with a linear system for the integration constants. 
Henceforth the concentration is obtained inverting numerically 
the transformed concentration Cy by Gaussian quadrature 
scheme (Heydarian and Mullineaux, 1989):
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The solution (12) is valid for layers that do not contain 
the contaminant source and x1 > 0, once the quadrature scheme 
of Laplace inversion does not work for and x1 = 0. On the other 
hand, the solution (13) can be used to evaluate the concentration 

k and Pk
are the weights and roots of the Gaussian quadrature scheme and 
are tabulated in the book by Stroud and Secrest (1966).

2.2. Lagrangian Model

An alternative method to solve the Langevin equation 
based on Picard’s Iterative Method was suggested by 
Carvalho et al. (2004). The three dimensional Langevin equation 
for inhomogeneous turbulence is:
du

dt
a x u b x u ti

i i i i i i i( , ) ( , ) ( ) ,   (14a)

where ui is the turbulent velocity component of each particle, 
ai(xi, ui)dt is the deterministic term, bi(xi, ui) i(t) is the stochastic 
term and i is a normally distributed (average 0 and variance dt) 

random increment. The displacement of each particle is given 
by:

dx U u dti i i .    (14b)
Therefore, the Langevin model consists of a pair of 

stochastic differential equations that describe the trajectories of 

1992). This formulation includes the well-mixed criterion, 
which declaretes that if a species of passive “marked particles” 
is initially mixed uniformly in position and velocity space in 

stay that way (Thomson, 1987). The particles are not allowed 
to interact among themselves and no deposition or buoyance 
effects participe of the dynamic of this model.

a
depends on the Eulerian PDF of the turbulent velocity and 
is determined from the Fokker-Planck equation under steady 
conditions for the statistical momentum (Thomson, 1987; 
Rodean, 1996). A Gram-Charlier PDF, which is given by the 
series of Hermite polynomials, can be adopted (Anfossi et al.,
1997; Ferrero and Anfossi, 1998). The Gram-Charlier PDF 
truncated to the fourth order is given by the following expression 
(Kendall and Stuart, 1977):
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where ri = ui/ i, i is the turbulent velocity standard deviation, 
H3 and H4 are the Hermite polynomials and C3 and C4 their 
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In the case of Gaussian turbulence, Equation (15) 
becomes a normal distribution, considering C3 and C4 equal 
to zero. The third order Gram-Charlier PDF is obtained with 
C4 = 0.

Applying the Equation (15) in steady Fokker-Planck 
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where j can assume 1, 2, 3 and j  i, Li
 is the Lagrangian 

decorrelation time scale and fi, gi and hi are expressions written 
as:
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(17), we can write the Langevin equation as:
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 (Hinze, 1975; Tennekes, 1982), 
where i

2  is the turbulent velocity variance.
Rewriting the Equation (19) as
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 as the integrating factor 
for the Equation (20).

Multiplying the integrating factor by all terms in 
Equation (20), we obtain an integral equation
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from which the iterative approximation presents the following 
form:
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The Picard´s Iteration Method (Boyce and DiPrima, 1999; 
page 69) is applied to the Equation (21), assuming that the initial 
value for the turbulent velocity is a random value supplied by a 
Gaussian distribution. The Picard Iterative Method or Method 
of Successive Approximations is a numerical process that can 
approximate the solution of an initial problem value. The method 
generates a sequence of functions through a recurrent formula, 
which converges to the solution of the initial problem value. 
The sequence of functions obtained through the iterative process 
converges to a unique solution provided the Lipschitz condition 

c such that

f t x t f t x t c x t x t, ( ) , ( ) ( ) ( )1 2 1 2 .  (22)

In principle, the Picard’s Iteration Method can be applied 
to any differential equation, and by this reason is proof of 
existence and uniqueness of a solution (Innocentini, 1999).

3. TURBULENCE PARAMETERIZATION

The present application considers the turbulence 
parameterization scheme suggested by Degrazia et al. (2000). 
Accounting for the current knowledge of the PBL structure and 
characteristics, the authors derived parameterizations for eddy 
difusivity (Ki), turbulent velocity variance ( i

2 ) and Lagrangian 
decorrelation time scale ( Li

):

K c z

z
h

L
h

h
L

w

fi i

c

m

0 14

1 3 1 2

.
[(

  
)) ] [( ) ]i

c

n s

m i
n s

u

f4 3

1 3

4 3

      (23)

ˆ
.  c  ¨

z
h

w

f

.  c  ˘
i

i
c

*

m i

c

i2

2 3
2

2 3

1 06 2 32 n s

m i

n s

u

f

2 3 2

2 3
(24)

and

L

i
m i

c c
i

z

c

L
h

h
L

f w
z
h

0 14

1 2

2 3

.

[( ) ]
1 3 2 3 1 3

0 059.

[( ) ]f um i
n s n s

      (25)
where the superscripts c, n and s indicate convective, 
neutral and stable, respectively, h is the PBL height,w* is the 
convective velocity scale, u* is the local friction velocity, 

c h w/ 3  and n s z u( ) / 3  are the nondimensional 
molecular dissipation rate functions associated to buoyancy and 
mechanical productions, respectively,  is the dissipation rate 
of turbulent kinetic energy, ( )fm i

c  is the reduced frequency of 
the convective spectral peak, ( )fm i

n s  is the reduced frequency 
of the neutral or stable spectral peak, L is the Monin-Obukohv
length, –L

_
/h is an average stability parameter for the convective 

PBL, in which a typical value of 0.01 is used (this term is 
introduced in order to give a continuous transition from neutral 
to convective conditions),  is the Von Karman constant and 
ci i u ( )2 2 3  with u 0 5 0 05. .  and I = 1,4/3,4/3 
for u, v and w components, respectively.

4. MODELLING RESULTS

The performance of the Eulerian and Lagrangian semi-
analytical models has been evaluated against experimental 
ground-level concentration provided by the Prairie Grass (Barad, 
1958) and Copenhagen (Gryning and Lyck, 1984) diffusion 
experiments.
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4.1. Comparison with Prairie Grass Data Set - 
Unstable Case

The Prairie Grass experiment was realized in O’Neill,
Nebraska, 1956. The pollutant (SO2) was emitted without 
buoyancy at a height of 0.5 m and it was measured by samplers 

length of 0.6 cm. The results for twenty convective (–h/L > 10)
experiments are presented. All available data (see Table 1) 

Monin-Obukhov and OML model (Berkowicz et al., 1986).

inhomogeneous only in the vertical and the transport was 
realized by the longitudinal component of the mean wind 
velocity. The horizontal domain was determined according 
to sampler distances and the vertical one was set equal to 
the observed PBL height. In Eulerian model, the order of the 
Gaussian quadrature scheme was Nk = 8 because this value 
provides the desired accuracy with the smallest computational 

time. The number of sub-layers N is set according to desired 
accurate (Moreira et al., 2005); obviously, the greater is N the 
more accurate is the calculated concentration pattern, but as 
a consequence the greater is the relative computational time. 
In Lagrangian models, the time step was maintained constant 
and it was obtained according to the value of the Lagrangian
decorrelation time scale ( t = L / 10), where L must be the 
smaller value between its components. The boundary condition 

of the simulation domain. In Gaussian turbulence case the 

case the scheme suggested by Thomson and Montgomery (1994) 
is used. Fifty particles were released in each time step during 

by counting the particles in a cell or imaginary volume. The 
integration method used to solve the integrals appearing in 
Equation (21) was the Romberg technique.

The model performances are shown in Tables 4 and 5 
and Figures 1a and 2a. Table 4 shows the result of the statistical 
analysis made with the observed and predicted values of 
ground-level cross-wind-integrated concentration (Cy). Table 5 

Table 1 – Meteorological parameters and concentrations measured during the Prairie Grass unstable experiment. Q is the emission rate and Cy is 
the ground-level cross-wind-integrated concentration.

run -L
(m)

h
(m)

w*
(ms-1)

U 10 m
(ms-1)

Q
(gs-1)

Cy 50 m
(gm-2)

Cy 100 m
(gm-2)

Cy 200 m
(gm-2)

Cy 400 m
(gm-2)

Cy 800 m
(gm-2)

1 9 260 0.84 3.2 82 7.00 2.30 0.51 0.16 0.062
5 28 780 1.64 7.0 78 3.30 1.80 0.81 0.29 0.092
7 10 1340 2.27 5.1 90 4.00 2.20 1.00 0.40 0.18
8 18 1380 1.87 5.4 91 5.10 2.60 1.10 0.39 0.14
9 31 550 1.70 8.4 92 3.70 2.20 1.00 0.41 0.13
10 11 950 2.01 5.4 92 4.50 1.80 0.71 0.20 0.032
15 8 80 0.70 3.8 96 7.10 3.40 1.35 0.37 0.11
16 5 1060 2.03 3.6 93 5.00 1.80 0.48 0.10 0.017
19 28 650 1.58 7.2 102 4.50 2.20 0.86 0.27 0.058
20 62 710 1.92 11.3 102 3.40 1.80 0.85 0.34 0.13
25 6 650 1.35 3.2 104 7.90 2.70 0.75 0.30 0.063
26 32 900 1.86 7.8 98 3.90 2.20 1.04 0.39 0.127
27 30 1280 2.08 7.6 99 4.30 2.30 1.16 0.46 0.176
30 39 1560 2.23 8.5 98 4.20 2.30 1.11 0.40 0.10
43 16 600 1.66 6.1 99 5.00 2.40 1.09 0.37 0.12
44 25 1450 2.20 7.2 101 4.50 2.30 1.09 0.43 0.14
49 28 550 1.73 8.0 102 4.30 2.40 1.16 0.45 0.15
50 26 750 1.91 8.0 103 4.20 2.30 0.91 0.39 0.11
51 40 1880 2.30 8.0 102 4.70 2.40 1.00 0.38 0.084
61 38 450 1.65 9.3 102 3.50 2.10 1.14 0.53 0.20
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presents the computational time comparison between Eulerian
and Lagrangian models. Figure 1a shows the scatter diagram 
between observed and predicted Cy, where lines have been added 
to indicate factor of two and factor of three under and over 
prediction. Figure 2a shows a quantile-quantile plot where the 
distribution of predicted and observed values are compared. The 
data are ordered by rank, so for instance the highest observed 
concentration is paired with the highest predicted concentration 
(Olesen, 1995). In this sense, this plot permits to compare the 
frequency distributions of predicted and observed data. The 
statistical indices in Table 4 are the following (Hanna, 1989):

NMSE C C C Co p o p( ) /2

(Normalized Mean Square Error)

FB C C C Co p o p( ) /( . ( ))0 5
(Fractional Bias)

FS o p o p2

(Fractional Standard Deviation)

R C C C Co o p p o p( )( ) /

FA2 =  fraction of the data for which 0 5 2. C Cp o

(Factor of Two)

where C is the analyzed quantity (concentration) and the 
subscripts “o” and “p” represent the observed and the predicted 
values, respectively. The overbars in the statistical indices 
indicate averages. The statistical index FB indicates if the 
predicted quantity underestimates or overestimates the observed 
one. The statistical index NMSE represents the quadratic error 
of the predicted quantity in relation to the observed one. The 
statistical index FS indicates the measure of the comparison 
between predicted and observed plume spreading. The 
statistical index FA2 provides the fraction of data for which 
0 5 2. C Co p . As nearest zero are the NMSE, FB and FS
and as nearest one are the R and FA2, better are the results.

According Table 4 and 5 and Figures 1a and 2a, the 
results show a satisfactory agreement between measurements 
and simulations. NMSE, FB and FS values are relatively near 
to zero and R and FA2 are relatively near to 1. The Lagrangian
model presents a better performance than Eulerian model when 
observed and predicted concentration values are compared. 
However, the computational time required by the Eulerian model 
to simulate all runs is approximately sixty times lesser.

4.2. Comparison with Prairie Grass Data Set - Stable 
Case

The tracer (SO2) was released without buoyancy at 
a height of 0.5 m and collected at a height of 1.5 m at three 

downwind distances (50, 200 and 800 m). The Prairie Grass site 

micrometeorological parameters recorded during the dispersion 
experiments are summarized in Table 3, based on the paper of 

following the similarity theory of Monin-Obukhov and 
OML model (Berkowicz et al., 1986). The numerical and 
computational characteristics to simulate the Prairie Grass stable 
experiment were the same used to simulate the unstable one. The 
results provided by the simulations can be seen in Tables 4 and 5 
and Figures 1b and 2b. Like it happened in the unstable Prairie 
Grass simulation, the Lagrangian model presents accurate 
results when compared with the ones generated by the Eulerian
model. However, the computational effort of the Eulerian model 
demands a lesser computational time.

4.3. Comparison with Copenhagen Data Set

The Copenhagen experiment was carried out in 
the northern part of Copenhagen. The pollutant (SF6) was 
released without buoyancy from a tower at a height of 115 
m and collected at the ground-level positions in up to three 
crosswind arcs of tracer sampling units. The sampling units 
were positioned 2-6 km from the point of release. The site was 
mainly residential with a roughness length of 0.6 m. The results 
for nine runs performed under neutral to convective conditions 

to simulate the Copenhagen experiment were the same used to 
simulate the Prairie Grass experiment. The results provided by 
the simulations show a very good agreement with measured 
data. Again, the simulations revealed that, in general, Lagrangian 
model generates more accurate results, but the simulation time 

be seen in Tables 4 and 5 and Figures 1c and 2c.

4.4. Mathematical and Computational Analysis

To a better understanding of the numerical comparison 
between the Eulerian and Lagrangian semi-analytical methods 
in this work, our attention is now focused to the mathematical 
and computational feature of these approaches. Concerning the 
Eulerian model, it is well known that the results attained by the 
Gaussian quadrature scheme of order Nk, are exact when the 
transformed function is a polynomial of degree (2 Nk – 1). On

it is known that a continuous function can be approximated by 
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Table 2 – Meteorological parameters and concentrations measured during the Prairie Grass stable experiment. 

run L 
(m)

h
(m)

u*
(ms-1)

U 10m 
(ms-1)

Cy 50 m 
(gm-2)

Cy 200 m200 m 
(gm-2)

Cy 800 m800 m 
(gm-2)

13 3.4 23 0.09 3.9 38 223 133
14 1.6 12 0.05 3.7 153 153 31
17 48 131 0.21 3.8 105 34 11
18 25 92 0.2 4 108 46 20
21 172 333 0.38 6.4 58 18 6
22 204 400 0.46 7.7 47 14 4
23 193 358 0.39 6.5 47 17 4
24 248 400 0.38 6.3 47 15 4
28 24 81 0.16 3.2 136 51 15
29 36 119 0.23 4.3 99 38 12
32 8.3 43 0.13 3.6 159 115 56
35 53 147 0.24 4.3 88 32 10
36 7.8 36 0.1 2.8 193 100 41
37 95 216 0.29 5 61 21 7
38 99 217 0.28 4.8 78 26 8
39 9.8 48 0.14 3.6 112 39 9999*

40 8 39 0.11 3.1 115 43 17
41 35 117 0.23 4.4 79 32 12
42 120 275 0.37 6.3 52 17 5
46 114 257 0.34 5.8 63 23 7
53 10 54 0.17 4.3 154 83 32
54 40 128 0.24 4.5 81 30 11
55 124 279 0.37 6.3 53 18 5
56 76 194 0.29 5.1 71 24 7
58 6.4 35 0.11 3.4 161 105 51
59 11 51 0.14 3.4 140 81 31
60 58 166 0.28 5 62 23 8

*missing data

a polynomial, with the property that a better approximation is 
achieved with the increasing of the degree of the polynomial. 
This means that increasing Nk in the Gaussian quadrature 
schemes appearing in the concentration solution given by 
Equations (12) and (13), it is expected that the numerical 
results should converges for the exact result. Concerning the 
issue of stepwise approximation, it is important to bear in 
mind that the stepwise approximation of a continuous function 
converges to the continuous function, when the stepwise of the 
approximation goes to zero. Therefore, for the Eulerian model it 

is only necessary to choose the number of the sub-layers in an 
appropriate manner, by taking the smoothness of the continuous 
functions K3 and U1 into account.

Concerning to Lagrangian model, it is relevant to 
consider three main aspects. First, the Langevin equation 
fulfills the requirements of existence and uniqueness of 
the solution, what means that Picard’s Iterative Method 
generates a sequence of functions that converges to the exact 
solution. Second, it is well known that the Picard Method is 
an iterative process that doesn’t depend on the initial guess. 
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Tabela 3 – Meteorological parameters and concentrations measured during the Copenhagen experiment.

run -L
(m)

h
(m)

u*
(ms-1)

U 10 m
(ms-1)

U 115 m
(ms-1)

Q
(gs-1)

distance
(m)

Cy
(µgm-2)

1 37 1980 0.36 2.1 3.4 3.2 1900 2074
1 37 1980 0.36 2.1 3.4 3.2 3700 739
2 292 1920 0.73 4.9 10.6 3.2 2100 1722
2 292 1920 0.73 4.9 10.6 3.2 4200 944
3 71 1120 0.38 2.3 5.0 3.2 1900 2624
3 71 1120 0.38 2.3 5.0 3.2 3700 1990
3 71 1120 0.38 2.3 5.0 3.2 5400 1376
4 133 390 0.38 2.5 4.6 2.3 4000 2682
5 444 820 0.45 3.1 6.7 3.2 2100 2150
5 444 820 0.45 3.1 6.7 3.2 4200 1869
5 444 820 0.45 3.1 6.7 3.2 6100 1590
6 432 1300 1.05 7.2 13.2 3.1 2000 1228
6 432 1300 1.05 7.2 13.2 3.1 4200 688
6 432 1300 1.05 7.2 13.2 3.1 5900 567
7 104 1850 0.64 4.1 7.6 2.4 2000 1608
7 104 1850 0.64 4.1 7.6 2.4 4100 780
7 104 1850 0.64 4.1 7.6 2.4 5300 535
8 56 810 0.69 4.2 9.4 3.0 1900 1248
8 56 810 0.69 4.2 9.4 3.0 3600 606
8 56 810 0.69 4.2 9.4 3.0 5300 456
9 289 2090 0.75 5.1 10.5 3.3 2100 1511
9 289 2090 0.75 5.1 10.5 3.3 4200 1026
9 289 2090 0.75 5.1 10.5 3.3 6000 855

Table 4 – Statistical indices of the model performance for the Prairie Grass and Copenhagen experiments.

Experiment Model NMSE FB FS R FA2

Prairie Grass – Unstable
Eulerian 0.41 -0.004 0.17 0.80 0.67

Lagrangian 0.10 0.05 -0.06 0.96 0.72

Prairie Grass –Stable
Eulerian 0.49 -0.224 -0.26 0.77 0.82

Lagrangian 0.39 -0.057 -0.18 0.81 0.95

Copenhagen
Eulerian 0.08 -0.12 0.15 0.86 0.91

Lagrangian 0.03 0.01 0.03 0.93 1.00

Table 5 – Computational time comparison between Eulerian and Lagrangian models.

model
computational time (s)

Prairie Grass - Unstable Prairie Grass - Stable Copenhagen
Eulerian 30 10 10

Lagrangian 2000 600 600
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Figure 1 – Scatter diagram between observed and predicted Cy for the 
(a) Prairie Grass unstable (b) Prairie Grass stable and (c) Copenhagen 
experiments. Dashed lines indicate factor of 2, dotted lines indicated 
factor of 3 and solid line indicates unbiased prediction.

Figure 2 – Model perfomance in terms of quantile-quantile. (a) Prairie 
Grass unstable, (b) Prairie Grass stable and (c) Copenhagen experi-
ments. Solid line indicates unbiased prediction.

a)

b)

c)

a)

b)

c)
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Third, regarding the analytical feature of the ILS solution in 
every iterative step, it is possible to control the solution error, 
except for the round-off error, by regulating the number of 
iterations. In this sense, we believe that the solution of the 
Langevin equation through the Picard Method is a promising 
alternative method in order to simulate the dispersion of 
pollutants in the PBL. Regarding to extreme computational 
time compared to Eulerian model, additional development 
considering other integration techniques has been realized to 
obtain more satisfactory results.

5. CONCLUSIONS

The aim of this paper was to present and discuss the 
results of an intercomparison between two semi-analytical 
dispersion model, focusing the ability to correctly reproduce 

high sources. An statistical analysis, considering observed and 
predicted concentration values, revealed that all values for the 
indices are within ranges that are characteristics of those found for 

showing that the models and the turbulence parameterizations 
are quite effective. According the results, the Lagrangian model 
gives more accurate results meanwhile the computational effort 
of the Eulerian model demands a lesser computational time. This 
is a promissing result as these two semi-analytical techniques 
may be jointly used for estimations of contaminant distribution. 
Neglecting further possible improvement in the Eulerian and 
Lagrangian models, we can say that these approaches are 
equivalent, according previous analysis. The method selection 
for pollutant dispersion simulation has to be done by the user 
according his necessity and knowledgment. Bearing in mind 
the semi-analytical character of the mentioned approaches, 
in the sense that no approximation is made in the derivatives 
appearing neither in the diffusion equation nor in the Langevin
equation and motivated by this semi-analytical feature, we are 

round-off error.

6. ACKNOWLEDGEMENTS

This work was partially supported by CNPq (Conselho 

FAPERGS (Fundação de Amparo à Pesquisa do Estado do Rio 
Grande do Sul).

7. REFERENCES

ANFOSSI, D.; FERRERO, E.; SACCHETTI, D.; TRINI
CASTELLI, S. Comparison among empirical probability 
density functions of the vertical velocity in the surface layer 
based on higher order correlations. Bound.-Layer Meteor.
v. 82, p. 193-218, 1997.

ARYA, P.S. Modelling and parameterization of near-source 
diffusion in weak winds. J. Appl. Met. v. 34, p. 1112-1122, 
1995.

BARAD, M.L. 1958. Project Prairie Grass: A Field program in 
diffusion, Geophys. Res. Paper No 59 (II) TR-58-235 (II),
Air Force Cambridge Research Centre, USA.

Gaussian air pollution model (OML): Description, test and 
sensitivity analysis in view of regulatory applications, Air

F.A. Schiermeirier and N.V. Gillani Eds..Plenum Publishing 
Corporation, 453-480, 1986.

Equações diferenciais elementares 
e problemas de valores de contorno. Rio de Janeiro: LTC
Editora, 1999. 532 p.

CARVALHO, J.C.; NICHIMURA, E.R.; VILHENA, M.T.M.B.; 

solution for contaminant dispersion simulation using the 
Gram-Charlier PDF, Environmental Modelling and 
Software v. 20, n. 3, p. 285-289, 2004.

CARVALHO, J. C.; VILHENA, M. T.; MOREIRA, D.M. 
An alternative numerical approach to solve the Langevin
equation applied to air pollution dispersion. Water Air and 
Soil Pollution, v. 163, n. 1-4, p. 103-118, 2005.

MANGIA, C.; TIRABASSI, T.; CAMPOS VELHO, H.F. 
Turbulence parameterization for PBL dispersion models in 
all stability conditions. Atmos. Environ. v. 34, p. 3575-
3583, 2000.

FERRERO, E.; ANFOSSI, D. Comparison of PDFs, closures 
schemes and turbulence parameterizations in Lagrangian
Stochastic Models. Int. J. Envinm. and Poll. v. 9, p. 384-
410, 1998.



20 Jonas C. Carvalho & Davidson M. Moreira Volume 22(1)Jonas C. Carvalho & Davidson M. Moreira Volume 22(1)Volume 22(1)

Handbook of stochastic methods for 
physics, chemistry and the natural sciences. Berlin: 
Springer-Verlag, 1985.

GRYNING, S.E.; LYCK, E. Atmospheric dispersion from 
elevated source in un urban area: comparision between 
tracer experiments and model calculations. J. Climate Appl. 
Meteor. v. 23, p. 651-654, 1984.

HANNA, S.R. Confidence limit for air quality models as 
estimated by bootstrap and jacknife resampling methods. 
Atmos. Environm. v. 23, p. 1385-1395, 1989.

HEYDARIAN, M.; MULLINEAUX, N. Solution of parabolic 
partial differential equations. Appl. Math. Modelling v. 5, 
p. 448-449, 1989.

Turbulence. New York: McGraw-Hill, 1975. 790 p.

INNOCENTINI, V. A successive method for the evaluation of 
trajectories approximating the parcel by a linear function 
of space and time. Monthly Weather Review v. 127, p. 
1639-1650, 1999.

KENDALL, M.; STUART, A. The advanced theory of 
statistics. New York: MacMillan, 1977.

LEGG, B.J.; RAUPACH, M.R. Markov chain simulation of 

velocity induced by a gradient in Eulerian velocity variance. 
Bound.-Layer Meteor. v. 24, p. 3-13, 1982.

Hand. Physik VIII/2, 438-523, 1963.

from low sources in a convective boundary layer: An analytical 
model. Il Nuovo Cimento, v. 22C, n. 5, 685-691, 1999.

MOREIRA, D. M.; VILHENA, M. T.; CARVALHO, J. C.; 

diffusion equation with nonlocal closure of the turbulent 
diffusion. Environmental Modelling and Software, v. 20, 
n. 10, p. 1347-1351, 2005.

OLESEN, H.R. Data set and protocol for model validation. 

Dispersion Models for Environmental Impact Assessment
in Europe, Mol, Belgium. Int. J. Environm. and Pollution
v. 5, n. 4-6, p. 693-701, 1995.

PASQUILL, F.; SMITH, F.B. Atmospheric Diffusion, New

RODEAN, H.C.; LANGE, R.; NASSTROM, J.S.; GAVRILOV,
V.P. Comparison of two stochastic models of scalar diffusion 

National Laboratory, 1992

RODEAN, H.C. Stochastic Lagrangian models of turbulent 
diffusion. Boston: AMS, 1996. 84 p.

SEINFELD, J.H. Atmospheric Chemistry and Physics of air 
pollution

SHARAN, M.; SINGH, M.P; YADAV, A.K. Mathematical 
model for atmospheric dispersion in low winds with eddy 
diffusivities as linear functions of downwind distance. 
Atmos. Environ. v. 30, p. 1137-1145, 1996.

STROUD, A.H.; SECREST, D. Gaussian Quadrature 
Formulas. Englewood Cliffs: Prentice-Hall, 1996.

TENNEKES H. Similarity relation, scaling laws and spectral 
dynamics. In: Nieuwstadt F.T.M. and Van Dop H. eds.. 
Atmospheric Turbulence and Air Pollution Modeling. 
Reidel, Dordrecht, 37-68, 1982.

G, a non-Gaussian plume dispersion model: description and 
evaluation against tracer measurements. JAPCA v. 36, p. 
592-596, 1986.

THOMSON, D.J. Criteria for the selection of stochastic models 
J. Fluid Mech. v.

180, p. 529-556, 1987.

conditions for random walk models of dispersion in non-
Gaussian turbulence. Atmos. Environm. v. 28, p. 1981-
1987, 1994.

van ULDEN, A.P. Simple estimates for vertical dispersion 
from sources near the ground. Atmos. Environ. v. 12, p. 
2125-2129, 1978.

C.; MOREIRA, D.M.; TIRABASSI, T. An analytical 
air pollution model: development and evalution. 
Contribution to Atmospheric Physics v. 71, n. 3, p. 
315-320, 1998.


