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Abstract

This paper presents Mannga (Multiple variables with Artificial Neural Network and Genetic Algorithm), a method
designed for gap filling meteorological data. The main approach is to estimate the missing data based on values of other
meteorological variables measured at the same time in the same local, since the meteorological variables are strongly
related. Experimental tests showed the performance of Mannga compared with other two methods typically used by
researches in this area. Good results were achieved, with high accuracy even for sequential failures, which is a big chal-
lenge for researchers. The core advantages of Mannga are the flexibility of handling different types of meteorological
data, the ability of select the best variables to assist the gap filling and the capacity to deal with sequential failures.
Moreover, the method is available to public use with the Java programming language.

Keywords: multivariate data, artificial neural network, genetic algorithm, open source software.

MANNGA: Um M¢étodo Robusto para Preenchimento de Falhas em Dados
Meteorologicos

Resumo

Este trabalho apresenta o método Mannga (Multiple variables with Artificial Neural Network and Genetic Algorithm),
desenvolvido para preencher falhas em dados meteorologicos. A ideia principal € preencher as falhas baseando-se nos
valores de outras varidveis meteoroldgicas medidas no mesmo momento, uma vez que as variaveis meteorologicas pos-
suem forte relacdo entre si. Testes foram executados para mostrar a performance do Mannga comparado com outros dois
métodos comumente utilizados na area. Os resultados alcangados atingiram uma boa preciso, principalmente relacio-
nado ao desafio de preencher valores em dados que ocorrem em sequéncia. As principais vantagens do Mannga sdo a
sua flexibilidade em manipular diferentes tipos de dados meteoroldgicos, a habilidade de selecionar as melhores var-
iaveis para auxiliar no preenchimento das falhas e a capacidade de lidar com falhas sequenciais. Além disso, o método
estd disponivel publicamente na linguagem de programagao Java.

Palavras-chave: dados multivariados, redes neurais artificiais, algoritmos genéticos, software livre.

1. Introduction

Meteorological data has an important position in sci-
entific research. Based on meteorological data, explana-
tions about climatic phenomena are made, allowing us to
understand several characteristics of our planet. To aid the
process of data acquisition, many types of equipment are
installed in meteorological stations. Commonly, the equip-
ment works 24 hours per day, for years. Therefore, a huge
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quantity of data is generated. Unfortunately, not all data is
integrally perfect, because failures appear in data series.
Missing or rejected data in these measurements is an
ubiquitous problem due to equipment failures (system/
sensor breakdown), maintenance and calibration, spikes in
the raw data, and physical and biological constraints (e.g.
storms, hurricanes, and non-optimal wind directions) (Hui
et al., 2004). In any case, the gap created in the data series
will cause a bad interpretation in the data study. Thus, it is
important to apply a gap filling method to fix the dataset.
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One of the methods used for gap filling is Multiple
Imputation (MI), used by Sullivan ez al. (2015), a Monte
Carlo technique in which the missing values are replaced
by m > I simulated versions, where m is typically small,
for example, between 3 and 10 (Schafer, 1999). Horton
and Ipsitz (2001) comment on several systems to facilitate
the use of the method, like Solas, Sas, S-Plus, Mice, and
others. Hui et al. (2004) used the MI method for gap filling
eddy covariance data, which collect data about the
exchange of carbon dioxide, water vapor and heat from a
vegetated surface and the atmosphere.

Other methods of gap filling are the Mean Diurnal
Variation (MDV) and the Look-up Tables (Falge et al.,
2001). MDV replaces the gap using an average calculated
from values of adjacent days (Kato et al., 2006). This
method was also used in Hu et al. (2009), Alavi et al.
(2006) and Mohan and Rao (2016). The look-up table
approach consists of creating a table with the flux values
binned, based on the corresponding values of the external
parameters. The determination of the relevant parameters
and their critical values is a crucial step if this technique is
to be successful (Mishurov and Kiely, 2011). This method
was used in Zhou et al. (2015), Rodrigues et al. (2005),
Wilson and Baldocchi (2001) and Shao et al. (2011).

Regression analysis is performed in order to deter-
mine the correlations between two or more variables hav-
ing cause-effect relations, and to make predictions for the
topic by using the relation (Uyanik and Guler, 2013).
Multiple Linear Regression (MLR) can be used to simu-
late meteorological data, as shown in Malik and Kumar
(2015).

Some variations of gap filling techniques were com-
pared with the same dataset of net carbon fluxes in Moffat
et al. (2007), like interpolation, probabilistic filling, look-
up tables, non-linear regression, artificial neural networks,
and process-based models in a data-assimilation mode.
Besides, the performance of three methods for gap filling
data of net ecosystem CO, exchange was evaluated in
Ooba et al. (2006). It was concluded that a method using
an Artificial Neural Network offers better performance for
gap filling.

In all of them, methods for gap filling are limited to a
specific climatic variable. In some cases, it is very compli-
cated to apply the method, since you have to make differ-
ent settings for each data type. These disadvantages are
common in gap filling methods. Therefore, the purpose of
this work is to show the development of Mannga (Multiple
variables with Artificial Neural Network and Genetic
Algorithm), which is an optimized method, combining
two Artificial Intelligence techniques, Genetic Algorithm
and Artificial Neural Network.Mannga method works with
several climatic variables at the same time and avoid the
user to execute a specific configuration for each variable.
This method is called Mannga and it was implemented
with the Java programming language.

MANNGA: A Robust Method for Gap Filling Meteorological Data

2. Material and Methods

2.1. Proposed method

The proposed method, Mannga, takes advantage of
two techniques to perform gap filling on meteorological
data: Artificial Neural Network (ANN) and Genetic Algo-
rithm (GA). Artificial Neural Network is a computational
technique based on the concept of the human brain neu-
rons. An ANN is a massively parallel distributed processor
made up of simple processing units, which has a natural
propensity for storing experiential knowledge and making
it available for use (Haykin, 1999).

The structure of an ANN has several parameters and
can be configured in many different ways. For each dataset
there is a better configuration of the ANN to solve the pro-
blem. Finding the optimal structure of ANN consists of
investigating an entire space of possible states. This task
requires a great amount of processing, so it is necessary to
use a search algorithm to find a satisfactory solution.

GA is a computational analogy of adaptive systems
that is used to generate useful solutions to optimization
and search problems. In this context, a Genetic Algorithm
was used to assist the structure definition of the ANN, as a
search method that finding optimal or good solutions by
examining only a small fraction of the possible candidates
(Mitchell, 1998).

The main idea of the proposed method considers that
climatic variables are related toeach other. Thus Mannga
estimates the missing data based on the values of other
available climatic variables. For example, if at 10:30 AM
the value of temperature data is missing, the method cal-
culates the temperature at this moment considering the
values measured at 10:30 AM of incoming shortwave
radiation, wind speed and relative humidity data. Even if
there are several sequential gaps, it is possible that this
method is able to fill them.

Thus, the ANN will be responsible for calculating
the missing data. However, as mentioned, there are count-
less configurations of an ANN, each one worse or better
depending on the data series. In this case, the GA was uti-
lized to determine the best ANN for the current data series.
In this approach, we have more probability to work with
different types of meteorological data, because the ANN
will be optimized in each test.

Based on Ventura et al. (2015), the ANN parameters
determined by the GA were: training algorithm, activation
functions, learning rate, momentum rate and number of
neurons. Sometimes there are many climatic variables in
the data series. Thus, in addition to the parameters of
ANN, the GA determines which variable should or should
not be used in the estimation. In this case, only the more
correlated variables are used, improving the performance
of the method and decreasing the error in the final
estimate.
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The method is shown in Figure 1. Initially, one data-
set (without failures) is given to the GA. The GA will use
these data to learn the patterns of the climatic variables
and search for the best settings for the ANN for that spe-
cific data. This is achieved creating several neural net-
works with different parameters. The networks created are
evaluated and those with greater precision have more
chances of being selected. After several iterations, the
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chosen ANN is used to gap filling on other datasets that
have failures. Finally, the dataset with failures is fixed.

2.2. Experimental setup

Simulations were performed in order to evaluate the
Mannga performance. The dataset used were obtained in
AmeriFlux', which provides continuous measurements
from forests, grasslands, wetlands, and croplands in North,

Dataset without failures
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Figure 1 - Integration of GA and ANN to enable the operation of Mannga.
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Central and South America (Boden et al., 2013). We also
evaluate a dataset from INMET?. Three sites were chosen
from AmeriFlux and one from INMET. The quality of
several variables was not good, containing invalid and
missing data. Therefore it was selected the variables and
months with a minimum of quality to test Mannga perfor-
mance. More information about the dataset is shown in
Table 1.
Often meteorological data has a high variation dur-
ing the annual cycle. Therefore to estimate values of this
type of data it is necessary specific period of data to create
good models. In Leauthaud et al. (2017) was considered
only 30 days close to the gap to perform gap filling. In this
case we have similar data to process, increasing the prob-
ability of a good estimation. Staub et al. (2017) present
other advantage using only a specific amount of data,
which is a decrease in computations effort to build models.
For this reasons it is a good approach to select only a small
sample of meteorological measurements (1 to 3 months) to
perform gap filling. We do the same in this work for each
dataset.
The processing time varies depending on the amount
of data and computer used. In these tests, a dual-core
computer with only 1GB of RAM was used, taking
approximately 19 minutes for processing each month of
data with Mannga gap filling method.
For each site, several variables were selected to per-
form gap filling. Mannga accuracy was checked by simu-
lating gaps in data series. Three simulations were tested
for each dataset:
® 5% of failures randomly inserted, to test regular scenar-
ios on the dataset.

® 10% of failures inserted on sequence, to test the method
accuracy when several gaps occur for a long period of
time.

® 30% of failures randomly inserted, to test the method
behavior when a lot of gaps are presented on the
dataset.

To compare Mannga accuracy the same tests were
performed with another two others methods: Average

Table 1 - Description of the dataset.
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(commonly used due to his facility) and Multiple Linear
Regression.

2.3. Mannga implementation

To facilitate the use of the gap filling method, Man-
nga was developed in the Java programming language and
all the complex procedures involving Artificial Intelli-
gence were abstracted internally. It is possible to perform a
complex process with a few functions, such as gap filling.
Code 1 is one example of the method procedure to per-
form gap filling.

Code 1. Example of gap filling using Mannga
implementation

01 ManngaParameters parameters = new ManngaPara-
meters();

02 parameters.setErrorMaximumValid(0.05);

03

04 ManngaGapFilling gf = new ManngaGapFilling();
05 gf.setParameters(parameters);

06 gf.train("data.csv", 6, 2, true);

07

08 ManngaResult result = gf.fillGapFoundDuring-
Training();

09 for (double output : result.getOutput())

10 System.out.println(output);

It can be set some parameter to a better method’s
performance. The accepted error is one of these para-
meters, and is set up on lines 1 and 2. Others parameters
involve especially to control the ANN and GA. On lines 4
and 5 the method is created and configured. After the
initial configuration it is necessary to train the structure.
Line 6 shows, with only one command, the data was loa-
ded (informing the file name, number of sensors, the col-
umn where the fails are and whether the file has a header
in the first line) and the method was trained to recognize
all the patterns in the data. Finally, line 8 collect the results

Site Coordinates Year Month(s) Records Variables

Lacey Township, New Jersey 39.8379; -74.3791 2009 Mar 2928 Temperature, humidity, net radiation, and
incoming shortwave radiation

Florida City, Florida 25.3629; -81.0776 2012 May-Jun 4289 Temperature, wind, humidity, net radia-
tion, incoming shortwave radiation, soil
temperature, carbon concentration, and
carbon flux

Lawrence, Kansas 39.0561;-95.1907 2012 Mar-Aug 11307 Temperature, humidity, incoming short-
wave radiation, soil temperature, carbon
concentration, and carbon flux

Campo Bom, Rio Grande do Sul -29.6743; -51.0640 2014 Aug-Oct 2112 Temperature and humidity
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of the gap filling and lines 9 to 10 shows each estimated
value.

It can be observed that to run Mannga is not a diffi-
cult task. And also that can be easy to incorporate Mannga
implementation in other software, even if the developer
does not have any knowledge in the method used.

3. Results and Discussions

3.1. Tests results

On the first site, one month's data from New Jersey
station were used, which contains 2928 records (without
failures)with 15 minutes as frequency of the measurement.
In these records failures were inserted in the variables of
incoming shortwave radiation, net radiation, humidity and
temperature. Being these randomly or in sequence: 146
(5% random), 293 (10% in sequence), and 878 (30% ran-
dom). The results of the processing are shown in Table 2
with their respective mean absolute error (MAE).

On the second site, data for each 20 minutes of two
months from the station at Florida were used with 4289
records, and were inserted: 214 (5% random), 429 (10% in
sequence), and 1287 (30% random) failures. The variables
chosen were incoming shortwave radiation, net radiation,
temperature, humidity and carbon concentration. The
results of the processing are shown in Table 3 with their
respective mean absolute error (MAE).

On the third site, data collected each 30 minutes
during six monthsfrom the station at Kansas were used
and 11307 records were processed, with 565 (5%) random
failures, 1131 (10%) in sequence failures, and 3392
(30%) random failures inserted to test how the proposed
method handles multiple failures. The variables used to
perform the gap filling were incoming shortwave radia-
tion, temperature, soil temperature, carbon concentration
and carbon flux. The results of the processing are shown
in Table 4 with their respective mean absolute error
(MAE).

On the last site, data collected hourly of three
months from the station atRio Grande do Sul, Brazil, were
used and 2112 records were processed, with 105 (5%)
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random failures, 211 (10%) in sequence failures, and 633
(30%) random failures inserted to test the proposed
method. Temperature and humidity were used to perform
gap filling. The results of the processing are shown in
Table 5.

The results obtained in gap filling were estimated
based on the values of other sensors, obtained in the same
place and at the same time as the detected failures. The
GA, in addition to determining the configuration para-
meters of the ANN, also evaluates which sensors are
available to be used as input to the neural network train-
ing. This is relevant because it can happen that a sensor,
which represents a particular climatic variable, has a
totally different behavior from the climatic variable esti-
mated, affecting the accuracy of the simulation.

The results showed that Mannga had a good perfor-
mance with different climatic variables. Sensors such as
atmosphere temperature and soil temperature obtained
error like 1.42. The carbon flux also obtained good results
in experiments (minor error 2.04). However, sensors such
as incoming shortwave radiation and net radiation had bad
results (109.88 for Kansas dataset), with MAE values far
from the average. In all simulations, Mannga robustness is
observed, i.e., it was seen uniformity in performance and
behavior for different scenarios.

It was also observed, in the experiment using data
from Kansas and Florida site, carbon concentration vari-
able needed only one sensor, respectively carbon flux and
temperature, to estimate the missing value. Unfortunately,
the data related to carbon concentration did not have good
accuracy (9.88 on average). It may be possible to improve
its precision by using other climatic variables in data ser-
ies. In order to achieve this, new tests should be performed
in the future.

About the processing time to training the method, in
the biggest dataset with 6 month of data, the average for
training was 67 minutes and 11 seconds. It is a big differ-
ence in processing time compared with statistical meth-
ods, as can be seen in Table 6, Table 7, and Table 8. Even
so, it is an acceptable time to processing this amount of
data.

Table 2 - Results from New Jersey dataset. 1 simulation with 5% random failures, 2™ simulation with 10% in sequence failures. 3™*: 30% random

failures.
Variables Sensor used Time (min) MAE

s ond 3rd I8t ond 3rd
Incoming shortwave Wind, carbon flux, net 18:02 13:28 10:38 15.59 21.66 17.84
radiation radiation
Net radiation Temperature 19:36 16:00 18:23 18.07 17.98 18.99
Humidity Temperature 18:12 43:53 12:04 10.46 9.19 11.12
Temperature Wind, carbon flux, humid- 16:31 28:47 15:23 5.05 2.77 4.61

ity, incoming shortwave
radiation
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Table 3 - Results from Florida dataset. 1% simulation with 5% random failures, 2"%: simulation with 10% in sequence failures. 3. 30% random failures.

Variables Sensor used Time (min) MAE
lst 2nd 3rd 1 st 2nd 3rd
Incoming shortwave Soil temperature 71:29 35:22 42:21 10.61 15.20 11.25
radiation
Net radiation Temperature, carbon, con- 67:22 85:14 40:00 23.42 23.07 22.06
centration, carbon flux
Temperature Wind, net radiation, incom- 37:42 69:59 53:01 1.75 1.42 1.47
ing shortwave radiation,
Humidity
Humidity Wind, temperature 89:32 61:01 65:10 6.78 7.02 6.84
Carbon concentration Carbon flux 34:08 36:34 25:51 11.53 6.23 9.56

Table 4 - Results from Kansas dataset. 1% simulation with 5% random failures, 2" simulation with 10% in sequence failures. 3™%: 30% random failures.

Variables Sensor used Time (min) MAE
Ist 2nd 3rd Ist 2nd 3rd

Soil temperature Temperature, carbon flux, 61:23 56:06 39:05 1.8 2.01 1.88
humidity

Temperature Carbon flux, soil 74:09 53:13 58:03 2.34 2.47 2.35
temperature

Incoming shortwave Carbon concentration 98:01 89:57 41:13 105.67 109.54 109.88

radiation

Carbon flux Humidity, incoming short- 57:45 56:58 90:17 2.04 2.23 2.21
wave radiation

Carbon concentration Temperature 65:14 111:06 55:18 10.54 10.94 10.46

Table 5 - Results from Rio Grande do Sul dataset. 1°': simulation with 5% random failures, 2™%: simulation with 10% in sequence failures. 3™%: 30% ran-

dom failures.

Variables Time (min) MAE
Ist 2nd 3rd Ist 2nd 3rd
Temperture 13:03 09:05 08:36 0.93 1.20 0.95
Humidity 19:28 11:30 14:22 2.52 1.94 2.16

3.2. Comparison with others methods

In order to evaluate Mannga performance, others
gap filling methods were tested with the same datasets.
The results can be seen in Table 6, Table 7 and Table 8
showing the MAE obtained in each test with Mannga,
Average method and Multiple Linear Regression (MLR)
method.

With the simulation of 5% of random failures, Man-
nga was better compared to Average and MLR method in
only two cases (incoming shortwave radiation and net
radiation in Florida site). In all cases, Mannga was better
than MLR method, except when there were just a few fail-
ures in the data series. Average method proved to be very
successful in this scenario.

On the simulation of 10% of failures in sequence, in
ten cases Mannga was better than the others methods.
There are good precisions with several variables, like

incoming shortwave radiation, net radiation, humidity and
carbon concentration. In all these tests, Mannga was
always better than Average.

In the last simulation, with 30% of random failures,
Mannga showed regular results. It was the best in three
cases, being the second best method in all the others tests.
Therefore, Mannga can be used in scenarios where exist a
lot of failures in the dataset. In general, Mannga shows to
be a good option to gap filling meteorological data.

3.3. Mannga public availability

As mentioned, Mannga was implemented with the
Java programming language. It was included in the frame-
work FICSED and can be downloaded on CEDA website
as free software. The website has the necessary doc-
umentation to use the method.
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Table 6 - Results (MAE) with 5% random failures from others methods compared with Mannga.

Dataset Variable Mannga Average MLR
New Jersey Incoming shortwave radiation 15.59 13.14 31.64
New Jersey Net radiation 18.07 11.29 26.18
New Jersey Humidity 10.46 0.76 31.47
New Jersey Temperature 5.05 0.18 5.82
Florida Incoming shortwave radiation 10.61 27.41 23.77
Florida Net radiation 23.42 32.52 27.02
Florida Temperature 1.75 0.19 1.77
Florida Humidity 6.78 1.46 9.73
Florida Carbon concentration 11.53 3.99 21.35
Kansas Soil temperature 1.8 0.05 1.96
Kansas Temperature 2.34 0.2 2.58
Kansas Incoming shortwave radiation 105.67 20.58 171.79
Kansas Carbon flux 2.04 1.25 2.27
Kansas Carbon concentration 10.54 2.96 94.96
Rio Grande do Sul Temperature 0.93 1.64 0.52
Rio Grande do Sul Humidity 2.52 591 2.44
Table 7 - Results (MAE) with 10% in sequence failures from others methods compared with Mannga.

Dataset Variable Mannga Average MLR
New Jersey Incoming shortwave radiation 21.66 165.30 44.89
New Jersey Net radiation 17.98 131.31 28.67
New Jersey Humidity 9.19 37.43 41.62
New Jersey Temperature 2.77 2.89 2.49
Florida Incoming shortwave radiation 15.2 307.18 39.35
Florida Net radiation 23.07 320.7 24.29
Florida Temperature 1.42 3.33 1.18
Florida Humidity 7.02 20.11 9.58
Florida Carbon concentration 6.23 10.99 18.78
Kansas Soil temperature 2.01 2.35 1.98
Kansas Temperature 2.47 5.05 2.38
Kansas Incoming shortwave radiation 109.54 232.89 157.63
Kansas Carbon flux 2.23 2.5 1.94
Kansas Carbon concentration 10.94 12.77 52.64
Rio Grande do Sul Temperature 1.20 1.69 0.59
Rio Grande do Sul Humidity 1.94 6.89 2.38

4. Conclusions

In this paper we propose a novel method for gap fill-
ing meteorological data called Mannga. The great advan-
tage of this method is the flexibility of handle different
types of meteorological data, adjusting their structure for
each dataset. Another advantage is the possibility of
selects the best sensors to estimate the missing value,
increasing the accuracy and saving processing time.
Besides, if failures occur in sequence, for example, gaps
occurring in the data series for hours, days or even
months, it is possible to estimate the values, considering

that other sensor variables contain valid data from the
same period of failure.

We can list the method’s disadvantage as the time to
process the data. While Mannga takes minutes to perform
the gap filling, others statistical methods takes just sec-
onds. Furthermore, a higher accuracy was found mainly
when failures occur in sequence in the dataset compared
with other methods.

In general, tests were performed evaluating the pro-
posed method and good results were achieved. Therefore,
combined with its public availability, it is expected that the
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Table 8 - Results (MAE) with 30% random failures from others methods compared with Mannga.

Dataset Variable Mannga Average MLR
New Jersey Incoming shortwave radiation 17.84 21.7 34.47
New Jersey Net radiation 18.99 18.94 27.93
New Jersey Humidity 11.12 1.16 29.09
New Jersey Temperature 4.61 0.27 5.24
Florida Incoming shortwave radiation 11.25 48.18 25.43
Florida Net radiation 22.06 45.46 25.42
Florida Temperature 1.47 0.29 1.75
Florida Humidity 6.84 1.74 10.34
Florida Carbon concentration 9.56 4.69 20.95
Kansas Soil temperature 1.83 0.11 1.9
Kansas Temperature 2.35 0.31 2.59
Kansas Incoming shortwave radiation 109.88 29.12 175.12
Kansas Carbon flux 2.21 1.51 2.51
Kansas Carbon concentration 10.46 3.24 97.31
Rio Grande do Sul Temperature 0.95 2.19 0.55
Rio Grande do Sul Humidity 2.16 9.22 2.36

product of this work assist several research projects in the
meteorological area, making meteorological data series
more consistent.

Acknowledgments

The authors acknowledge the financial support of the Fun-
dagdo de Amparo a Pesquisa do Estado de Mato Grosso
(FAPEMAT) process 223633/2015. In addition, we would
like to thank Gregory Starr, Steven Oberbauer, Kenneth
Clark and Nathaniel Brunsell for allows the use of data
from Florida Everglades, Cedar Bridge and Kansas Field
Station. We also acknowledge INMET for make so easy to
obtain data of Brazilian meteorological stations.

References

ALAVI, N.; WARLAND, J.S.; BERG, A.A. Filling gaps in eva-
potranspiration measurements for water budget studies:
evaluation of a Kalman filtering approach. Agricultural
and Forest Meteorology, v. 141, n. 1, p. 57-66, 2006.

BODEN, T.A.; KRASSOVSKI, M.; YANG, B. The AmeriFlux
data activity and data system: an evolving collection of data
management techniques, tools, products and services.
Geoscientific Instrumentation, Methods and Data Sys-
tems, v.2,n. 1, p. 165-176,2013.

FALGE, E.; BALDOCCHI, D.; OLSON, R,; ANTHONI, P;
AUBINET, M.; BERNHOFER, C.; BURBA, G.; CEULE-
MANS,R.; CLEMENT, R.; DOLMAN, H.; GRAINER, A_;
GRUNWALD, T., HOLLINGER, D.; JENSEN, N.-O.;
KATUL, G.; KERONEN, P.; KOWALSKI, A.; TA LAI, C.;
LAW, B.E.; MEYERS, T.; MONCRIEFF, J.; MOORS, E.;
MUNGER, J.W.; PILEGAARD, K., RANNIK, U
REBMANN, C.; SUYKER, A.E.; TENHUNEN, J.; TU,

K.; VERMA, S.; VESALA, T.; WILSON, K.; WOFSY, S.
Gap filling strategies for defensible annual sums of net eco-
system exchange. Agricultural and forest meteorology,
v. 107, n. 1, p. 43-69, 2001.

HAYKIN, S. Neural networks: a comprehensive foundation,
Prentice-Hall Upper Saddle River. NJ MATH, 1999.

HORTON, N.J.; LIPSITZ, S.R. Multiple imputation in practice:
comparison of software packages for regression models
with missing variables. The American Statistician, v. 55,
n. 3, p. 244-254, 2001.

HU, Z.; YU, G.; ZHOU, Y.; SUN, X,; LI, Y.; SHI, P.; WANG,
Y.; SONG, X.; ZHENG, Z.; ZHANG, L.; LI, S. Partition-
ing of evapotranspiration and its controls in four grassland
ecosystems: Application of a two-source model. Agri-
cultural and Forest Meteorology, v. 149, n. 9, p. 1410-
1420, 2009.

HUIL D.; WAN, S.; SU, B.; KATUL, G.; MONSON, R.; LUO, Y.
Gap-filling missing data in eddy covariance measurements
using multiple imputation (MI) for annual estimations.
Agricultural and Forest Meteorology, v. 121, n. 1, p. 93-
111, 2004.

KATO, T.; TANG, Y.; GU, S.; HIROTA, M.; DU, M.; LI, Y;
ZHAO, X.Temperature and biomass influences on inter-
annual changes in CO2 exchange in an alpine meadow on
the Qinghai Tibetan Plateau. Global Change Biology,
v. 12,n. 7, p. 1285-1298, 2006.

LEAUTHAUD, C.; CAPPELAERE, B.; DEMARTY, J.; GUI-
CHARD, F.; VELLUET, C.; KERGOAT, L.; VISCHEL, T.;
GRIPPA, M.; MOUHAIMOUNI, M.; BOUZOU MOUS-
SA, I.; MAINASSARA, I.; SULTAN, B. A 60-year recon-
structed high-resolution local meteorological data set in
Central Sahel (1950—2009): evaluation, analysis and
application to land surface modelling. International Jour-
nal of Climatology, 37: 2699-2718, 2017.

MALIK, A.; KUMAR, A. Pan evaporation simulation based on
daily meteorological data using soft computing techniques



Ventura et al.

and multiple linear regression. Water Resources Manage-
ment, v. 29, n. 6, p. 1859-1872, 2015.

MISHUROV, M.; KIELY, G. Gap-filling techniques for the
annual sums of nitrous oxide fluxes. Agricultural and for-
est meteorology, v. 151, n. 12, p. 1763-1767, 2011.

MITCHELL, M. An introduction to genetic algorithms. MIT
press, 1998.

MOFFAT, A. M.; PAPALE, D.; REICHSTEIN, M.; HOLLIN-
GER, D.Y.; RICHARDSON, A.D.; BARR, A.G.; BECK-
STEIN, C.; BRASWELL, B.H.; CHURKINA, G.; DESAI,
A.R.; FALGE, E.; GOVE, I.H.; HEIMANN, M.; HUI, D;
JARVIS, A.J.; KATTGE, J.; NOORMETS, A.; STAUCH,
V.J. Comprehensive comparison of gap-filling techniques
for eddy covariance net carbon fluxes. Agricultural and
Forest Meteorology, v. 147, n. 3, p. 209-232, 2007.

MOHAN, T.S.; RAO, T.N. Differences in the mean wind and its
diurnal variation between wet and dry spells of the mon-
soon over Southeast India. Journal of Geophysical
Research: Atmospheres, v. 121, p. 6993-7006, 2016.

OOBA, M.; HIRANO, T.; MOGAM]I, J.-I1.; HIRATA, R.; FUJI-
NUMA, Y.Comparisons of gap-filling methods for carbon
flux dataset: a combination of a genetic algorithm and an
artificial neural network. Ecological Modelling, v. 198,
n. 3, p. 473-486, 2006.

RODRIGUES, A.; PITA, G.; MATEUS, J. Turbulent fluxes of
carbon dioxide an water vapour over an eucalyptus forest in
Portugal. Silva Lusitana, v. 13, n. 2, p. 169-180, 2005.

SCHAFER, J.L. Multiple imputation: a primer. Statistical
methods in medical research, v. 8, n. 1, p. 3-15, 1999.

SHAO, C.; CHEN, J.; LI, L.; TENNEY, G.; XU, W.; XU, J. Role
of net radiation on energy balance closure in heterogeneous
grasslands. Biogeosciences Discussions, v. 8, n. 2, p. 2001-
2033, 2011.

STAUB, B.; HASLER, A.; NOETZLI, J.; DELALOYE, R. Gap-
Filling algorithm for ground surface temperature data mea-
sured in permafrost and periglacial environments. Perma-
frost and Periglacial Processes, v. 28,p. 275-285, 2017.

323

SULLIVAN, T.R.; SALTER, A.B.; RYAN, P.; LEE, K.J. Bias
and precision of the “multiple imputation, then deletion”
method for dealing with missing outcome data. American
journal of epidemiology, v. 182, n. 6, p. 528-534, 2015.

UYANIK, GK.; GULER, N. A study on multiple linear regres-
sion analysis. Procedia - Social and Behavioral Sciences,
v. 106, p. 234-240, 2013.

VENTURA, T.M.; OLIVEIRA, A.G.; MARTINS, C.A.; FIG-
UEIREDO, J.M.; GOMES, R.S.R. Study of how the inte-
gration of artificial neural network and genetic
algorithm should be made for modeling meteorological
data. In: 2015 IEEE 14th International Conference on
Machine Learning and Applications ICMLA), p. 719-722,
2015.

WILSON, K.; BALDOCCHI, D. Comparing independent esti-
mates of carbon dioxide exchange over 5 years at a decid-
uous forest in the southeastern United States. Journal of
Geophysical Research. D. Atmospheres, v. 106, p. 34,
2001.

ZHOU, J.; DAL F.; ZHANG, X.; ZHAO, S.; LI, M. Developing
a temporally land cover-based look-up table (TL-LUT)
method for estimating land surface temperature based on
AMSR-E data over the Chinese landmass. International
Journal of Applied Earth Observation and Geoinfor-
mation, v. 34, p. 35-50, 2015.

Internet Resources

Ameriflux: http://ameriflux.lbl.gov
INMET: http://inmet.gov.br
CEDA: http://ceda.ic.ufmt.br

This is an Open Access article distributed under the terms of the Creative Commons Attribution
Non-Commercial License which permits unrestricted non-commercial use, distribution, and
reproduction in any medium provided the original work is properly cited.



	Abstract
	1. Introduction
	2. Material and Methods
	2.1. Proposed method
	2.2. Experimental setup
	2.3. Mannga implementation
	Example of gap filling using Mannga implementation

	3. Results and Discussions
	3.1. Tests results
	3.2. Comparison with others methods
	3.3. Mannga public availability

	4. Conclusions
	References
	Internet Resources


