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Abstract
This study aimed to estimate the minimum and maximum monthly air temperatures in the sugarcane regions of Brazil.
A 30-year historical series (1988-2018) of maximum (Tmax) and minimum (Tmin) air temperatures from the NASA/
POWER platform was used for 62 locations that produce sugarcane in Brazil. Multiple linear regression was used for
data modeling, in which the dependent variables were Tmin and Tmax and the independent variables were latitude,
longitude, and altitude. The comparison between estimation models and the real data was performed using the statistical
indices MAPE (accuracy) and adjusted coefficient of determination (R2adj) (precision). The lowest MAPE values of the
models for estimating the minimum air temperature occurred mainly in the North during February, March, and January.
Also, the most accurate models for estimating the maximum air temperature occurred in the Southeast region during
January, February, and March. The MAPE and R2adj values showed accuracy and precision in the models for estima-
ting both the maximum and minimum temperatures, indicating that the equations can be used to estimate temperatures
in sugarcane areas. The Tmin estimation model for the Southeast region in July shows the best performance, with a
MAPE value of 1.28 and an R2adj of 0.94. The Tmax model of the North region for September presents higher preci-
sion and accuracy, with values of 1.28 and 0.96, respectively.
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Estimativa da Temperatura do Ar Utilizando Fatores Climáticos nas Regiões
Canavieiras Brasileiras

Resumo
Este estudo visava estimar as temperaturas mínimas e máximas mensais do ar nas regiões canavieiras do Brasil. Uma
série histórica de 30 anos (1988-2018) de temperaturas máximas (Tmax) e mínimas (Tmin) do ar da plataforma da
NASA/POWER foi utilizada para 62 locais que produzem cana-de-açúcar no Brasil. A regressão linear múltipla foi uti-
lizada para modelagem de dados, em que as variáveis dependentes eram Tmin e Tmax e as variáveis independentes
eram a latitude, longitude e altitude. A comparação entre modelos de estimativa e os dados reais foi realizada utilizando
os índices estatísticos MAPE (precisão) e coeficiente de determinação ajustado (R2adj) (precisão). Os valores MAPE
mais baixos dos modelos para estimar a temperatura mínima do ar ocorreram principalmente no Norte durante Feve-
reiro, Março, e Janeiro. Também os modelos mais precisos para estimar a temperatura máxima do ar ocorreram na
região Sudeste durante Janeiro, Fevereiro, e Março. Os valores MAPE e R2adj mostraram precisão e precisão nos mo-
delos para estimar tanto a temperatura máxima como a mínima, indicando que as equações podem ser usadas para esti-
mar as temperaturas em áreas de cana-de-açúcar. O modelo de estimativa de Tmin para a região Sudeste em Julho
mostra o melhor desempenho, com um valor MAPE de 1,28 e um R2adj de 0,94. O modelo Tmax da região Norte para
Setembro apresenta maior precisão e precisão, com valores de 1,28 e 0,96, respectivamente.
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1. Introduction

Climate is defined as the grouping of atmospheric
dispositions, providing the characterization of a region
(WMO345w, 2008; Werndl, 2016), influencing several
economic, social, and environmental activities (Palinkas
and Wong, 2020; Tol, 2018), especially the agribusiness.
All stages of agricultural development suffer from climate
interference (Schauberger et al., 2017; Syed et al., 2022),
providing higher or lower crop yields (De Moraes et al.,
2020; Yu et al., 2020).

Air temperature is one of the main weather elements
related to plant development, interfering with its metabolic
activities (Dos Santos et al., 2022; Zhao et al., 2017). The
most affected processes are the maintenance respiration,
transpiration, vegetative resting, phenological stage dura-
tion, flowering induction, and germination rate (Clemente,
2019; Pedro Júnior et al., 2004). Air temperature affects
both the development and the quality of the final product
(Figueirredo et al., 2008; Marcari; De Souza Rolim and
De Oliveira Aparecido, 2015; Tabtiang et al., 2022). Night
temperatures below 12 °C in the sugarcane cultivation
lead to low photosynthetic rates, low respiration, and inhi-
bition of protein metabolism (Guerra et al., 2014), thus
reducing the accumulation of sucrose and, consequently,
productivity (Sachdeva et al., 2011). On the other hand,
average air temperatures below 21 °C during maturation
assist in the accumulation of sucrose, which can be a sti-
mulus for the beginning of this process (Araújo et al.,
2016)

The Brazilian National Institute of Meteorology
(INMET) has 779 meteorological stations distributed
throughout Brazil, with one station every 10,925 km2

(INMET, 2020). However, many of these stations have
measurement failures or do not provide important vari-
ables, such as maximum and minimum air temperature,
making studies of climate-agriculture relationships diffi-
cult (Bier and Ferraz, 2017). Different studies have been
carried out to fill this scarcity of climate data by estimating
the air temperature using variables that are easier to
access, such as geographic data (Baghban et al., 2016).

Latitude, longitude, and altitude depend on air tem-
perature and can be used for its estimation (Asfaw et al.,
2019; Chen et al., 2022; Medeiros et al., 2005). Several
authors have used these variables to estimate air tempera-
ture, for instance, Medeiros et al. (2005), who estimated
the average air temperature for the Northeast of Brazil
using multiple linear regression equations and obtained an
adjusted coefficient of determination (R2adj) of 0.87.

Capuchinho et al. (2019) estimated the maximum
(Tmax), minimum (Tmin), and average (Tavg) air tem-
peratures also using multiple linear regression techniques
and observed adjusted coefficients of determination ran-
ging from 0.66 to 0.82 for Tmax, 0.56 to 0.72 for Tmin,
and 0.66 to 0.74 for Tavg, with high precision and accu-

racy for the municipalities of Goiás. Another interesting
paper, by Yu et al. (2021), who used a geographically
weighted regression model to estimate the surface air tem-
perature lapse rate in mainland China, concluded that the
model had a strong predictive ability for surface air tem-
perature.

Sugar and bioenergy are mainly produced using
sugarcane (Karp et al., 2021; Menandro, 2016). Brazil is a
world leader in sugarcane production due to its edaphocli-
matic conditions and experience accumulated over the
years (Cursi et al., 2022; De Oliveira Bordonal et al.,
2018). Brazilian production in the 2018/2019 growing
season was 746 million tons in a harvested area of around
10 million hectares (IBGE, 2020). Sugarcane is grown in
all regions of Brazil, standing out the Southeast region,
which represents 55% of all national production (CONAB,
2019).

Thus, it is clear that there is a need for an alternative
way to collect air temperature in the sugarcane growing
regions of Brazil. Given the importance of climate studies
for sugarcane, coupled with the low number of meteo-
rological stations in these regions. Thus the objective of
this work is to estimate the maximum (Tmax) and mini-
mum air temperature (Tmin) for the main sugarcane pro-
ducing regions in Brazil.

2. Material and Methods
The study was carried out in 62 locations in Brazil

with a significant sugarcane production (Fig. 1). The
regions have 12 climate classes according to Köppen
(1948), in which the tropical zone “A” is the predominant
(Alvares et al., 2013). The Brazilian land area is
8,516,000 km2, divided into five regions: Midwest, North-
east, North, South, and Southeast. The maximum (Tmax)
and minimum air temperature (Tmin) data covered
30 years (1988-2018) and were collected from the
National Aeronautics and Space Administration/Predic-
tion of Worldwide Energy Resources (NASA/POWER
platform) (Duarte and Sentelhas, 2020).

Multiple linear regression models were used to esti-
mate Tmax and Tmin, using the least-squares method
(Eq. (1)). The Dependent Variables consisted of Tmax and
Tmin, while the Independent Variables consisted of the
latitudes (decimal degrees), longitudes (decimal degrees),
and altitudes (m). These variables were used to facilitate
the use of the models. The models were calibrated by
regions and months for high accuracy.

Y = a1:X1þ a2:X2þ a3:X3þ…ap:Xp ð1Þ

where Y is the dependent or predicted variable, X1, X2, X3,
…, Xp are the independent or explanatory variables, and
a1, a2, a3, …, ap are the regression coefficients. Thus, the
regression coefficients can be defined by the least-squares
method from a set of n values of the variable Y associated
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with the corresponding n observations of the p indepen-
dent variables.

Boxplot charts were constructed with the mean, me-
dian, and outliers of the maximum and minimum air tem-
perature data, as this type of chart assists in analyzing the
data distribution (Kampstra, 2008).

The comparison between the estimation models and
the actual data was performed using the statistical indices
accuracy and precision. Accuracy consists of how close
the estimation is to the observed value, being evaluated by
the mean absolute percentage error (MAPE) (Eq. (2)).
Precision is the model's ability to repeat the estimation,
being evaluated by the adjusted coefficient of determina-
tion (R2adj), according to Cornell and Berger (1987)
(Eq. (3)).

R2adj= 1−
1−R2
� �

× n− 1ð Þ

N − k − 1

� �

ð2Þ

MAPE(%)=

Pn
i= 1 :

Yesti −Yobsi
Yobsi

�
�
�

�
�
�× 100

� �

N
ð3Þ

where Yesti is the estimated air temperature, Yobsi is the
observed air temperature, n is the number of data points,
and k is the number of independent variables in the regres-
sion.

Maps of variation of the minimum and maximum air
temperature between the sample points were generated to
verify the distribution of the data, using the geographic in-

formation system (GIS). The flowchart explaining the
steps of the work can be seen in Fig. 2.

3. Results and Discussion
The maximum and minimum air temperatures in the

studied locations ranged from 23 to 33 °C and 8 to 24 °C,
respectively (Fig. 3). July showed the lowest values of
Tmin (16.75 °C) and Tmax (26.06 °C). January had the
highest Tmin (22.20 ° C) and October, the highest Tmax
(31.56 °C). August (11.45 °C) and September (11.52 °C)
presented the highest average thermal amplitude. Ramos
et al. (2018) observed a high amplitude in the North and
South regions, as reported in this study. Moraes et al.
(2020) also observed similar temperature variations in the
North of Brazil.

The regions showed different average values for
Tmax and Tmin over the year. Municipalities located in the
Northeast had the highest Tmax, with an average of
31.32 ± 3.28 °C. November and December were the
warmest months in the region, with averages of
31.01 ± 3.47 °C and 31.03 ± 2.71 °C, respectively
(Fig. 3B). Guimarães et al. (2016) found similar results.
The Southeast region showed a significant decrease in
Tmin and Tmax from May to September, as reported by
Aparecido et al. (2014).

The locations Santo Amaro das Brotas (SE) and São
Luís do Quitunde (AL) showed the highest average values
for Tmax, with averages of 32.47 ± 2.82 °C and
32.53 ± 2.93 °C, respectively. These temperatures are

Figure 1 - Locations used in the study and municipal sugarcane production in Brazil.
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within the appropriate range for good sugarcane develop-
ment (Teodoro 2015). The municipality of Santo Amaro
das Brotas (SE) stood out with expressive sugarcane pro-
duction, reaching 1.3 million tons (IBGE, 2018).

The estimated and actual Tmax and Tmin on a
national scale were compared for the analyzed munici-
palities. The estimation model was close to reality in most
locations (Figs. 4-5, Tables 1 and 2).

The precision (R2adj) and accuracy (MAPE) of the
Tmin estimation models showed a high variation relative
to the regions and months (Table 1). Models from the
Midwest and Northeast regions showed less accuracy,
with MAPE values of 0.76 ± 0.18 and 5.50% ± 291, res-
pectively. The Northeast presented values of 0.71 ± 0.13
and 6.44% ± 3.68, respectively. On the other hand, the
models calibrated for the North and Southeast showed
higher precision, with R2adj values of 0.93 ± 0.05 and
0.78 ± 0.19. These regions also showed higher accuracy,

with an average MAPE of 3.92% ± 2.48 for the North and
2.94% ± 1.37 for the Southeast. A MAPE value below 5%
is considered low, as described by Aparecido et al. (2020);
Moreto and Rolim, (2015).

Latitude was the variable that most influenced the
Tmin estimation in the Southeast and Midwest. A 10° va-
riation in latitude led to a Tmin variation of around 2.8 °C
in the Southeast and 2.3 °C in the Midwest (Table 1). In
October, latitude showed a strong influence on the Tmin
estimation for the Northeast and South (p < 0.05), with
Tmin varying around 1.16 and 2.46 °C, with an increase of
10° in latitude, respectively.

In general, May, June, and July showed the highest
precision (Fig. 4), with average adjusted coefficients of
determination (R2adj) of 0.92 ± 0.07, 0.88 ± 0.11, and
0.89 ± 0.14, respectively. On the other hand, January,
February, and March presented the most accurate models
(Fig. 5A,B,C), with average MAPE values of 2.20 ± 0.67,

Figure 2 - Flowchart representing the stages for the accomplishment of the work.
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1.92 ± 0.81, and 2.92 ± 0.57, respectively. Moreover,
these months had high precision, with average R2adj
values of 0.86 (0.09) for January, 0.86 ± 0.05 for Feb-
ruary, and 0.85 ± 0.09 for March. Lima and Ribeiro
(1998) concluded that these months have the highest
adjusted coefficient of determination when estimating
Tmin, but the model precision was lower, with values of
0.77 for January, 0.84 for February, and 0.82 for March.

The regions with the highest and lowest MAPE in
January were Southeast (1.28) and North (2.75). The cold-
est month (June) presented the lowest average accuracy
(7.73) (Fig. 3G), varying from 4.17 to 12.44, which corre-
spond to the Southeast and Northeast, respectively. The
Tmin estimation model with the highest precision (0.92)
and highest accuracy (0.76) was observed for the North in
February (Fig. 4B).

The precision and accuracy of the calibrated models
to estimate Tmax varied according to the regions and pe-
riod of the year (Fig. 5, Table 2). The North and Southeast
regions had the highest average values for the adjusted
coefficient of determination, with values of 0.92 ± 0.06
and 0.82 ± 0.04. Also, the models of these regions pre-
sented the highest accuracy, with average MAPE values of
1.27 ± 1.26 and 1.09 ± 0.82 for the North (Table 2). Con-
versely, the models of the Northeast and Midwest showed
the lowest precision and accuracy, with average R2adj and

MAPE values of 0.29 ± 0.13 and 5.96 ± 1.79 for the
Northeast and 0.53 ± 0.22 and 4.75 ± 4.47 for the Mid-
west. Antonini et al. (2009) calibrated models to estimate
the air temperature in the state of Goiás (Midwest region)
and obtained an intermediate precision (R2adj from 0.60
to 0.62) when subjected to high and low altitudes.

The models calibrated for the Midwest and South-
east in December showed that the latitude factor had the
highest influence in the Tmax estimation, as observed by
coefficients of the regression equation. In this case, a 10°
increase in latitude led to a variation of 2.85 and 4.68 °C,
respectively, in Tmax estimation. The models calibrated
for the Southeast and North region were significant. The
regression equations of locations in the Northeast showed
an increase in R2adj for April, June, July, and August, a
trend also observed by Medeiros et al. (2005).

The models calibrated for January, June, and July
obtained higher precision, with R2adj values of
0.72 ± 0.31, 0.72 ± 0.27, and 0.71 ± 0.28, respectively
(Fig. 5A, G, I). On the other hand, November (0.56),
March (0.58), and April (0.61) showed the lowest preci-
sion (Fig. 4C, D). The average accuracy of the models
calibrated for the summer months was higher than the
other months of the year, with MAPE values of
1.95% ± 1.91 for December, 1.62% ± 1.45 for January,
and 1.69% ± 1.56 for February. In contrast, the models for

Figure 3 - Seasonal distribution of minimum and maximum air temperatures for locations grouped by regions in Brazil. Legend: A) North, B) Northeast,
C) Midwest, D) South, and E) Southeast.
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Figure 4 - Relationship of the estimated and actual minimum air temperature in Brazil as a function of the month: A) January, B) February, C) March,
D) April, E) May, F) June, G) July, H) August, I) September, J) October, K) November, and L) December.
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Figure 5 - Relationship of the estimated and actual maximum air temperature in Brazil as a function of the month: A) January, B) February, C) March,
D) April, E) May, F) June, G) July, H) August, I) September, J) October, K) November, and L) December.
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Table 1 - Models calibrated to estimate the minimum air temperature in Brazil for each region and as a function of the months of the year.

Region Model p-value Mape (%) R2adj

January

North 0.045LAT + 0.234LONG + 0.002ALT + 26.574 0.002 2.75 0.96

Northeast 0.025LAT + 0.038LONG - 0.004ALT + 25.804 0.001 2.54 0.74

Midwest 0.067LAT + 0.042LONG - 0.004ALT + 26.826 0.001 2.73 0.80

Southeast 0.048LAT + 0.081LONG - 0.002ALT + 27.024 0.022 1.28 0.89

South 0.064LAT + 0.056LONG - 0.003ALT + 26.70 0.002 1.69 0.91

Average 2.20 0.86

Fevereiro

North 0.044LAT + 0.228LONG - 0.001ALT + 26.768 0.001 0.76 0.92

Northeast 0.037LAT + 0.049LONG - 0.006ALT + 26.439 0.001 2.53 0.80

Midwest 0.093LAT + 0.072LONG + 0.002ALT + 27.672 0.001 2.83 0.84

Southeast 0.325LAT - 0.446LONG - 0.002ALT + 5.153 0.042 1.70 0.85

South 0.101LAT + 0.079LONG - 0.003ALT + 28.865 0.003 1.79 0.89

Average 1.92 0.86

March

North 0.222LAT + 0.157LONG + 0.004ALT + 32.249 0.001 3.37 0.97

Northeast 0.076LAT + 0.075LONG - 0.005ALT + 27.999 0.001 3.42 0.75

Midwest 0.041LAT + 0.036LONG - 0.007ALT + 26.520 0.001 3.2 0.84

Southeast 0.110LAT + 0.125LONG + 0.000ALT + 29.410 0.077 2.41 0.79

South 0.099LAT + 0.115LONG + 0.005ALT + 29.235 0.086 2.22 0.88

Average 2.92 0.85

April

North 0.057LAT + 0.055LONG + 0.028ALT + 21.458 0.001 2.69 0.87

Northeast 0.209LAT + 0.234LONG - 0.008ALT + 34.782 0.001 2.61 0.87

Midwest 0.276LAT + 0.270LONG - 0.006ALT + 42.265 0.154 3.77 0.39

Southeast 0.235LAT + 0.340LONG - 0.007ALT + 40.769 0.024 2.49 0.89

South 0.303LAT + 0.285LONG - 0.001ALT + 40.399 0.048 2.33 0.71

Average 2.78 0.75

May

North 0.068LAT + 0.273LONG - 0.009ALT + 28.155 0.001 7.43 0.93

Northeast 0.259LAT + 0.193LONG - 0.002ALT + 33.666 0.001 8.22 0.79

Midwest 0.305LAT + 0.287LONG +0.002ALT + 36.682 0.001 4.75 0.94

Southeast 0.031LAT + 0.061LONG - 0.018ALT + 5.153 0.011 3.51 0.92

South 0.101LAT + 0.079LONG - 0.003ALT + 26.807 0.001 4.73 0.96

Average 5.73 0.91

June

North 0.403LAT + 0.356LONG + 0.005ALT + 40.268 0.001 9.84 0.93

Northeast 0.149LAT + 0.157LONG - 0.010ALT + 30.417 0.001 12.44 0.69

Midwest 0.226LAT + 0.226LONG - 0.006ALT + 33.068 0.001 6.63 0.91

Southeast 0.282LAT + 0.223LONG - 0.001ALT + 33.407 0.011 4.17 0.92

South 0.350LAT + 0.402LONG - 0.001ALT + 40.278 0.002 5.56 0.94

Average 7.73 0.88

(continued)
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Table 1 - continued

Region Model p-value Mape (%) R2adj

July

North 0.301LAT + 0.301LONG + 0.005ALT + 33.227 0.001 3.68 0.95

Northeast 0.045LAT + 0.234LONG + 0.002ALT + 32.023 0.001 13.03 0.65

Midwest 0.231LAT + 0.217LONG - 0.005ALT + 31.935 0.001 6.32 0.93

Southeast 0.097LAT + 0.146LONG - 0.008ALT + 27.720 0.002 1.28 0.96

South 0.359LAT + 0.343LONG + 0.002ALT + 37.720 0.002 5.40 0.96

Average 5.94 0.89

August

North 0.044LAT + 0.228LONG - 0.001ALT + 26.768 0.001 3.35 0.98

Northeast 0.037LAT + 0.049LONG - 0.006ALT + 26.439 0.001 7.25 0.84

Midwest 0.213LAT + 0.160LONG - 0.004ALT + 30.729 0.002 10.27 0.76

Southeast 0.010LAT - 0.054LONG - 0.008ALT + 22.185 0.163 5.85 0.69

South 0.262LAT + 0.222LONG - 0.003ALT + 34.141 0.023 8.60 0.76

Average 7.06 0.81

September

North 0.273LAT + 0.275LONG + 0.005ALT + 33.853 0.001 4.86 0.96

Northeast 0.225LAT + 0.201LONG + 0.001ALT + 31.826 0.001 7.45 0.74

Midwest 0.068LAT + 0.084LONG - 0.009ALT + 27.517 0.097 11.8 0.45

Southeast 0.124LAT + 0.036LONG - 0.0001ALT + 25.259 0.075 3.7 0.79

South 0.230LAT + 0.252LONG + 0.001ALT + 35.316 0.114 9.54 0.6

Average 7.47 1.19

October

North -0.720LAT + 1.050LONG + 0.000ALT + 6.336 0.001 2.33 0.91

Northeast 0.116LAT + 0.090LONG - 0.002ALT + 28.341 0.016 8.05 0.41

Midwest 0.184LAT + 0.167LONG + 0.004ALT + 30637 0.002 5.86 0.67

Southeast -0.025LAT - 0.030LONG - 0.012ALT + 22.278 0.672 4.01 0.29

South 0.246LAT + 0.238LONG + 0.004ALT + 35.660 0.010 4.63 0.83

Average 4.98 0.62

November

North 0.491LAT + 0.338LONG + 0.003ALT + 48.038 0.001 2.09 0.96

Northeast 0.088LAT + 0.106LONG - 0.002ALT +28.343 0.003 6.17 0.51

Midwest 0.055LAT + 0.022LONG - 0.007ALT + 25.817 0.002 4.02 0.80

Southeast 0.030LAT + 0.017LONG - 0.003ALT + 24.332 0.291 2.93 0.57

South 0.164LAT + 0.130LONG - 0.001ALT+ 31.038 0.027 4.04 0.76

Average 3.85 0.72

December

North -0.334LAT + 1.120LONG - 0.004ALT + 30.735 0.001 3.87 0.92

Northeast 0.098LAT + 0.075LONG - 0.001ALT + 27.831 0.001 3.62 0.67

Midwest 0.070LAT + 0.047LONG - 0.004ALT + 27.078 0.001 3.86 0.78

Southeast 0.015LAT + 0.045LONG - 0.005ALT + 25.294 0.107 1.92 0.75

South 0.069LAT + 0.003LONG - 0.001ALT + 26.167 0.001 1.81 0.93

Average 3.02 0.81
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Table 2 - Models calibrated to estimate the maximum air temperature in Brazil for each region and as a function of the months of the year.

Region Model p-value Mape (%) R2adj

January

North 0.547LAT + 0.574LONG - 0.0961ALT + 89.657 0.001 0.44 0.94

Northeast 0.080LAT + 0.046LONG + 0.008ALT + 32.758 0.194 4.10 0.19

Midwest -0.331LAT - 0.329LONG - 0.002ALT + 7.252 0.001 1.49 0.85

Southeast -0.348LAT - 0.474LONG - 0.003ALT + 3.812 0.024 0.75 0.88

South -0.213LAT - 0.223LONG - 0.001ALT + 14.665 0.038 1.30 0.73

Average 1.62 0.72

Fevereiro

North 0.388LAT + 0.409LONG -0.061ALT + 70.561 0.001 0.54 0.94

Northeast 0.077LAT + 0.058LONG + 0.006ALT + 32.987 0.339 4.38 0.14

Midwest -0.297LAT - 0.296LONG - 0.002ALT + 9.182 0.001 1.25 0.86

Southeast -0.325LAT - 0.446LONG - 0.002ALT + 5.153 0.036 0.74 0.86

South 0.180LAT - 0.189LONG +0.001 + 16.488 0.084 1.55 0.64

Average 1.69 0.69

March

North 0.119LAT + 0.122LONG - 0.002ALT + 37.775 0.001 0.55 0.94

Northeast 0.055LAT + 0.043LONG + 0.003ALT + 32.273 0.574 4.71 0.08

Midwest -0.228LAT - 0.217LONG - 0.004ALT + 15.325 0.009 1.61 0.67

Southeast 0.118LAT + 0.245LONG - 0.005ALT + 42.910 0.016 1.31 0.91

South -0.036LAT - 0.052LONG - 0.0001ALT + 26.876 0.513 1.78 0.30

Average 1.99 0.58

April

North 0.381LAT + 0.398LONG - 0.053ALT + 68.086 0.001 0.87 0.85

Northeast 0.108LAT + 0.096LONG + 0.007ALT + 33.548 0.101 4.05 0.24

Midwest -0.101LAT - 0.100LONG - 0.003ALT + 23.324 0.028 17.76 0.58

Southeast -0.033LAT - 0.017LONG - 0.004ALT + 28.823 0.036 0.80 0.86

South 0.140LAT + 0.120LONG + 0.003ALT + 37.322 0.221 2.21 0.50

Average 5.14 0.61

May

North 0.902LAT + 0.953LONG - 0.162ALT + 130.111 0.001 4.86 0.77

Northeast 0.194LAT + 0.162LONG + 0.013ALT + 35.642 0.001 4.11 0.53

Midwest 0.278LAT + 0.273LONG - 0.005ALT + 50.152 0.292 3.40 0.30

Southeast 0.433LAT + 0.615LONG - 0.007ALT + 63.771 0.013 1.10 0.91

South 0.382LAT + 0.362LONG - 0.0006ALT + 53.591 0.022 2.06 0.78

Average 3.11 0.66

June

North 1.987LAT + 2.103LONG - 0.397ALT + 260.834 0.001 1.13 0.97

Northeast 0.211LAT + 0.154LONG + 0.0159ALT + 34.660 0.001 5.69 0.50

Midwest 0.465LAT - 0.458LONG - 0.007ALT + 64.308 0.205 5.16 0.35

Southeast 0.720LAT + 1.033LONG - 0.006ALT + 86.847 0.010 1.31 0.93

South 0.506LAT + 0.484LONG - 0.0008ALT + 61.616 0.008 2.42 0.84

Average 3.14 0.72

(continued)
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Table 2 - continued

Region Model p-value Mape (%) R2adj

July

North 2.994LAT + 3.168LONG - 0.615ALT + 383.084 0.001 1.13 0.94

Northeast 0.200LAT + 0.123LONG + 0.018ALT + 33.052 0.009 7.23 0.40

Midwest 0.618LAT + 0.604LONG - 0.008ALT + 76.652 0.134 6.00 0.41

Southeast 0.855LAT + 1.233LONG + 0.006ALT 98.729 0.010 1.31 0.93

South 0.623LAT + 0.598LONG - 0.001ALT + 70.626 0.005 2.63 0.87

Average 3.66 0.71

August

North 2.547LAT + 2.682LONG - 0.513ALT + 330.612 0.001 2.30 0.91

Northeast 0.155LAT + 0.055LONG + 0.021ALT + 30.777 0.041 8.52 0.31

Midwest 0.183LAT + 0.184LONG + 0.001ALT + 44.427 0.323 6.07 0.25

Southeast 0.848LAT + 1.247LONG - 0.006ALT + 101.551 0.014 1.16 0.91

South 0.669LAT + 0.641LONG - 0.0002 + 79.397 0.006 2.82 0.86

Average 4.17 0.65

September

North 1.935LAT + 2.023LONG - 0.367ALT + 255.211 0.001 1.33 0.98

Northeast 0.145LAT + 0.036LONG + 0.023ALT + 31.192 0.052 8.60 0.29

Midwest 0.540ALT + 0.529LONG - 0.006ALT + 75.108 0.134 4.56 0.41

Southeast 0.778LAT + 1.165LONG -0.006ALT + 98.636 0.021 1.12 0.89

South 0.648LAT + 0.617LONG + 0.0005ALT + 76.627 0.012 2.94 0.82

Average 3.71 0.68

October

North 1.893LAT + 1.978LONG - 0.369ALT + 251.344 0.001 1.22 0.98

Northeast 0.109LAT + 0.008LONG + 0.019ALT + 31.273 0.101 7.82 0.24

Midwest 0.127LAT + 0.130LONG - 0.003ALT + 43.894 0.122 2.89 0.43

Southeast 0.051LAT + 0.463LONG - 0.003ALT + 41.353 0.067 0.91 0.80

South 0.493LAT + 0.457LONG + 0.0008ALT + 65.75 0.029 2.65 0.76

Average 3.10 0.64

November

North 0.611LAT + 0.631LONG - 0.106ALT + 98.090 0.001 0.58 0.89

Northeast 0.217LAT + 0.130LONG + 0.019ALT + 37.309 0.019 7.12 0.34

Midwest -0.062LAT - 0.064LONG - 0.005ALT + 29.249 0.150 5.06 0.43

Southeast -0.097LAT - 0.067LONG - 0.005ALT + 27.812 0.004 0.84 0.81

South 0.142LAT - 0.154LONG + 0.010ALT + 15.386 0.001 2.71 0.30

Average 3.26 0.56

December

North 0.968LAT + 1.018LONG - 0.189ALT + 141.114 0.001 0.26 0.98

Northeast 0.098LAT + 0.032LONG + 0.013ALT + 32.971 0.072 5.18 0.26

Midwest -0.285LAT - 0.285LONG -0.003ALT + 11.381 0.001 1.72 0.80

Southeast -0.469LAT - 0.646LONG - 0.003ALT - 4.695 0.017 0.85 0.90

South 0.008LAT - 0.005LONG - 0.0007ALT + 31.946 0.783 1.73 0.15

Average 1.95 0.62
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Figure 6 - Spatialization of the estimated minimum air temperature in Brazil for each month of the year.
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Figure 7 - Spatialization of the estimated maximum air temperature in Brazil for each month of the year.
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April, August, and October showed the lowest accuracy,
with MAPE values of 5.14% ± 7.18, 4.17% ± 3.04, and
3.71% ± 3.07, respectively (Fig 5E, H, J).

The models calibrated for December performed bet-
ter in the Southeast (MAPE = 0.85% and R2adj = 0.92)
and Midwest (MAPE = 1.72% and R2adj = 0.80). Bardin
et al. (2010) found similar values for the Southeast region,
with higher R2adj values also in December. October had
the highest Tmax values for the North and Southeast and
showed the best accuracies, with MAPE values of 1.31
and 1.22%, respectively (Fig. 5F, G, H, I, J).

The spatial variation of the predicted Tmin is shown
in Fig. 6. In the South, the actual Tmin varied from 9 to
24 °C over the year, demonstrating its aptitude for sugar-
cane cultivation (Gouvêa et al., 2009). Moreover, the
Midwest region showed Tmin values above 13 °C, as
observed in the municipalities of Rio Brilhante (MS),
Itumbiara (GO), and Cáceres (MT) (Fig. 6). With high
accuracy, the regressive models could predict all the tem-
poral variation of minimum temperatures for the sugar-
cane regions in the Midwest (Fig. 6).

A relatively low deviation was observed between the
actual and the estimated Tmin in all locations over the
year, with an average of 0.029 ± 0.13 (Fig. 8). June to
September showed the highest deviations between loca-
tions, with a difference of up to −3.5 and 2 °C. The loca-
tions in the North region showed the highest deviations,
with an annual average of 0.15 ± 0.45 °C, with a wide
variation between the months of the year. The munici-
palities in the South region of Brazil, on the other hand,
had the lowest deviations, with an annual average of
0.018 ± 0.13 °C, with the municipalities of Roque Gon-
zales, Porecatu, and Paranacity presenting the lowest
values (Fig. 8). These three municipalities have an expres-
sive sugarcane production, reaching values of 0.33, 0.833,
and 1 million tons, respectively (IBGE 2018). Thus, the
models can assist in monitoring the phenological crop
stages and in the decision making (Dos Santos Almeida et
al., 2008).

The actual and estimated annual average Tmax in
sugarcane regions was 29.48 ± 1.62 °C and
29.60 ± 1.67 °C, respectively (Fig. 7). October presented
the highest Tmax and estimated Tmax, with annual avera-
ges of 31, 47, and 31.50 °C, respectively. The munici-
palities of the Midwest region had the highest Tmax, with
an annual average of 30.33 ± 1.9 °C, standing out the
municipalities of Diamantina (MT), Aparecida do
Taboado (MS), and Sidrolândia (MS) (Fig. 7).

The difference between Tmax and estimated Tmax is
shown in Fig. 8. The annual average deviation of all loca-
tions was −0.12 ± 0.35 °C, with April showing the highest
variation between Tmax and the estimated Tmax, with a
value of −1.19 °C, and July with the lowest average value
(−0.002 °C). The highest deviations occurred in locations
of the Midwest region, with an average of

−0.52 ± 1.30 °C, while the lowest deviations were found
in municipalities of the North region, with an average of
−0.19 ± 0.72 °C. In this case, Plácido de Castro (AC) pre-
sented the lowest deviation among all locations, with an
average value of 0.001 °C (Fig. 8). This municipality has
undergone several changes in its soil cover in recent years
(Delgado et al., 2012). Therefore, the model calibrated for
the region could assist in the choice of species for its
reforestation (Hobbs et al., 2016).

Regarding the Maximum Air Temperature, a clear
separation of the locations into three groups (clusters) was
observed (Fig. 9). The green group presented the lowest
temperatures, being formed by Japoatã (SE) and Campo
Alegre (AL), with an average of 22.78 ± 0.24 ºC. The red
group had medium temperatures, formed by 50 cities, such
as Pacatuba (SE), Jaboticabal (SP) and Porto Xavier (RS),
with an average of 29.18 ± 0.92 ºC. On the other hand, the
blue group showed the highest maximum air temperatures,
with an average of 32.29 ± 0.85 ºC, formed by 8 cities,
such as Presidente Kennedy (ES), Rio Brilhante (MS) and
Juazeiro (BA).

On the other hand, for the minimum air temperature
values, there was a separation of the studied localities into
two groups (clusters) (Fig. 10). The Red cluster presented
the lowest minimum temperature values, with an average
of 17.90 ± 1.66 °C, being formed by 33 cities, such as
Campo Alegre (AL), Roque Gonzales (RS) and Sidro-
lândia (MS). The green group presents higher minimum
temperature values, having an average of 22.92 ± 0.91 °C,
with 27 cities in the group, such as Paracuru (CE), La-
ranjeiras (SE) and Porecatu (PR).

The variation between the actual and estimated
values of maximum and minimum air temperature showed
some months with larger errors (Fig. 11). For maximum
air temperature, the average deviation was 0.033 ± 1.87,
with values ranging from −7.77 to 8.87 (Fig. 11A).
August was the month with the largest deviations, with
−0.120 ± 3.37, while December showed the smallest
deviations, with an average of -0.004 ± 1.46. As for the
minimum air temperature, the average deviation was
0.65 ± 2.43, ranging from -6.28 to 8.96 (Fig. 11B). Jan-
uary was the month with the largest deviations, with an
average of 5.459 ± 2.44 and February was the month with
the smallest deviations, with an average of 0.306 ± 1.02.
Thus, the period that showed the lowest deviations from
the actual and estimated air temperature was December to
April, with a greater deviation during winter, from June to
September.

4. Final Considerations
It is possible to estimate Tmax and Tmin as a func-

tion of the coordinates and altitudes for the entire Brazi-
lian territory. The MAPE and R2 values showed accuracy
and precision in the models for the estimated maximum
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Figure 8 - Spatialization of the deviation between estimated and actual maximum and minimum air temperature in Brazil.
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Figure 9 - Dendrogram for the identification of maximum temperature groups of the largest sugarcane producing locations.
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Figure 10 - Dendrogram for the identification of minimum temperature groups of the largest sugarcane producing locations.
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and minimum temperatures, indicating that the equations
can be used to estimate the temperatures in sugarcane
areas.

The models for estimating maximum temperature
demonstrate precision between 0.40 and 0.9, whereas the
minimum temperature varied from 0.57 to 0.98. The low-
est MAPE values of the models for the estimation of mini-
mum air temperatures are 0.76, 0.97, and 1.21%,
occurring in the North and Southeast in February, March,
and January, respectively.

The lowest MAPE values for the estimation models
of the maximum air temperature are 0.74, 0.75, and 0.80%
for locations in the Southeast region in February, January,
and April, respectively. January, February, and March
have the highest accuracy for Tmax and Tmin.

The Tmin estimation model for the Southeast region
in July shows the best performance, with a MAPE value of
1.28 and an R2adj of 0.94. The Tmax model of the North
region for September presents higher precision and accu-
racy, with values of 1.28 and 0.96, respectively.
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