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ABSTRACT
To eliminate the fast gravitational waves of great amplitude, which are not observed in the real 
atmosphere, the initial fi elds for numerical schemes of atmosphere forecasting and modeling systems 
are usually adjusted dynamically by applying balance relations. In this study we consider different 
forms of the balance equations and for each of them we detect the nonelliptic regions in the gridded 
atmosphere data of the Southern Hemisphere. The performed analysis reveals the geographical, 
vertical and zonally averaged distributions of nonelliptic regions with the most concentration in the 
tropical zone. The area of these regions is essentially smaller and less intensive for more complete 
and physically justifi ed balance relations. The obtained results confi rm the Kasahara’s assumption that 
ellipticity conditions are violated in the actual atmospheric fi elds essentially due to approximations 
made under deriving the balance equations.
Keywords: balance equations, initialization methods, nonelliptic regions

RESUMO: SOBRE REGIÕES NÃO ELÍPTICAS E SOLVABILIDADE DE EQUAÇÕES DE 
BALANÇO PARA DINÂMICA DA ATMOSFERA.
Para eliminar as ondas gravitacionais rápidas de grande amplitude, as quais não se observam na 
atmosfera real, os campos iniciais para esquemas numéricos de sistemas de modelagem e previsão 
atmosférica são usualmente ajustados dinamicamente aplicando as relações de balanço. Neste estudo 
consideramos formas diferentes de equações de balanço e para cada uma dessas detectamos as regiões 
não elípticas nos dados atmosféricos do Hemisfério Sul. A analise realizada mostra a distribuição 
geográfi ca, vertical e média zonal de regiões não elípticas com maior concentração na zona tropical. 
A área dessas regiões é essencialmente reduzida e a intensidade é visivelmente menor para as 
relações de balanço mais completas e fi sicamente justifi cáveis. Os resultados obtidos confi rmam a 
suposição de Kasahara de que as condições de ellipticidade são violadas nos campos atmosféricos 
reais essensialmente devido às aproximações feitas em dedução das equações de balanço.
Palavras-chave: equações de balanço, métodos de inicialização, regiões não elípticas

1. INTRODUCTION

Numerical weather prediction, which is the core 
activity of atmospheric research and operational centers, 
consists basically of computation of solution to a set of partial 
differential equations expressing the conservation laws of mass, 
momentum and energy for compressible continuum medium 
in the non-inertial system related to a rotating sphere. The 
chosen differential model is solved numerically as initial value 
(or initial-boundary value) problem, requiring the defi nition 

of initial data. Data assimilation schemes supply these initial 
conditions, but they may not be well dynamically adjusted, 
which means that fast oscillations of great amplitude, which 
are not observed in the real atmosphere, are generated at the 
initial stages of the numerical solution. These oscillations may 
contaminate physically meaning solution up to some days 
of forecast depending on the mechanisms of physical and 
computational diffusion included in the model. The process of 
adjusting the initial data to the prediction model to ensure small 
amplitudes of the fast waves is called initialization.
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The long history of balance relations aimed to adjust the 
initial data may be traced back to the famous nonlinear balance 
equation by Charney (1955). A review of various initialization 
procedures, including nonlinear balance and omega equations, 
developed up to mid 70’s, is given by Bengtsson (1975). The 
current approaches to initial adjustment include nonlinear 
normal mode initialization (NMI) introduced by Machenhauer 
(1977) and Baer and Tribbia (1977), boundary derivative 
method (BDM) presented fi rst by Browning et al. (1980) and 
digital fi lter technique proposed by Lynch et al. (e.g., Lynch 
and Huang 1992). One of the most effective versions of the 
NMI is the vertical (or implicit) normal mode initialization 
(Bourke and McGregor 1983, Temperton 1988, Fillion and 
Roch 1992), which is equivalent to BDM approach (Kasahara 
1982, Bijlsma and Hafkenscheid 1986, McGregor and Bourke 
1988).

In his seminal paper, Daley (1981) presented the 
basic concepts of initialization and formulated a series of 
problems whose solution may improve understanding the 
principal properties of initialization equations. In this study we 
investigate one of these issues: the non-ellipticity of the balance 
diagnostic relations under fi xed pressure fi eld, so-called pressure 
(geopotential) constrained initialization. In the last years the 
initialization procedure was dropped in some atmospheric 
centers due to increased quality of observational network and 
objective analysis. Even having this tendency, the solution of the 
stated problem is important on its own because it could clarify 
a nature of the balance involving atmospheric fi elds.

The fi rst studies of the ellipticity conditions for balance 
relations were made by Charney (1955) and Houghton (1968) 
in the case of nonlinear balance equation on the f-plane and on 
the sphere. Since the last equation is the particular case of the 
Monge-Amper equation (Charney 1955, Kasahara 1982), these 
studies essentially were the applications of the well-developed 
theory of Monge-Ampere equation.

The first theoretical study on the non-ellipticity of 
simplifi ed NMI/BDM equations was presented by Tribbia 
(1981), who constructed theoretical example demonstrating that 
a certain restriction on meteorological fi elds must be satisfi ed 
in order to obtain a solution of the initialization system with 
fi xed geopotential. He used the model of isolated barotropic 
vorticity on the f-plane and obtained that this restriction is 
close to ellipticity condition of the nonlinear balance equation. 
The violation of ellipticity condition can lead to the divergence 
of the iterative method of solving the NMI/BDM equations 
when the height constrained initialization is required. This 
problem was fi rst reported by Daley (1978) when applying 
Machenhauer iteration procedure to the shallow water equations. 
The speculations about the reasons for this problem centered 
on two possibilities: the shortcomings of applied iterative 

algorithms and the mathematical inconsistency of the boundary 
value problem due to existence of nonelliptic regions in the 
real atmospheric data (Daley 1981, Tribbia 1981, Errico 1983, 
Rasch 1985).

Among different studies on nonelliptic regions in the 
isobaric height fi elds we should note the papers by Kasahara 
(1982), Paegle et al. (1983) and Knox (1997), and discussion 
of the respective issues by Daley (1991). As it was pointed out 
by Kasahara (1982), in the past the occurrence of these regions 
used to be considered as a result of observational inaccuracies 
even though the changes made to recover ellipticity criterion 
sometimes exceeded probable data errors, specially at higher 
levels. Probably, Kasahara (1982) was the fi rst who stated in 
an explicit way that the ellipticity condition is a mathematical 
constraint on atmospheric fi elds, which can produce nonelliptic 
regions, and, consequently, impossibility of the required 
balance, simply because the assumptions made in deriving 
the balance relations could be not totally satisfi ed in real 
atmosphere. Therefore, one of the points of the different studies 
(e.g., Kasahara 1982, Paegle et al. 1983, Randel 1987 and Knox 
1997) is to “adjust” ellipticity conditions by including the terms 
neglected in nonlinear balance relations. The new conditions, 
called realizability conditions, have essentially reduced the area 
of nonelliptic regions supporting the Kasahara’s supposition. 
However this approach is based on evaluation of the contribution 
of different terms of the primitive divergence equation for 
possibly recovering the ellipticity of regions rather than on the 
consistent system of balance relations. The only considered 
balance equation was the nonlinear balance equation on the 
f-plane or on the sphere.

In the recent years some new and more complex 
mathematical criterions of ellipticity have been obtained for 
NMI/BDM equations, which are much more general balance 
system based on more accurate and reliable assumptions than 
nonlinear balance equation (Bourchtein 2002, Bourchtein 2006). 
In this way, many terms neglected in the derivation of the 
nonlinear balance equation have been recovered in NMI/BDM 
equations. Therefore, one can expect that respective ellipticity 
conditions should be more soft and related nonelliptic regions 
should be more scarce in order to confi rm the Kasahara’s 
statement.

In the present study we compare nonelliptic regions 
related to nonlinear balance equation (on the  f-plane and 
sphere) and NMI/BDM equations for the shallow water 
model. In section 2 we present the NMI/BDM equations for 
the shallow water model and give a brief exposition of the 
respective ellipticity conditions. The results of the evaluation 
of nonelliptic regions in South Hemisphere for different 
balance relations are presented in section 3 followed by 
concluding remarks in section 4.
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2. BALANCE EQUATIONS AND ELLIPTICITY 
CONDITIONS

In local Cartesian coordinates x, y the classic nonlinear 
balance equation on a tangent plane has the form (Charney 
1955)

f xx yy xy∇ + −( ) − ∇ =2 2 22 0ψ ψ ψ ψ Φ ,  (1)

where ψ is the streamfunction, Φ is the geopotential, f
_
 is a 

chosen value of the Coriolis parameter f, and ∇2 is the Laplace 
operator. Considered as equation for the streamfunction with a 
given geopotential fi eld, it is a special case of Monge-Ampere 
equation. If this equation is to be solved on bounded domain 
D with imposed values of the streamfucntion on the boundary 
∂D, then the problem is well posed only if the equation is of 
elliptic type. It requires the ellipticity condition to be satisfi ed, 
which has the following form for equation (1):
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Similarly, using spherical coordinates λ (longitude) and 
ϕ (latitude), the nonlinear balance equation assumes the form 
(Houghton 1968)
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where a is the Earth’s radius, f = 2Ω sin ϕ, b = 2Ω cos ϕ/ a, Ω 
is the angular velocity of the Earth’s rotation and u and v are 
the longitudinal and meridional components, respectively, of 
nondivergent wind, that is,
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Again, the solution of the boundary value problem for 
(3) with respect to the streamfunction requires the ellipticity 
condition, which can be written as follows (Houghton 1968):
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The NMI/BDM systems have much more complex 
structure and contain a set of equations. For the shallow water 
equations on a sphere, the system contains two equations, which 
can be expressed in longitude-latitude coordinates (λ, ϕ) as 
follows (Browning et al. 1980, Bourke and McGregor 1983, 
Temperton 1988):
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for any vector function (U, V) and any scalar function h. Here 
u and v are the (full) physical components of velocity, Φ

_
 is 

a mean geopotential height and Qu, Qv, QΦ contain all the 
nonlinear and variable coeffi cient terms of the shallow water 
equations, that is,
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The system (6)-(7) contains three unknown functions u, 
v and Φ, so it admits different closure conditions. The following 
natural versions of these conditions are frequently considered 
(Daley 1981, Daley 1991):

p f p≡ ∇ − =Φ Φ2
0ψ  ,    (10)

ψ ψ= 0  ,     (11)
or
Φ Φ= 0  ,     (12)
i.e., initialization with unchanged slow mode p (frequently 
called unconstrained initialization), unchanged streamfunction 
ψ (streamfunction constrained initialization) or unchanged 
geopotential Φ (geopotential constrained initialization). 
Function p is the potential vorticity of the linearized barotropic 
equations on the f-plane. The nonlinear system of partial 
differential equations (6)-(7) with one of the closure conditions 
(10), (11) or (12) forms well-posed boundary value problem if 
it is elliptic. The ellipticity is guaranteed if its homogeneous 
form (characteristic determinant) is defi nite, that is, it does not 
change sign in the domain D of the problem.

For each of the closure conditions (10)-(12) the ellipticity 
criterion of the respective differential problem have been derived 
in Bourchtein (2002) and Bourchtein (2006). In particular, it 
was shown that the closures (10) and (11) generate the same 
ellipticity condition in the simple form

Φ > +u v2 2  .     (13)
It means that the boundary value problem for NMI/BDM 

with unchanged streamfunction can be well posed if, and only if, 
the phase speed of gravitational waves c = Φ  is greater than 
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the advective speed throughout the entire domain D. Of course, 
this condition is satisfi ed for the barotropic model equations 
of the atmosphere and for the fi rst (fastest) vertical modes of 
a baroclinic model. However, the condition (13) is violated 
for very thin layers, which is the cause of the divergence of 
iterative algorithms applied to solve the initialization equations. 
Respectively, a similar behavior can be expected for slow 
internal modes of a baroclinic model and was observed in 
numerical experiments with different multilevel models reported 
in many papers (e.g., Daley 1981, Errico 1983, Temperton and 
Roch 1991).

If the geopotential constrained initialization is used, the 
ellipticity condition is much more complex and its approximate 
form in spherical coordinates can be written as follows 
(Bourchtein 2006):
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In the next section we show that this condition can be 
violated in some points of the analysis data. Even though the area 
covered by points with the negative values of E3 is usually small 
in comparison with the total area of a chosen domain, it leads 
to mathematical inconsistency of the boundary value problem 
for considered differential equations. This inconsistency 
causes divergence of any iterative method applied to solve the 
boundary value problem. In this way, we confi rm the Daley 
assumption that the reason behind the problem of divergence 
is of mathematical nature.

3. ANALYSIS OF DISTRIBUTION OF THE 
NONELLIPTIC REGIONS

In this section we apply the ellipticity criteria (2), 
(5) and (14) to investigate the occurrence of the respective 
nonelliptic regions in the gridded data of the NCEP (National 
Centers for Environmental Prediction) analysis for the Southern 
Hemisphere. The data for this study were taken from the global 
NCEP analysis available on a spatial grid with regular latitude/
longitude resolution of 10 and 26 vertical pressure levels. The 
analysis was restricted to the data of the Southern Hemisphere 
at 850, 500 and 200 hPa pressure levels for 0000 GMT 05 
November 2005. The meteorological elements used are the 
longitudinal and meridional velocity components u and v, and 
the geopotential Φ.

First, we compute the ellipticity measures E1 and E2 
defi ned by (2) and (5) on three chosen pressure levels. The 
nondivergent velocity components in (5) were evaluated by 
formula (4) with the streamfunction found from Poisson’s 

equation ∇2ψ = ζ , where the Laplace operator is defi ned in (9) 
and ζ is the relative vorticity defi ned by the second formula in 
(8) with gridded data of the velocity components u and v. The 
obtained values of E2 are systematically slightly greater than 
E1, but the difference is too small and can be certainly neglected 
for this study. The charts of the distribution of E2 are shown 
on Figs.1-6 separately for each pressure surface and Eastern 
and Western Hemispheres. Contour intervals are 4 · 10-8s-2. To 
avoid the “noisy” maps, only nonelliptic regions are plotted. It 
can be seen the strong tendency in increasing the nonelliptic 
area toward higher levels. There is some relation between 
nonelliptic area location at different levels but it is not observed 
systematically. At each pressure surface the nonelliptic regions 
mostly appear in the tropics and subtropics, though there are 
some nonelliptic regions in the middle and even high latitudes as 
well. The geographical distribution of the nonelliptic regions in 
the tropics appears to be almost random. To give one example of 
the relation between measures E1 and E2 we also show the chart 
of E1 for 500 pressure surface, Western Hemisphere (Fig.7). As 
one can see the values of two measures are virtually identical 
for the purpose of our study. Therefore, hereafter we use only 
the measure E2, which is theoretically more complete.

Figure 1 – Distribution of the nonelliptic regions according to measure 
E2 in the East part of the Southern Hemisphere at 850 hPa pressure 
level.

Figure 2 – Same as in Figure 1, except for the West part of the Southern 
Hemisphere. 
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Figure 3 – Same as in Figure 1, except for the 500 hPa pressure 
level.

Figure 4 – Same as in Figure 2, except for the 500 hPa pressure 
level.

Figure 5 – Same as in Figure 1, except for the 200 hPa pressure 
level.

Figure 6 – Same as in Figure 2, except for the 200 hPa pressure 
level.

Figure 7 – Same as in Figure 4, except for the measure E1.

The following series of six charts (Figs.8-13) shows the 
elliptic measure E3 for corresponding surfaces and Hemispheres. 
Contour intervals are 2 · 10-9s-2  and again only the nonelliptic 
regions are plotted. On all charts for E3 the nonelliptic regions 
cover signifi cantly less area and have much less intensity in 
comparison with the measure E2. The spatial distribution of the 
nonelliptic E3 areas seems to follow the pattern of the measure 
E2: these are more concentrated in tropic and subtropic zone 
with rather chaotic geographical distribution and increased area 
and intensity at the 200 hPa pressure level.

Figure 8 – Distribution of the nonelliptic regions according to measure 
E3 in the East part of the Southern Hemisphere at 850 hPa pressure 
level.

Figure 9 – Same as in Figure 8, except for the West part of the Southern 
Hemisphere.
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Figure 10 – Same as in Figure 8, except for the 500 hPa pressure 
level. 

Figure 11 – Same as in Figure 9, except for the 500 hPa pressure 
level.

Figure 12 – Same as in Figure 8, except for the 200 hPa pressure 
level.

Figure 13 – Same as in Figure 9, except for the 200 hPa pressure 
level.

As it was pointed out by different researchers (e.g., 
Kasahara 1982, Knox 1997), an area average of ellipticity 
measure is another important index for examining the nature of 
nonelliptic regions. The longitudinal averages of the measures 
E2 and E3 are presented in Figs.14-19. The solid line is for E2 
and the pointed for E3. Evidently, the negative values of E3 
are much more rare and have much smaller amplitudes when 
compared to E2. Also, the negative values of E3 are confi ned 
to very narrow tropical zone and all of them are clustered near 
boarder line between negative and positive values.

If we compare the results for E3 with the respective 
results obtained for realizability conditions by Kasahara (1982) 
and Knox (1997), we can note a great similarity. Indeed, the 
use of ellipticity criterion E3 allows to recover ellipticity in 
the major part of the negative area of the measure E2 and to 
strongly decrease the remaining negative values bringing them 
to the boarder line. The average qualitative distribution of 
measure E3 exhibits the same principal characteristics as the 
realizability measures, namely, the negative area is confi ned to 
tropic-subtropic zone and it increases toward higher pressure 
levels. The main difference is that the effect of the compensation 
of negative ellipticity achieved in Kasahara (1982) and Knox 
(1997) by the inclusion in the realizability conditions of 
additional terms from the divergence equation, is obtained in 
our study by substituting the ellipticity criterion for more simple 
balance relation by another ellipticity criterion corresponding 
to more complex and justifi able NMI/BDM method. In this 
way, we substantiate the Kasahara’s statement that ellipticity 
conditions can be violated in the actual atmospheric fi elds 
essentially due to approximations made under deriving the 
balance relations.

Figure 14 – The longitudinal averages of the measures E2 and E3 for 
the East part of the Southern Hemisphere at 850 hPa pressure level as 
functions of southern latitude. The solid line is for E2 and the pointed 
for E3.
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Figure 15 – Same as in Figure 14, except for the West part of the 
Southern Hemisphere.

Figure 16 – Same as in Figure 14, except for the 500 hPa pressure 
level. 

Figure 17 – Same as in Figure 15, except for the 500 hPa pressure 
level.

Figure 18 – Same as in Figure 14, except for the 200 hPa pressure 
level.

Figure 19 – Same as in Figure 15, except for the 200 hPa pressure 
level.

4. CONCLUSIONS

The nonlinear balance equation introduced by Charney, as 
well as its spherical generalization introduced by Houghton, and 
the NMI/BDM initialization equations were considered in this 
work. The ellipticity conditions associated with these balance 
relations were presented and the respective nonelliptic regions 
were found using the gridded data of Southern Hemisphere. 
These are practically all known until now ellipticity criterions 
of balance relations, because the well-known Tribbia’s condition 
for spectrally reduced shallow water system virtually coincides 
with the Charney criterion of nonellipticity. The obtained results 
showed the existence of nonelliptic regions even for more 
complex balance systems of the NMI/BDM method. However, 
these regions have essentially smaller areas and intensity as 
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compared with those for nonlinear balance equation. This 
result confi rms the Kasahara’s conclusion that the occurrence of 
nonelliptic regions is of physical nature and related to making 
simplifi cations in the derivation of the balance relations.
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