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Abstract

An integral semi-analytical solution of the atmospheric diffusion equation considering wind speed as a function of both
downwind distance from a pollution source and vertical height is presented. The model accounts for transformation and
removal mechanisms via both chemical reaction and dry deposition processes. A hypothetical dispersion of contami-
nants emitted from an urban pollution source in the presence of mesoscale winds in an unstable atmospheric boundary
layer is showed. The results demonstrate that the mesoscale winds generated by urban heat islands advect contaminants
upward, which increases the intensity of air pollution in urban areas.
Keywords: urban heat island, mesoscale wind, semi-analytical model, atmospheric boundary layer.

Solução da Equação de Difusão Atmosférica com Vento Longitudinal
Dependente da Distância da Fonte

Resumo

Neste trabalho, é apresentada uma solução integral semi-analítica da equação de difusão atmosférica considerando a
velocidade do vento como função da distância longitudinal e vertical da fonte poluidora. O modelo leva em consideração
os mecanismos de remoção e transformação via deposição seca e reação química. Uma hipotética fonte de emissão de
contaminantes urbana na presença de ventos de mesoescala em uma camada limite instável é mostrada. Os resultados
sugerem que os ventos de mesoescala gerados pela ilha de calor urbana advectam os contaminantes para cima,
aumentando a intensidade da poluição atmosférica em áreas urbanas.
Palavras-chave: ilha de calor urbana, vento de mesoescala, modelo analítico, camada limite atmosférica.

1. Introduction

The atmospheric dispersion equation has long been
used to describe the transport of air contaminants in a turbu-
lent atmosphere. Analytical and semi-analytical solutions
to this equation were the first and remain the most conve-
nient methods for modeling air pollution because many at-
mospheric problems can be studied. However, little atten-
tion has been given to the atmospheric problems to find
solution of this equation for wind speed as a function of
both downwind distance (x) from the source and the verti-
cal height (z) above the ground, mainly due to the mathe-
matical complexity problem involved. We are aware of an-
alytical and semi-analytical solutions existence in the

literature, but for specific and particular problems. Among
them, we mention the works of Rounds (1955), Smith
(1957), Scriven and Fisher (1975), Demuth (1978), van
Ulden (1978), Nieuwstadt and de Haan (1981), Sharan et

al. (1996), Lin and Hildemann (1997), Wortmann et al.

(2005), Sharan and Modani (2006), Sharan and Kumar
(2009). In all of these models, the wind speed is either a
power law or logarithmic profile of vertical height and,
similarly, the eddy diffusivity has been assumed either a
power law or a parabolic profile of z or a function of down-
wind distance from the source. However, none of these pro-
vides a systematic approach to find the solution with the
generalized functional forms of wind speed and eddy diffu-
sivity. At this point, it is important to mention that a solu-
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tion of the advection-diffusion equation can be written an
integral form and also in series formulations with the same
main property that both solutions are equivalent (Moreira et

al., 2010). Furthermore, analytical and semi-analytical so-
lutions are very important to understand and describe the
physical phenomenon, since they are able to take into ac-
count all the parameters of a problem and investigate their
influence. Besides, while the preexisting numerical models
require improvements for addressing more realistic situa-
tions, it is helpful to first examine a few possible analytical
(or semi-analytical) solutions to obtain a framework and a
set of test solutions. These solutions are useful for a variety
of applications, such as providing approximate analyses of
alternative pollution scenarios, conducting sensitivity anal-
yses for investigating the effects of various parameters or
processes involved in contaminant transport, extrapolation
over large time scales and distances where numerical solu-
tions may be impractical, serving as screening models or
benchmark solutions for more complex transport processes
that cannot be solved exactly, and for validating more com-
prehensive numerical solutions to the governing transport
equations.

Focusing our attention in this direction, the novelty of
this work consists of a semi-analytical solution of a two-
dimensional advection-diffusion equation considering lon-
gitudinal wind speed depending on the x and z variables in
an air pollution problem. The literature does not present ex-
perimental data to compare with the solution obtained in
this work. Thus, to compare with a solution obtained in this
work we use the results obtained by Agarwal and Tandon
(2010), that present a numerical solution to the two-
dimensional advection-diffusion equation considering an
idealized situation with wind speed depending on x and z

variables. This idealized study tries to show the effect of ur-
ban heat islands on urban air pollution through mathemati-
cal modeling. An attempt at such a solution is presented
here in the form of a steady state two-dimensional mathe-
matical model that allows for examining the dispersion of
air contaminants in the urban atmosphere under the cumu-
lative effect of large-scale and mesoscale winds. The two-
dimensional heat island problem is an idealization; the
mesoscale winds considered in the present study are only
representative of a special type of wind.

The remainder of this paper is organized as follows.
In section 2, the solution of the advection-diffusion equa-
tion is presented. In section 3, numerical results are re-
ported. Lastly, in section 4, the conclusions of this study are
presented.

2. The Model

It is well known that an analytical or semi-analytical
solution can be expressed in either an integral or series for-
mulation (Moreira et al., 2010). Assuming that these solu-
tions are equivalent, results attained from an integral
solution that considers the longitudinal wind speeds as a

function of x and z variables and realistic vertical eddy
diffusivity are presented in air pollution problems.

For a Cartesian coordinate system in which the x di-
rection coincides with the direction of the mean wind, the
steady state advection-diffusion equation can be written as
follows (Moreira and Vilhena, 2009):
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where c denotes the averaged concentration, u, v, and w are
the mean wind speeds in the x (longitudinal), y (lateral) and
z (vertical) directions, Kx, Ky and Kz (in this study depend-
ing only on z) are the eddy diffusivities in the respective di-
rections and � is a constant first-order depletion parameter
that considers the relevant removal mechanisms, such as
chemical reactions, rainout/washout, and artificial mecha-
nisms that prevail in the atmosphere. To obtain the semi-
analytical solution proposed in this study, Eq. (1) is inte-
grated from - to + (c � 0for y � - and y � +) in the
cross-wind direction (neglecting longitudinal diffusion, be-
cause the advection transport term in the x direction is dom-
inant over the diffusive term) to obtain the following
relationship (Moreira and Vilhena, 2009):
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where cy is the integrated cross-wind concentration.
In this study, the contaminant is transported horizon-

tally by a large-scale wind, which is assumed to be function
of altitude, and also function of the horizontal and vertical
mesoscale winds. The mesoscale winds represent local
winds that are caused by a heat source, which is an infinite
cross-wind linear heat source parallel to the contaminant
source in this study. For details see the works of Dilley and
Yen (1971) and Agarwal and Tandon (2010). Therefore,
the Eq. (2) can be written as follows:
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where ul is the large-scale wind in the x (horizontal) direc-
tion and ue and we are the mesoscale wind components in
the x and z directions, respectively.

The heat island effect of a city causes air to rise above
the center of the heat island. This rising air produces a sur-
face influx of air from the surrounding area; large thermally
induced convective currents are also generated (Dilley and
Yen, 1971). These effects produce mesoscale winds.

In this work, the large-scale wind ul is parameterized
as a function of height z in the manner suggested by Lin and
Hildemann (1997) for simplicity:
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where ur is the measured wind speed at a reference height zr

and � is a constant that depends on the atmospheric stabil-
ity. The mathematical formulations of the mesoscale hori-
zontal and vertical wind components within the range of
valid values are used as suggested by Dilley and Yen
(1971). Thus, the following relationships are used in this
study:
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where a is a proportionality constant (unit: 1/s). The expres-
sions for ul, ue and we are utilized within the surface layer.
Above this layer, these values are considered to be constant
with height.

Furthermore, the wind speed component represented
in Eq. (3) can be written as follows:
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and u(x, z) = f(x).g(z), where f x ax
ur
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is a di-

mensional function [LT-1].

The vertical eddy diffusivity Kz is parameterized as a
function of height z following the work of Moreira et al.

(2005b):
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where h is the atmospheric boundary layer (ABL) height
and w* is the convective velocity. The eddy diffusivity
parameterization is based on turbulent kinetic energy spec-
tra and Taylor’s diffusion theory.

To solve Eq. (3), both source and boundary condi-
tions are needed. Therefore, zero flux is assumed at the
ground and at the top of the ABL. Moreover, a source with

emission rate Q at height Hs is also assumed to obtain the
following:
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where z0 is the roughness length, Vd is the deposition veloc-
ity and � is the Dirac delta function.

By considering the dependence of the Kz(z) and wind
speed (i.e., u(x, z) and w(z)) profiles on height z, the height
of the ABL h is discretized into N sub-intervals such that
within each interval, the average values in the vertical are
used. Therefore, the solution to Eq. (3) is reduced to the so-
lution of N equations of the following type:
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where cn

y denotes the concentration, we

n is the average verti-

cal mesoscale wind and K n is the average vertical eddy
diffusivity, in the nth sub-interval. Moreover,
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A change of variables is used to obtain a solution to
Eq. (11) (Crank, 1979, Moreira et al., 2014). The new space
variable x* is defined by the following transformation:
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The dimension of x* is same as x [L]; therefore, x* is
considered to be a new space variable. Because j(x) > 0, the
function x � x* is an increasing function of x that vanishes
at x = 0. Thus, the nature of the condition at x = 0 does not
change in the new domain.

However, before providing additional details regard-
ing the solution procedure, the obtained solution to Eq. (11)
is valid only for the downwind range 0 < x < ur/a of the
large-scale and mesoscale winds; however, the range of va-
lidity increases as the mesoscale winds approach zero.

The equation, combined with the necessary source
and boundary conditions, becomes the following in the new
space:
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To account for vertically inhomogeneous turbulence
(dependent on z), continuity conditions are imposed for the
concentration and concentration flux at the interfaces:
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These conditions must be considered to uniquely de-
termine the 2N arbitrary constants appearing in the solution
to the set of equations defined in Eq. (15).

Applying the Laplace transform to Eq. (15) results in
the following relationship:
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Finally, a linear system for the integration constants is
generated by applying the interface and boundary condi-
tions. Henceforth, the concentration is obtained by numeri-
cally inverting the transformed concentration:
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where H(z – Hs) is the Heaviside function. The integration
constants An and Bn are previously determined by solving
the linear system resulting from the application of the
boundary and interfaces conditions. Due to the complexity
of the integrand, the line integral in Eq. (19) is evaluated
numerically using the Fixed Talbot (FT) algorithm (Abate
and Valkó, 2004). This procedure yields the following:
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Moreover, x* is defined by Eq. (14), r is a parameter
based on numerical experiments (r = 2M*/5x*) and M* is the
number of terms in the summation.

The stepwise approximation of a continuous function
converges to the continuous function when the individual
steps in the approximation approach zero. For this study, it
is necessary to choose an appropriate number of sub-layers
by considering the smoothness of the functions for K, u and
w. The solution obtained is semi-analytical in the sense that
the only approximations considered along its derivation are
the stepwise approximation of the coefficients and the nu-
merical Laplace inversion of the transformed concentra-
tion. Therefore, this model preserves the beauty of a
solution of the advection-diffusion equation without com-
promising the accuracy of the wind speeds and the eddy
diffusivity to compute the concentration.

3. Numerical Results

To illustrate the aptness of the formulation discussed
for simulating contaminant dispersion in the ABL, the per-
formance of the solution is evaluated hereafter. The present
study primarily focuses on the concentration distribution of
air contaminants in a given region under the influence of
large-scale and mesoscale winds. The mesoscale winds are
chosen to simulate local winds produced by urban heat is-
land effects. The profiles of large-scale winds, mesoscale
winds and the eddy diffusivity that are defined in Eqs. (4),
(5), (6), (7) and (8) include several unknown parameters,
i.e., ur, zr, a, �, w* and h. Therefore, these parameters are re-
quired as input to calculate the concentrations using the
proposed scheme. The following values are assumed:
ur = 3 m/s; zr = 10 m, and a = 0,002 s-1. Moreover, the values
of the other unknown parameters, i.e., �, w* and h, are de-
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termined according to the stability conditions. In this work,
only unstable atmospheric conditions are considered.
Therefore, the following constants are assumed in the simu-
lations performed: � = 0.17 (Agarwal and Tandon, 2010),
w* = 1 m/s and h = 500 m. The parameters above are chosen
to represent a “light large-scale wind”. Thus, a compara-
tively low value of u = 3 m/s is used for the large-scale wind
at 10 m. The value of � was chosen to produce wind speeds
in the region of interest that do not exceed the large-scale
wind speeds. The contaminants are assumed to be emitted
at a constant rate from a line source over an urban region.
The simulated region extends from the origin and lies
within the range of validity, i.e., 0 < x < ur/a (~1500 m).

It is assumed that the removal of contaminants occurs
via ground absorption (dry deposition) and chemical reac-
tions; these processes are defining the parameters Vd and �,
respectively. For the purposes of this study, Vd = 0.6 cm/s
and � ranges from 0 to 10-4 s-1.

Figure 1 shows the numerical convergence of the pro-
posed solution for the nondimensional ground-level con-
centration (C = cyuh/Q, where u = ur for all simulations
performed) at various dimensional distances from the sour-
ce (x = 100, 300, 500, 800 and 1200 m) for an increasing
number of terms in the summation (M*).

Figure (1a) shows convergence for simulations with-
out mesoscale winds, while Fig. (1b) shows convergence
for simulations with mesoscale winds. From these figures,
M* = 50 provides good accuracy for both cases. With the in-
crease of the number of terms in the numerical integration
the solution stabilizes in a fixed value, that is, converges to
one value, obeying certain numerical convergence criteria.

To obtain insight into the distribution of contaminants
in a region that is simultaneously affected by both large-
scale and mesoscale winds under unstable atmospheric
conditions, the computed concentrations are shown in
Figs. (2-7). The analysis considers the contaminant concen-

tration distributions both with and without mesoscale
winds to clearly visualize the effect of urban heat island on
contaminant dispersion.

Figure 2 presents the isolines of the nondimensional
concentrations (C = cyuh/Q) as a function of the nondi-
mensional distance X (X = xw*/uh) and the nondimensional
height Z (Z = z/h) for a ground-level source. Figure (2a)
shows the concentrations without mesoscale winds, while
Fig. (2b) shows the concentrations with mesoscale winds.

An analysis of the results demonstrates the effects of
the mesoscale winds on contaminant dispersion. For the
case shown in Fig. (2b), the concentrations increase as the
nondimensional source distance increases.

Figure 3 presents the isolines of the nondimensional
concentrations as a function of the nondimensional dis-
tance with a source at z/Hs = 0.2 (Hs = 100 m). Figure (3a)
shows the concentrations without mesoscale winds, while
Fig. (3b) shows the concentrations with mesoscale winds.

Again, the effects of the mesoscale winds on contami-
nant dispersion can be observed in the results. Figure (3b)
shows that the concentrations increase as the nondimen-
sional source distance increases.

Figure 4 shows the resulting vertical profile of the
contaminant concentrations for a ground-level source at
different distances from the source for the cases (a) without
mesoscale winds and (b) with mesoscale winds.

According to Fig. 4, there is a greater tendency to-
wards vertical homogenization in the contaminant concen-
trations for the case with mesoscale winds.

Figure 5 shows the effect of deposition for different
distances (x = 100 m and 1400 m) and considering simula-
tions with mesoscale winds and without mesoscale winds.

According to Fig. 5, for distances closer to the source
(x = 100 m), dry deposition has less effect on the vertical
profile concentrations for both scenarios. However, for
greater distances from the source (x = 1400 m), the depend-
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Figura 1 - Convergence of the solution for dimensional source distances x = 100, 300, 500, 800 and 1200 m (a) without mesocale winds and (b) with
mesoscale winds (ground-level source).



ence on dry deposition is more evident in the vertical pro-
file concentrations when considering the effect of meso-
scale winds.

Figure 6 shows the effect of chemical reactions (� = 0,
10-3, 10-2, and 10-1) on the nondimensional concentrations
vs. the nondimensional distance from the source at the sur-
face.

According to Fig. 6, the maximum concentration is
greater in the case with mesoscale winds. Moreover, the
concentrations decrease more rapidly as the distance from

the source increases despite the fact that � is an order of
magnitude smaller than in the case without mesoscale
winds.

These figures are drawn with and without mesoscale
winds; the results show that the concentration of air con-
taminants is intensified due to the effects of mesoscale
winds. These illustrations also show that the contaminant
concentrations increase in the presence of mesoscale winds
even at relatively high levels (especially compared with the
case without mesoscale winds). The mesoscale winds cir-
culate the contaminants and move the contaminants up-
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Figura 3 - Isolines of the nondimensional concentrations (C = cyuh/Q) as a
function of the nondimensional distance (X = xw*/uh) and the nondi-
mensional height (Z = z/h) (source at z/Hs = 0.2) (a) without mesoscale
winds and (b) with mesoscale winds.

Figura 2 - Isolines of the nondimensional concentrations (C = cyuh/Q) as a
function of the nondimensional distance (X = xw*/uh) and the nondimen-
sional height (Z = z/h) (ground-level source), (a) without mesoscale winds
and (b) with mesoscale winds.
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Figura 4 - Vertical profile of the concentrations (C = cyuh/Q, Z = z/h) for dimensional distances x = 500, 100 and 1450 m (a) without mesoscale winds and
(b) with mesoscale winds.

Figura 5 - Vertical profiles of the nondimensional concentrations with and without mesoscale winds for distances from the source of 100 and 1400 m.
Figures (a) and (c) do not consider mesoscale winds; (b) and (d) consider mesoscale winds.



ward, which results in a negative effect on the surrounding
area.

4. Summary and Conclusion

An integral semi-analytical solution to the two-di-
mensional advection-diffusion equation using an integral
transform method and considering the longitudinal wind
speed as a function of both x and z variables is presented.
No approximations are made during the derivation of the
solution except for the stepwise approximation of the pa-
rameters and the Laplace numerical inversion required by
the FT scheme. The solution suggests that mesoscale winds
have an effect on contaminant dispersion. The mesoscale
winds are chosen to simulate local winds produced by ur-
ban heat island effects. The simulations discussed in the
present paper clearly demonstrate that the mesoscale winds
produce vertical transport that increases the contaminant
concentrations. This effect occurs at locations downstream
from the source where the large-scale and mesoscale winds
are opposite in the horizontal direction. In reality, when the
heat island effect is large, the longitudinal eddy diffusivity
can be neglected. This factor may influence the contami-
nant concentrations in areas close to the source; a more
thorough analysis on this topic is needed in future studies.

Today, air pollution problems are not treated in the
manner described in the present paper. There are various air
pollution situations that require the use of complex meso-
scale models to properly describe the dispersion processes
and properly represent the relevant chemistry and emission
processes. Complex models, such as the CMAQ model (the
Community Multiscale Air Quality model), have been de-
signed to simulate air quality by including state of the art
techniques for modeling multiple air quality issues. How-
ever, in complex models, increasingly more processes,
such as sea breeze circulations, urban heat islands, and

waves, are represented. Therefore, these models are often
perceived as black boxes that cannot easily represent the ef-
fects of individual processes on air quality. Apart from this,
for many policy and scientific applications on air quality
modeling, it is desirable not only to know the contaminant
concentrations that would result from a certain situation but
also the extent to which those concentrations would change
under various perturbations.

It is important to mention that analytical and semi-
analytical solutions are fundamentally important for under-
standing and describing physical phenomena because they
account for all parameters in a problem and provide a
means for investigating their effects. Moreover, air pollu-
tion models have two types of errors. The first type is due to
the physical modeling. The other type is inherent to the nu-
merical solution of the equations associated to the model.
Henceforth, it is possible that analytical and semi-analy-
tical solutions may at least partially mitigate the error asso-
ciated with mathematical models. As a consequence, the
model errors somehow restrict the physical modeling error.

Therefore, the model proposed herein helps in under-
standing one of these processes, i.e., urban heat island ef-
fects, by allowing control over meteorological parameters.
Hence, it is easy to represent the steering factors for such a
phenomenon and to test its sensitivity against changes in at-
mospheric conditions. The results of the proposed semi-
analytical model can help to increase the confidence in
complex model predictions and identify specific variables,
e.g., the wind field and atmospheric stability, that should be
investigated more closely in complex modeling studies.
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