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ABSTRACT: Three classifiers from machine learning (the generalized linear mixed
model, memory based learning, and support vector machines) are compared with
a naive discriminative learning classifier, derived from basic principles of error-
driven learning characterizing animal and human learning. Tested on the dative
alternation in English, using the Switchboard data from (BRESNAN; CUENI;
NIKITINA; BAAYEN, 2007), naive discriminative learning emerges with state-
of-the-art predictive accuracy. Naive discriminative learning offers a united
framework for understanding the learning of probabilistic distributional patterns,
for classification, and for a cognitive grounding of distinctive collexeme analysis.
KEYWORDS: machine learning; dative alternation; Switchboard; probabilistic
distributional patterns; collexeme analysis.

RESUMO: Três classificadores de aprendizagem de máquina (modelos mistos
lineares generalizados, aprendizagem baseada na memória e máquinas de apoio a
vetores) são comparados com o classificador da aprendizagem discriminativa
ingênua, derivada de princípios básicos da aprendizagem guiada por erros de
humanos e animais. Testada na alternância dativa do inglês, usando os dados do
Switchboard (BRESNAN; CUENI; NIKITINA; BAAYEN, 2007), a aprendizagem
discriminativa ingênua emerge com uma acurácia predicativa no estado da arte. A
aprendizagem discriminativa ingênua oferece um arcabouço unificado para a
compreensão da aprendizagem de padrões distribucionais probabilísticos, para a
classificação, e para um embasamento cognitivo para a análise de colexemas
distintivos.
PALAVRAS-CHAVE: aprendizagem de máquinas; alternância; dativa;
Switchboard; padrões de distribuição probabilística; análise de colexemas.
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According to Gries (2011), linguistics is a distributional science
exploring the distribution of elements at all levels of linguistic structure. He
describes corpus linguistics as investigating the frequencies of occurrence of
such elements in corpora, their dispersion, and their co-occurrence properties.
Although this characterization of present-day corpus linguistics is factually
correct, the aim of the present paper is to argue that corpus linguistics should
be more ambitious, and that for a better understanding of the data its current
descriptive approach may profit from complementation with cognitive
computational modeling.

Consider the dative alternation in English. Bresnan et al. (2007)
presented an analysis of the dative alternation in which the choice between the
double object construction (Mary gave John the book) and the prepositional
object construction (Mary gave the book to John) was modeled as a function
of a wide range of predictors, including the accessibility, definiteness, length,
and animacy of theme and recipient (see also FORD; BRESNAN, 2010). A
mixed-effects logistic regression model indicated that their variables were
highly successful in predicting which construction is most likely to be used,
with approximately 94% accuracy.

The statistical technique used by Bresnan and colleagues, logistic
regression modeling, is but one of many excellent statistical classifiers currently
available to the corpus linguist, such as memory based learning (MBL,
DAELEMANS; BOSCH, 2005), analogical modeling of language (AML,
SKOUSEN, 1989), support vector machines (SVM, VAPNIK, 1995), and random
forests (RF, STROBL; MALLEY; TUTZ, 2009; TAGLIAMONTE;
BAAYEN, 2010). The mathematics underlying these techniques varies widely,
from iterative optimization of the model fit (regression), nearest-neighbor
similarity-based inference (memory based learning), kernel methods (support
vector machines), and recursive conditioning with subsampling (random
forests). All these statistical techniques tend to provide a good description of
the speaker-listener’s knowledge, but it is unlikely that they provide a good
characterization of how speaker-listeners actually acquire and use this
knowledge. Of these four techniques, only memory-based learning, as a
computational implementation of an exemplar-based model, may arguably
reflect human performance.

A first question addressed in the present study is whether these different
statistical models provide a correct characterization of the knowledge that a
speaker has of how to choose between these two dative constructions. A
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statistical model may faithfully reflect a speaker’s knowledge, but it is also
conceivable that it underestimates or overestimates what native speakers of
English actually have internalized. This question will be addressed by
comparing statistical models with a model based on principles of human
learning.

A second question concerns how frequency of occurrence and co-
occurrence frequencies come into play in human classification behavior as
compared to machine classification. For machine classification, we can easily
count how often a linguistic element occurs, and how often it co-occurs with
other elements. The success of machine classification in reproducing linguistic
choice behavior suggests that probabilities of occurrence are somehow available
to the human classifier. But is frequency of (co-)occurrence available to the
human classifier in the same way as to the machine classifier? Simple frequency
of occurrence information is often modeled by means of some ‘counter in the
head’, implemented in cognitive models in the form of ‘resting activation
levels’, as in the interactive activation models of McClelland and Rumelhart
(1981); Coltheart, Rastle, Perry, Langdon, and Ziegler (2001); Van Heuven,
Dijsktra, and Grainger (1998), in the form of frequency based rankings
(MURRAY; FORSTER, 2004), as a unit’s verification time (LEVELT,
ROELOFS; MEYER, 1999), or in the Bayesian approach of Norris,
straightforwardly as a unit’s long-term a-priori probability (NORRIS, 2006;
NORRIS; McQUEEN, 2008). A potential problem that arises in this context
is that large numbers of such ‘counters in the head’ are required, not only for
simple or complex words, but also for hundreds of millions of word n-grams,
given recent experimental results indicating human sensitivity to n-gram
frequency (ARNON; SNIDER, 2010; TREMBLAY; BAAYEN, 2010).
Moreover, given the tendency of human memory to merge, or blend, previous
experiences, it is rather unlikely that the human classifier has at its disposal
exactly the same frequency information that we make available to our machine
classifiers.

To address these questions, the present study explores what a general
model of human learning may offer corpus linguistics as a computational
theory of human classification.
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TABLE 1
Example instance base for discriminative learning with the Rescorla-Wagner

equations, with as cues the definiteness and pronominality of the theme,
and as outcome the construction (double object, NP NP,

versus prepositional object, NP PP)

Frequency Definiteness of Theme Pronominality of Theme Construction

7 definite non-pronominal NP NP
1 definite pronominal NP NP

28 indefinite non-pronominal NP NP
1 indefinite pronominal NP NP

3 definite non-pronominal NP PP
4 definite pronominal NP PP
6 indefinite non-pronominal NP PP

0 indefinite pronominal NP PP

1. Naive Discriminative Learning

In psychology, the model of Wagner and Rescorla (1972) is one of the
most influential and fruitful theories of animal and human learning (MILLER;
BARNET; GRAHAME, 1995; SIEGEL; ALLAN, 1996). Its learning
algorithm is closely related to the connectionist delta-rule (cf. GLUCK;
BOWER, 1988; ANDERSON, 2000) and to the Kalman filter (cf. DAYAN;
KAKADE, 2001), and can be viewed as an instantiation of a general
probabilistic learning mechanism (see, e.g., CHATER; TANENBAUM;
YUILLE, 2006; HSU, CHATER; VITÁNYI, 2010).

1.1. The Rescorla-Wagner equations

Rescorla and Wagner formulated a set of equations that specify how the
strength of association of a cue in the input to a given outcome is modified
by experience. By way of example, consider the instance base in Table 1, which
specifies for the four combinations of the pronominality and definiteness of
the theme (the book in John gave the book to Mary) which construction is used
(the double object construction, NP NP, or the prepositional object
construction, NP PP). The eight possible combinations occur with different
frequencies, modeled on the data of Bresnan et al. (2007). The cues in this
example are the values for definiteness and pronominality. The outcomes are
the two constructions. There are in all 50 learning trials, more than half of
which pair an indefinite non-pronominal theme with the double object
construction (e.g., John gave a book to Mary).
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The Rescorla-Wagner equations implement a form of supervised
learning. It is assumed that the learner predicts an outcome given the available
cues. Depending on whether this prediction is correct, the weights (association
strengts) from the cues to the outcomes are adjusted such that at subsequent
trials, prediction accuracy will improve.

Let PRESENT (C, t) denote the presence of a cue C (definiteness,
pronominality) and PRESENT (O, t) the presence of outcome O (construction)
at time t, and let ABSENT (C, t) and ABSENT (O, t) denote their absence at time t.
The Rescorla-Wagner equations specify the association strength Vi 

t+1 of cue Ci

with outcome O at time t+1 by means of the recurrence relation

(1) Vi 
t+1 = Vi 

t + ΔVi 
t,

which simply states that the association strength at time t + 1 is equal to its
previous association strength at time t modified by some change change in
association strength ΔVi 

t, defined as

(2) 0 if ABSENT (Ci , t),

a
i 
b

1      
l –                              Vj if PRESENT (Cj , t) & PRESENT (O, t),

a
i b2      

0 –                              Vj if PRESENT (Cj , t) & ABSENT (O, t).

Standard settings for the parameters are l = 1, a
1 
= a

2 
= 0.1, b

1 
= b

2
 = 0.1.

If a cue is not present in the input, its association strength is not changed. When
the cue is present, the change in association strength depends on whether or
not the outcome is present. Association strengths are increased when cue and
outcome co-occur, and decreased when the cue occurs without the outcome.
Furthermore, when more cues are present simultaneously, adjustments are
more conservative. In this case, we can speak of cue competition.

Figure 1 illustrates, for a random presentation of the 50 learning trials,
how the association strengths (or weights) from cues to outcomes develop
over time. As indefinite nonpronominal themes dominate the instance base,
and strongly favor the double object construction, the weights from the cues
indefinite and non-pronominal to the construction NP NP increase steadily
during the learning process.

PRESENT (Cj , t)ΔVi 
t  =

(

( PRESENT (Cj , t)

)
)
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2. The equilibrium equations for the Rescorla-Wagner equations

The Rescorla-Wagner equations have recently turned out to be of
considerable interest for understanding child language acquisition, see, for
instance, Ramscar and Yarlett (2007); Ramscar, Yarlett, Dye, Denny, and
Thorpe (2010); Ramscar, Dye, Popick, and O’Donnell-McCarthy (2011).
For corpus linguistics, the equilibrium equations for the Rescorla-Wagner
equations developed by Danks (2003) are of key interest. Danks was able to
derive a set of equations that define the association strengths (weights) from
cues to outcomes for the situation in which these strengths no longer change,
i.e., for the adult state of the learner. It can be shown that when

(3)  Vi 
t+1 = Vi 

t ,  or, equivalently,

(4) Vi 
t+1 – Vi 

t = 0,

FIGURE 1 – Development of the weights from cues (definite/indefinite/pronominal/non-
pronominal) to outcomes (NP NP/NP PP) given the instance base summarized in Table 1.

The 50 instance tokens were presented for learning once, in random order.
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the weights to the outcomes can be estimated by solving the following set of
equations, with W the matrix of unknown weights:1

(5) CW = O.

In (5), C is the matrix of conditional probabilities of the outcomes. It
is obtained by first calculating the matrix M listing the frequencies with which
cues co-occur:

(6) indefinite pronominal nonpronominal definite

indefinite 35 1 34 0

M = pronominal 1 6 0 5
nonpronominal 34 0 44 10

definite 0 5 10 15

As can be verified by inspecting Table 1, the cue indefinite occurs 35
times, the combination of indefinite and pronominal occurs once, indefinite
co-occurs 34 times with non-pronominal, and so on. From this matrix, we
derive the matrix of conditional probabilies of cue  j given cue i:

(7) indefinite pronominal nonpronominal definite
indefinite 0.50 0.01 0.49 0.00

C = pronominal 0.08 0.50 0.00 0.42
nonpronominal 0.39 0.00 0.50 0.11
definite 0.00 0.17 0.33 0.50

The probability of indefinite given indefinite is 35/(35+1+34+0)=0.5,
that of indefinite given pronominal is 1/(1+6+0+5)=0.083, and so on.

The matrix W is the matrix of association strengths from cues (rows)
to outcomes (columns) that we want to estimate. Finally, the matrix O,

(8) NP NP NP PP

indefinite 0.41 0.09
O = pronominal 0.17 0.33

nonpronominal 0.40 0.10
definite 0.27 0.23

1 Equation (5) is formulated using notation from matrix algebra. The following example
ilustrates the principle of the calculation involved.

c d x  y cv + dx bw+ dy( )( ) ( )=a b v w av+ bx aw+ by
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lists the conditional probabilities of the constructions (columns) given the cues
(rows). It is obtained from the co-occurrence matrix of cues (M) and the co-
occurrence matrix of cues and constructions N,

(9) NP NP NP PP

indefinite 29 6
N = pronominal 2 4

nonpronominal 35 9
definite 8 7

For instance, the probability of the double object construction given (i) the
indefinite cue is 29/(35+1+34+0)=0.414, and given (ii) the pronominal cue it is
2/(1+6+0+5)=0.167. The set of equations (5) can be solved using the generalized

TABLE 2
Probabilities of the two constructions following from the equilibrium

equations for the Rescorla-Wagner model

indefinite indefinite definite definite
non-pronominal pronominal non-pronominal pronominal

NP NP 0.84 0.49 0.65 0.3
NP PP 0.16 0.51 0.35 0.7

inverse, which will yield a solution that is optimal in the least-squares sense,
resulting in the weight matrix

(10) NP NP NP PP

indefinite 0.38 0.12
W = definite 0.19 0.31

nonpronominal 0.46 0.04
pronominal 0.11 0.39

The support for the two constructions given a set of input cues is
obtained by summation over the association strengths (weights) of the active
cues in the input. For instance, for indefinite non-pronominal themes, the
summed support for the NP NP construction is 0.38+0.46=0.84, while the
support for the NP PP construction is 0.12+0.04=0.16. Hence, the
probability of the double object construction equals 0.84/(0.84+0.16)= 0.84,
and that for the prepositional object construction is 0.16. (In this example,
the two measures of support sum up to one, but this is not generally the case
for more complex data sets.) One can think of the weights being chosen in such
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a way that, given the co-occurrences of cues and outcomes, the probability of
a construction given the different cues in the input is optimized.

We can view this model as providing a re-representation of the data:
Eight frequencies (see Table 1) have been replaced by eight weights,
representing 50 trials of learning. The model does not work with exemplars,
nevertheless, its weights do reflect exemplar frequencies. For instance, the
probabilities of the double object construction in Table 2 are correlated with
the original frequencies (rs=0.94, p=0.051). It is worth noting that the
probabilities in Table 2 are obtained with a model that is completely driven
by the input, and that is devoid of free parameters – the learning parameters
of the Rescorla-Wagner equations (2) drop out of the equilibrium equations.

Baayen, Millin, Filipovic Durdjevic, Hendrix, and Marelli (2011) made
use of discriminative learning to model visual lexical decision and self-paced
reading latencies in Serbian and English. They obtained excellent fits to
empirical latencies, both in terms of good correlations at the item level, as well
as in terms of the relative importance and effect sizes of a wide range of lexical
distributional predictors. Simulated latencies correctly reflected morphological
family size effects as well as whole-word frequency effects for complex words,
without any complex words being represented in the model as individual
units. Their model also predicts word n-gram frequency effects (see also
BAAYEN; HENDRIX, 2011). It provides a highly parsimonious account of
morphological processing, both in terms of the representations it assumes, and
in terms of the extremely limited number of free parameters that it requires
to fit the data. For monomorphemic words, the model is essentially parameter
free, as in the present example for the dative alternation.

Baayen et al. (2011) refer to the present approach as naive discriminative
learning, because the probability of a given outcome is estimated
independently from all other outcomes. This is a simplification, but thus far
it seems that this simplification does not affect performance much, just as
often observed for naive Bayes classifiers, while making it possible to obtain
model predictions without having to simulate the learning process itself.

The question to which we now turn is to what extent naive
discriminative learning provides a good fit to corpus data. If the model
provides decent fits, then, given that it is grounded in well-established principles
of human learning, and given that it performs well in simulations of human
processing costs at the lexical level, we can compare discriminative learing with
well-established statistical methods in order to answer the question of whether
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human learning is comparable, superior, or inferior to machine learning. We
explore this issue by a more comprehensive analysis of the dative alternation
data.

3. Predicting the dative alternation

From the dative dataset in the languageR package (BAAYEN, 2000),
the subset of data points extracted from the Switchboard corpus were selected
for further analysis. For this subset of the data, information about the speaker
is available. In what follows, the probability of the prepositional object
construction is taken as the response variable. Software for naive discriminative
classification is available in the ndl package for R, available at www.r-
project.org. Example code is provided in the appendix.

3.1. Prediction accuracy

A discriminative learning model predicting construction (double object
versus prepositional object) was fitted with the predictors Verb, Semantic Class,
and the Animacy, Definiteness, Pronominality, and Length of recipient and theme.
As the model currently requires discrete cues, as a workaround, the length of
recipient and theme were split into three ranges: length 1, lengths 2-4, and
lengths exceeding 4. These three length levels were used as cues, instead of the
original numerical values. As Brenan et al. (2007) did not observe significant
by-speaker variability, speaker is not included as a predictor in our initial
model. (Models including speaker as predictor will be introduced below.)

To evaluate goodness of fit, we used two measures, the index of
concordance C and the model’s accuracy. The index of concordance C is also
known as the receiver operating characteristic curve area ‘C’ (see, e.g.
HARRELL, 2001). Values of C exceeding 0.8 are generally regarded as
indicative of a succesful classifier. Accuracy was defined here as the proportion
of correctly predicted constructions, with as cut-off criterion for a correct
prediction that the probability for the correct prediction exceed 0.5. According
to these measures, the naive discriminative learning model performed well,
with C=0.97 and an accuracy of 0.92.

To place the performance of naive discriminative learning (NDL) in
perspective, we compared it with memory based learning (MBL), logistic
mixed-effects regression (GLMM), and a support vector machine with a linear
kernel (SVM). The index of concordance obtained with MBL, using TiMBL
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version 6.3 (DAELEMANS; ZAVREL; SLOOT; BOSCH, 2010), was
C=0.89. Its accuracy was 0.92. TiMBL was supplied with speaker information.

A logistic mixed-effects regression model, fitted with the LME4 package
for R (BATES, D.; MAECHLER, 2009), with both Speaker and Verb as
random-effect factors did not converge. As the GLMM did not detect
significant speaker-bound variance, we therefore fitted a model with verb as only
random-effect factor, including length of theme and recipient as (numerical)
covariates. The index of concordance for this model was C=0.97, accuracy was
at 0.93. The regression model required 18 parameters (one random-effect
standard deviation, an intercept, and 16 coefficients for slopes and contrasts)
to achieve this fit. A support vector machine, provided with access to Speaker
information, and fitted with the svm function in the E1017 package for R
(DIMITRIADOU; HORNICK; LEISCH; MEYER; WEINGESSEL,
2009), yielded C=0.97 with accuracy at 0.93, requiring 524 support vectors.

From this comparison, naive discriminative learning emerges as more
or less comparable in classificatory accuracy to existing state-of-the-art
classifiers. It is outperformed in both C and accuracy only by the support vector
machine, the currently best-performing classifier available. We note here that
the NDL classifier used here is completely parameter-free. The weights are fully
determined, and only determined, by the corpus input. There are no choices
that the user could make to influence the results.

Since speaker information was available to TiMBL and to the SVM, we
fitted a second naive discriminative learning model to the data, this time
including speaker as a predictor. The index of concordance increased slightly to
0.98, and accuracy to 0.95. Further improvement can be obtained by allowing
pairs of predictor values to function as cues, following the naive discriminative
reader model of Baayen et al. (2011). They included both letters and letter
bigrams as cues, the former representing static knowledge of which letters are
present in the input, the latter representing information about sequences of
letters. Analogously, pairs of features, e.g., semantic class p combined with a
given theme, can be brought into the learning process. This amounts to
considering (when calculating the conditional co-occurrence matrix C
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TABLE 3
Index of concordance C and accuracy for all data (left)

and average across 10-fold cross-validation

all data 10-fold cross-validation

C Accuracy C Accuracy

SVM 0.98 0.95 0.95 0.91

TiMBL 0.89 0.92 0.89 0.92
GLMM 0.97 0.93 0.96 0.92

NDL (verb) 0.97 0.92 0.89 0.85
NDL (verb+speaker) 0.98 0.95 0.93 0.89

NDL-2 (verb+speaker) 0.99 0.96 0.94 0.91

not only pairwise co-occurrences of cues, but also the co-occurrences of triplets
and quadruplets of cues. Within the framework of naive discriminative
learning, this is the functional equivalent of interactions in a regression model.
In what follows, NDL-2 refers to a model which includes pairs of features for
all predictors, excluding however pairs involving Verb or Speaker. With this
richer representation of the input, the index of concordance increased to 0.99
and accuracy to 0.96.

However, we now need to assess whether naive discriminative learning
achieves this good performance at the cost of overfitting. To assess this
possibility, we made use of 10-fold cross-validation, using exactly the same
folds for each of the classifiers. The right half of Table 3 summarizes the results.
In cross-validation, naive discriminative learning performs less well than the
SVM and the GLMM, but similar to TiMBL. Fortunately, concordance and
accuracy remain high.

We are now in the position to tentatively answer our first question, of
whether machine learning outperforms human learning. If naive
discriminative learning is indeed a reasonable approximation of human
learning, then the answer is that human learning builds a representation of past
experience comparable to that of other machine learning techniques. However,
for generalization to unseen, new data, human classification seems thus far to
be outperformed, albeit only slightly, by some of the best machine classifiers
currently available.
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3.2. Effect sizes and variable importance

One of the advantages of regression models for linguistic analysis is that
the estimated coefficients offer the researcher insight into what forces shape
the probabilities of a construction. For instance, a pronominal theme is
assigned a b weight of 2.2398 on the log odds scale, indicating that pronominal
themes are much more likely to be expressed in a prepositional object
construction than in a double object construction. This kind of information
is more difficult to extract from a support vector machine or from a memory
based model, for which one has to inspect the support vectors or the
similarity neighborhoods respectively. Interestingly, the weights of the naive

discriminative learner provide the same kind of information as the coefficients
of the regression model. For instance, in the model with verb (and without
speaker), a non-pronominal theme has a negative weight equal to -0.046 for
the prepositional object construction, whereas a pronominal theme has a
positive weight of 0.203. The difference between the two, henceforth the
NDL treatment contrast, is 0.248. This difference should be similar to the

FIGURE 2 – Treatment contrasts generated from the association strengths of
the naive discriminative learner (horizontal axis) and the treatment constrasts

of a generalized linear mixed-effects model (vertical axis). Semantic class:
reference level abstract (give it some thought); c: communication (tell, give me
your name); f: future transfer of possession (owe, promise); p: prevention of

possession (cost, deny); t: transfer of possession (give an armband, send).
Reference levels for the other predictors are animate, definite, accessible, ‘non-

pronominal, and Length 1.
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treatment contrast for the pronominality of the theme, which is defined as the
difference (on the logit scale) between a pronominal theme and the reference
level of the non-pronominal theme. When we plot the NDL treatment
contrast together with the treatment coefficients of the logistic regression
model, we find that the two enter into a strong correlation, r = 0.87 (t(16) =
7.18, p = 0), as can be seen in Figure 2.

For sparse data, the naive discriminative learner tends to be more
conservative than the GLMM. The +p data point in the lower left of Figure
2 represents the ‘prevention of possession’ semantic class, which supports 182
instances with the double object construction and only one case with the
prepositional object construction. The logistic regression model concludes that
a prepositional object construction is extremely unlikely, assigning +p verbs
a negative weight of no less than -4. The naive discriminative learner is
assigning this type of verb a larger, though still small, probability.

In order to assess the importance of a predictor for classification accuracy
across the very different classifiers considered above, we permute the values of
the predictor in order to break its potential relation with the dependent variable.
We then inspect to what extent classification accuracy decreases. The greater the
decrease in classification accuracy, the greater the importance of the predictor. This
non-parametric approach is inspired by how variable importance is assessed for
random forests, which are also non-parametric classifiers (see, e.g., STROBL et
al, 2009). Figure 3 summarizes the results for the regression model, the support
vector machine, and for naive discriminative learning.

First consider variable importance for the regression model, summarized
in the upper left panel. The pronominality of the theme emerges as the most
important predictor for regression accuracy, followed by verb, and at a distance,
by the definiteness of the theme. Semantic class has a negative score, indicating
that random permutation of its values resulted in slightly improved accuracy.
By chance, the random reordering of values resulted in a configuration that
affords a slightly better model to be fitted. This may arise when the values of
an irrelevant predictor are reshuffled. By mirroring the minimal score to the
right of zero, we obtain an interval that characterizes irrelevant predictors (see,
e.g., STROBL et al., 2009, for this logic in the context of random forests).
For the regression model, this interval contains, in addition to Semantic Class,
the predictors Animacy of Theme and Definiteness of Recipient.

The support vector machine comes to rather different conclusions. Its
classification accuracy is very sensitive to having access to verb and speaker
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information. Accuracy is also affected negatively by removal of the predictors
specifying the pronominality of theme and recipient, as well as the length of
the recipient.

Predictors marked as important by naive discriminative learning are the
animacy of the recipient, the length of the theme, the pronominality of the
theme, the identity of the verb, and the accessibility of the theme. Speaker is
characterized as having no importance, in accordance with the GLMM but
contrary to the results obtained with the SVM.

For all models, overall accuracy (which is in the nineties) is hardly
affected by permuting the values of a single predictor. This especially striking
for the naive discriminative learning model with cue pairs (lower right panel),
for which the reductions in accuracy are an order of magnitude smaller than
those for the other models (note the different scale on the horizontal axis in
the lower right panel of Figure 3). Apparently, this model is exceptionally
robust against noise predictors.

FIGURE 3 – Permutation accuracy importance: the reduction in accuracy for
predicting the prepositional object construction when a predictor is randomly

permuted, for mixed-effects logistic regression (upper left), a support vector
machine (upper right), naive discriminative learning (lower left), and naive

discriminative learning with feature pairs (lower right).
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The minor effect of variable permutation also indicates that, apparently,
individual predictors are not that important. This is in all likelihood a
consequence of the correlational structure characterizing the predictor space.
For the dative set, each of the predictors listed in Table 4 can be predicted from
the other predictors, with 2 up to 6 of the other predictors having significant
coefficients (p <0.05), and with prediction accuracies up to 95%. Although
this kind of rampant collinearity can pose serious problems for statistical
analysis (in fact, a conditional variable importance measure (STROBL;
BOULESTEIX; KNEIB; AUGUSTIN; ZEILEIS, 2008) for random forests
would be a better choice than the straightforward permutation measure used
above), it probably provides exactly the redundancy that makes human
learning of language data robust. The improvement in classification accuracy
of the naive discriminative learner when provided with feature pairs instead
of single features as cues provides further support for the importance of
redundancy. By making richer co-occurrence information available to the
model, classification accuracy increases. The other side of the same coin is that
permuting one predictor’s values leaves prediction accuracy virtually
unchanged: The ‘functional’ burden of individual predictors is small.

TABLE 4
Prediction accuracy and number of significant predictors for  (logistic) regression

models predicting one predictor from the remaining other predictors

Accuracy Number of Significant Predictors

Animacy of Recipient 0.93 3

Definiteness of Recipient 0.91 2

Pronominality of Recipient 0.91 5

Accessibility of Recipient 0.95 4

Length of Recipient 0.33 3

Animacy of Theme 0.03 4

Definitiness of Theme 0.79 4

Pronominality of Theme 0.90 4

Accessibility of Theme 0.76 6

Length of Theme 0.04 2
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3.3. Non-normal speaker variability

From a methodological perspective, it is noteworthy that Figure 3
clarifies that the importance of individual predictors is evaluated rather
differently by the different models. The information gain ratios used by
TiMBL to evaluate exemplar similarity, not shown here, provide yet another,
and again different, ranking of variable importance. In the light of this diversity,
one would hope that the variable importance suggested by models that are
cognitively more realistic is closer to the truth. Whether this is indeed the case
for naive discriminative learning awaits further validation, perhaps through
psycholinguistic experimentation.

In what follows, we focus on one particularly salient difference, the
discrepancy between the SVM and the other models when it comes to the
importance of Speaker. Figure 4 visualizes the distributions of the
contributions of the verb and speaker weights to the probability of the
prepositional object construction in NDL-2, as well as the random intercepts
for the verbs in the generalized linear mixed model. The left panels show
estimated probability density functions, the right panels the corresponding
quantile-quantile plots.

The top panels present the NDL-2 weights for the associations of verbs
to the prepositional object construction in the naive discriminative learning
model. These weights follow, approximately, a normal distribution. The
central panels graph the distribution of the random intercepts for the verbs in
the GLMM, these also roughly follow a normal distribution. The NDL-2 verb
weights and the GLMM random intercepts for verbs correlate well, r = 0.77
(t(36) = 7.18, p = 0), indicating that the two models are representing the same
variation in a very similar way.
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FIGURE 4 – Distributions of the contributions of the individual verbs (top) and
speakers (bottom) to the likelihood of the prepositional object construction, and the

by-verb random intercepts in the generalized linear mixed model (center panels)

The bottom panels summarize the distribution of the association
strengths from speakers to the prepositional object construction in the NDL.
These weights are characterized by a symmetrical distribution that, however,
deviates markedly from normality. There are too many very small weights close
to zero, combined with long but slim tails with outliers. This is, at least in part,
due to the sparsity of information on individual speakers (the median number
of observations for Speaker is 4, less than half of the median for Verb, 10.4).

The generalized linear mixed model builds on the assumption that
random intercepts follow a normal distribution. For the speakers, this
assumption is clearly violated. The mixed-effects model either fails to detect
non-normally-distributed speaker variability, or infers that including speaker
as random-effect factor does not lead to improved prediction. As the GLMM
slightly outperforms the SVM under cross-validation, it seems likely that the
SVM may be overfitting the data. The permutation variable importance for
speaker in the naive discriminative learning models points in the same direction.
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Returning to the difference between machine learning and human
learning, the performance of naive discriminative learning suggests that human
learning might be sensitive to variation (such as variation coming with
individual speakers) that machine learning would back off from. However, for
the human learner, thanks to the highly redundant nature of the set of
predictors, the consequences of human overfitting seem negligible.

4. Naive discriminative learning and distinctive collexeme analysis

We have seen that naive discriminative learning provides a statistical tool
for classification that, at least for the present data set, performs comparably
to other state-of-the-art statistical classifiers. Crucially, naive discriminative
classification is theoretically motivated as the end state of human discriminative
learning. Over time, very simple adjustments to the association strengths of
verbs to constructions result in excellent classification performance. The aim
of this section is to show that within this new approach, a measure for
distinctive collexeme analysis can be straightforwardly formulated.

Distinctive collexeme analysis (GRIES; STEFANOWITSCH, 2004)
quantifies to what extent a word is attracted to a particular construction. For
instance, for the verb take, a contingency table (Table 5) serves as the input to
a Fisher exact test of independence. The p-value produced by this test is log-
transformed. The absolute value of the resulting measure is used to gauge
attraction to or repulsion from a given construction. For take, distinctive
collexeme strength is 35.7, indicating extremely strong attraction to the
prepositional object construction. (Here, and in what follows, the focus is on
the prepositional object construction.)

From a statistical perspective, it is somewhat odd to derive a measure
from a p-value. An alternative approach is to make use of a measure from
information theory, the Kullback-Leibler divergence, also known as relative
entropy. Relative entropy specifies the difference between two probability
distributions. The first probability distribution, p, concerns the probabilities
of the two constructions for the verb take. The second probability
distribution, q, specifies the probabilities of the two constructions in general.
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TABLE 5
Contingency table for distinctive collexeme analysis of take

NP NP NP PP

take 2 56

other verbs 1857 445

TABLE 6
The probability distribution p and q required for the calculation

of the relative entropy for take
p q

double object construction 2/(2+56) (2+1857)/(2+56+1857+445)

prepositional object construction 56/(2+56) (56+445)/(2+56+1857+445)

From Table 5 these probabilities can be obtained straightforwardly, as shown
in Table 6. Given the two distributions p and q, their relative entropy is
defined as

(11) RE (p, q) =  p
i
 log

2
        ,

which for take evaluates to 1.95.
Alternatively, the ΔP measure (ALLAN, 1980; ELLIS, 2006) can be

used. This measure comes from learning and conditioning theory in
psychology, where it has been found to be useful to probe cue learnability.
Given a contingency table m cross-tabulating for the presence and absence of
a given cue C and outcome O,

(12) O – O

m =    C a    b
–C c   d

this one-way dependency statistic is defined as

(13) ΔP = Pr (O|C) – P (O | – C)

= a /(a + b) – c /(c + d)

= (ad – bc) / [(a + b) (c + d)]

DP ranges between -1 and 1, and represents the difference between two
conditional probabilities, the probability of the outcome given the cue, and

p
i

q
i

i
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the probability of the outcome in the absence of the cue. For the data in Table
5, DP  for the cue take and the outcome NP NP is -0.77, indicating that the
cue take decreases the probability of the double object construction.
Conversely, DP for the cue take and the prepositional object construction is
0.77, indicating that take is a reliable cue for this construction.

Yet another option for quantifying a verb’s preference for a construction
is to use the random intercepts of the generalized linear mixed model. For take,
this random intercept (the adjustment of the baseline log-odds for the
prepositional object construction) is 2.75, again indicating that the use of this
verb is biased towards the prepositional object construction.

Finally, we can also use the association strength of a verb to a
construction as estimated by naive discriminative learning as a measure for
distinctive collexeme strength. In the model with both Verb and Speaker, the
association strength (weight) to the prepositional object construction for take
is 0.13. The verb promise has the largest negative association strength for the
prepositional object construction (-0.28), and the verb read the largest (0.54).

Figure 5 presents a scatterplot matrix for the five measures for distinctive
collexeme analysis, calculated across all verbs. First note that all measures enter
into positive correlations that are consistently significant according to the non-
parametric Spearman correlation test. The standard measure of Collexeme
Strength is most clearly correlated with the relative entropy measure. DP
correlates well with Relative Entropy, with the Random Intercepts, and with
the Cue Strengths. Furthermore, the random intercepts of the GLMM and
the verb-to-construction association strengths of the NDL are strongly
correlated. The Random Intercepts and the Cue Strengths emerge as less prone
to generate extreme outliers. For instance, whereas take is an extreme outlier
on the scale of the Collexeme Strength and Relative Entropy measures, it is
well integrated within the cloud of data points for the Random Intercepts and
Cue Strengths.

What this survey of measures suggests is that corpus linguistics has a
range of measures for verb-specific constructional preferences at its disposal
that probably all do a decent job of highlighting verbs with strong constructional
biases. The Cue-to-Construction Strength measure, however, is particularly
interesting and promising, in that it is derived from the Rescorla-Wagner
equations, described by Ellis (2006) as “the most influential formula in the
history of conditioning theory”. As a speaker/listener becomes more and more
proficient in a language, the association strengths of words to constructions
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become more and more fine-tuned to the distributional properties of the
language. For a verb such as take, the speaker/listener comes to expect the
prepositional object construction. Sentences such as We hope he took his mother
the ingredients to bake a Simnel Mothering Cake (stpauls-healdsburg.org/wp-
content/uploads/.../2010/201004-stpauls.pdf) then come as a surprise,
violating the expectation of a prepositional object construction, but at the same
time constituting a learning experience with concomitant adjustments of the
association strengths of this verb to the double object construction.

5. General Discussion

Corpus linguistics is generally conceived of as a descriptive subdiscipline
of linguistics. As increasingly powerful and realistic models of human learning
and cognition become available, however, corpus linguistics can begin to take
on the challenge of not only describing distributional patterns in corpora, but
also of explaining the consequences of the observed distributional patterns for
human learning and linguistic choice behavior.

FIGURE 5 – Different measures of collexeme strength and their pairwise
correlations (Pearson and Spearman)
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Over the last decades, the statistical evaluation of distributional patterns
has become increasingly important in corpus linguistics. Statistical models
provide excellent insight into the quantitative structure of distributional
patterns, but it is unclear to what extent such models provide an adequate
characterization of the speaker-listener’s actual knowledge. Moreover, the way
in which statistical models derive a quantitative characterization of
distributional patterns will, in general, be very different from how the speaker-
listener acquires this knowledge.

As a first step towards a better cognitive grounding of quantitative
analysis in corpus linguistics, the present study introduces a classifier grounded
in naive discriminative learning. Using the data of Bresnan et al. (2007) on the
dative alternation in spoken English as a case study, we have been able to show
that, in theory, human classification can achieve nearly the same high level of
accuracy as current state-of-the-art machine-learning techniques.

We have to be careful with this conclusion, however. First, this study
has examined only one data set. Naive discriminative learning may not
perform as well on other more complex data sets. Second, the validity of naive
discriminative learning as a model for how speaker-listeners acquire and
represent probabilistic knowledge depends on the validity of the Rescorla-
Wagner equations. These equations specify learning under optimal conditions,
without noise factors such as lack of attention, incomplete assessment of
relevant cues, and incomplete knowledge of the targeted outcomes. The
present results for naive discriminative learning therefore probably represent
an upper bound for human performance. Third, although it is well known that
dopamine neurons display a short-latency, phasic reward signal that indicates
the difference between actual and predicted rewards (SCHULTZ, 2002; DAW;
SHOHAMY, 2008), providing a neuro-biological justification for the
hypothesis that learning is error-driven, it is well-known that the Rescorla-
Wagner equations, however fruitful, do not cover all aspects of learning
(MILLER et al., 1995; SIEGEL; ALLAN, 1996).

Although naive discriminative classification performs well for the
present data set, the conclusion that machine classification and human
classification would be equivalent is not warranted. An examination of variable
importance across models suggests that although statistical models can achieve
comparable performance, they may do so by assigning predictors rather
different explanatory relevance. There is a surprising and from a statistical
perspective disquieting lack of convergence in the variable importance assigned
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to the predictors for the dative constructions across the support vector
machine model, the logistic regression model, and the naive discriminative learner
(Figure 3). In the face of such diversity, one would hope that that a statistical
classifier derived from principles of human learning may provide superior
estimates of variable importance for human-produced quantitative data. Without
experimental support, unfortunately, this remains a conjecture at best.

The association strengths from verbs to constructions emerge in the
naive discriminative learning approach as a natural alternative for quantifying
distinctive collexeme strength. Although the five measures considered in this
study (Collexeme strength, ΔP, Relative Entropy, Random Intercepts, and Cue
Strength) are all correlated and useful as measures of collexeme strength, it is
only the Cue Strength measure that is fully grounded in learning theory. It
offers an important advantage compared to the other measure originating in
psychology, ΔP. While ΔP is appropriate for 2 by 2 contingency tables
(ALLAN, 1980), the Cue Strength measure handles n by 2 contingency tables
appropriately. Crucially, the Cue Strength measure takes into account that
many different cues may compete for a given outcome. Consider, for instance,
the expression in the second row of equation (2) above,

l – V
j
.

When many cues are present simultaneously, the sum over cues will be
larger, hence a larger number is subtracted from l, and as a consequence, the
cue-to-outcome association strength will increase with a smaller amount.
Furthermore, when estimating the equilibrium association strength, the co-
occurrence frequencies of the individual cues and outcomes are taken into
account. By contrast, the ΔP measure ignores all other cues that can co-occur
with a given outcome.

The naive discriminative learning model compresses experience with
2360 verb tokens, each characterized by 14 values (construction, verb, speaker,
and 11 predictors) into a matrix of cue-to-construction association strengths
with dimensions 865 by 2, a reduction from 2360 x 14 = 33040 values to
only 1730 values, which amounts to a reduction by almost a factor 20. This
reduced representation of past experience in terms of cue-to-construction
strengths is reminiscent of connectionist models. The discriminative learning
approach shares with the connectionist models of Seindeberg and McClelland

present (Cj, t)
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(1989) and Harm and Seindeberg (2004), as well as with the Competition
Model (BATES, E.; MacWHINNEY, 1987; MacWHINNEY, 2005) the
axiom that learning and generalization is driven by the distributional properties of
the input. The discriminative learning model differs from the abovementioned
connectionist models in terms of its architecture, which is much simpler. It
does not make use of subsymbolic, distributed, representations, and it
dispenses with hidden layers of all kinds. As a consequence, it is extremely
parsimonious in free parameters: The only free parameter in the present study
is whether to make use of single features or of feature-pairs. Computation of the
weight matrix is also computationally much more efficient than in connectionist
models. Computational efficiency also compares very favorably with random
forests (BREIMAN, 2001; STROBL et al., 2009), a high-performance non-
parametric classifier that, unfortunately, is extremely slow for data with factors
such as speaker and verb that have very large numbers of levels.

Note that the discriminative learner approach offers the possibility of
gauging not only verb-related constructional preferences, but also speaker-
related constructional preferences, by means of the weights on the connections
from speakers to constructions.

The way in which knowledge is represented in naive discriminative
learning differs from other (non-connectionist) computational models for
linguistic generalization. In exemplar-based approaches, it is assumed that in
the course of experience, exemplars are stored in memory. Prediction is based
on similarity neighborhoods in exemplar space. Data Oriented Parsing (BOD,
2006), Analogical Modeling of Language (SKOUSEN, 1989), and Memory
Based Learning (DAELEMANS; BOSCH, 2005) provide examples of this
general approach.

An important advantage of exemplar-based approaches is that the
generalization process is simple and remarkably accurate in its predictions, as
witnessed for the present data set by the classification results obtained with
TiMBL, using its out-of-the-box default settings of parameters. An important
disadvantage is that exemplars must be assumed to be available in memory,
which may be unrealistic for human language processing. For example, recent
studies suggest that the frequency with which a given sequence of words occurs
in the language is predictive for how quickly such a sequence is processed
(ARNON; SNIDER, 2010; TREMBLAY; BAAYEN, 2010). This frequency
effect persists for non-idiomatic sequences and for sequences that are
incomplete phrases (as, e.g., the president of the). The assumption that shorter
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n-grams are stored in memory implies that hundreds of millions of exemplars
would be remembered. This seems unrealistic. While naive discriminative
learning shares with memory based learning the premise that each exemplar
is important and contributes to learning, unlike memory-based learning, it
does not need to posit that individual exemplars ‘exist’ independently in
memory: Exemplar information is merged into the weights.

Instead of calculating predictions over an acquired instance space at run
time, as in memory-based learning, one can instead seek to construct rule systems
or constraint systems that capture the quantitative forces shaping behavior
without having to store exemplars. The Gradual Learning Algorithm of
Stochastic Optimality Theory (BOERSMA; HAYES, 2001) and the Mimimum
Generalization Learner (ALBRIGHT; HAYES, 2003) are examples of this
approach. These rule-based approaches do not run into the problem that the
instance base can become extremely voluminous, but they are challenged by
frequency effects documented for linguistic units such as regular complex
words and n-grams. Rule-based approaches tend to ignore these frequency
effects, leaving them aside as an unsolved issue supposedly irrelevant to
understanding the nature of generalization in human cognition. Rule-based
approaches are also challenged by a proliferation of rules necessary to capture
the fine details of the quantitative patterns in the data. Naive discriminative
learning, by contrast, dispenses with the necessity of positing that the speaker-
listener deduces large and complex rule sets from the input. Excellent
classification accuracy can be obtained without storing exemplars and without
rule induction or deduction.

In summary, the potential importance of naive discriminative learning
for corpus linguistics is that it offers a unified framework for learning, for
classification, and for distinctive collexeme (and distinctive collocutor)
analysis. It is conceivable that variable importance is more adequately assessed
by means of discriminative learning. Furthermore, naive discriminative
learning may detect non-normally distributed variability where classic mixed
models cannot do so. Finally, in discriminative learning, single cues make only
modest contributions to classification accuracy. The present case study suggests
that cues for outcomes tend to be highly interdependent and to a considerable
extent predictable from each other. As such, they constitute a rich and
redundant feature space in which a highly context-sensitive error-driven
learning algorithm such as defined by the Rescorla-Wagner equations functions
well, unhampered by issues of collinearity that plague (parametric) regression
models.



321RBLA, Belo Horizonte, v. 11, n. 2, p. 295-328, 2011

Assuming that naive discriminative learning is on the right track as a
characterization of human learning and categorization, many important
questions remain unanswered. One such question is how speakers/listeners
become knowledgeable about the cues and outcomes on which naive
discriminative classification is based. Another question is why the language
input to the model typically displays high-dimensional correlational structure,
as exemplified by the dative alternation data. Although intercorrelated,
redundant feature spaces are apparently relatively easy to learn, at least under
ideal conditions, it remains unclear why the data take the distributional forms
typically attested in corpora. Furthermore, our use of the equilibrium
equations for the Rescorla-Wagner equations assumes that the adult system
would be completely stable and not subject to further change, which is only
approximately correct.

The Rescorla-Wagner characterization of discriminative learning is in all
likelihood incomplete, in that it does not do justice to tiny biases favoring
outcomes that are cognitively easier to process (such as given information
preceding new information). Within a speech community, such small biases
would, under favorable circumstances, gain momentum, leading to locally
optimal, ‘functional’ distributional patterns. Under this scenario, predictors
such as animacy, definiteness, and information status would not shape an
individual speaker’s production as, for instance, in the variable rule approach
of Cedergren and Sankoff (1974). Instead of a given utterance being governed
by a probabilistic set of cognitive constraints operating at the level of an
individual’s brain, an utterance would be shaped by past experience under
error-driven discriminative learning, much as described above for the dative
alternation. However, tiny cognitive biases, neglected in the current
formulation of the naive discriminative learner, would over time give rise to
a speech community the utterances of which would then reflect, to some
extent, varying from speech community to speech community, these very
cognitive biases.

A challenge for corpus linguistics is to develop multi-agent computational
models demonstrating that indeed tiny cognitive biases in discriminative
learning can generate the kind of grammars and their trajectories of diachronic
change that we find in human speech communities. With efficient algorithms
such as provided by the equilibrium equations, realistic computational
methods are coming within reach.
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APPENDIX: naive discriminative classification with the ndl
package

The ndl package (Arppe & Baayen, 2011), available in the CRAN
archives at www.r-project.org, provides software for naive discriminative
learning for the R statistical programming environment. The following
provides an introduction to its basic functionality.

As a first step, we attach the package, extract the dative dataset, and
remove the data for which no speaker information is available.

> library (ndl)
> data (dative)
> dative = dative [! is. na (dative$Speaker), – 2]

We fit a basic naive discriminative classifier to the data using the standard
formula based interface, where the dot is expanded into all predictors in the
dative data frame other than the dependent variable (RealizationOfRecipient):

> dative.nd1 = nd1Classify (RealizationOfRecipient ~., data = dative)

Numeric predictors are converted into factors, by default each factor
has two levels. This default can be changed by the user, as explained in the
documentation. Models with cue pairs can be specified using the interaction
notation for R formulae. For instance,

> dative.nd12  =  nd1Classify (RealizationOfRecipient     ~   (SemanticClass +

+ LengthOfRecipient + AnimacyOfRec    +  DefinOfRec    +  PronomOfRec +

+ LengthOfTheme + AnimacyOfTheme + DefinOfTheme + PronomOfTheme +

+ AccessOfRec + AccessOfTheme)    +   Verb    +   Speaker,    data = dative)

includes pairwise cues for all independent variables, except verb and speaker.
The weight matrix can be extracted from the model object, which is a list:

> names (dative.nd1)

[1] “activationMatrix” “weight-Matrix” “cuesOutcomes” “frequency”
[5] “call” “formula” “data”

> head (dative.nd1$weightMatrix)
NP PP

AccessOfRecaccessible –0.015468613    0.083503412
AccessOfRecgiven   0.094783250 –0.026748451
AccessOfRecnew –0.009894431    0.077929230
AccessOfThemeaccessible   0.089768608 –0.021733809
AccessOfThemegiven –0.093523058    0.161557856
AccessOfThemenew   0.073174656 –0.005139857



327RBLA, Belo Horizonte, v. 11, n. 2, p. 295-328, 2011

The association strengths of the individual verbs to the constructions
can be accessed as follows:

> w = dative.nd1$SweightMatrix
> verbs = w [grep (“Verb”, rownames (w)), ]
> verbs = verbs [order (verbs [, “pp” ]),]
> head (verbs)

NP PP
Verbaward 0.6194557 –0.6146320
 Verbbet 0.3843946 –0.3795708
Verbowe 0.3570426 –0.3522188
Verbpromise 0.3425307 –0.3377070
Verbtell 0.3036573 –0.2988335
 Verbteach 0.1962304 –0.1914066

> tail (verbs)
NP PP

Verbhand –0.2039228  0.2087466
 Verbbring –0.2059774 0.2108011
Verbleave  –0.2593050 0.2641288
Verbowrite –0.4221433  0.4269670
Verbread –0.4432427  0.4480664
 Verbafford –0.6125922  0.6174159

A summary method for ndl objects is available that provides a wide
range of measures of goodness of fit, including

> summary (dative.nd1) $statistics$C

[1] 0.9820687

> summary (dative.nd1) $statistics$accuracy

[1] 0.9457627

A crosstabulation of observed and predicted values is available with

> summary (dative.nd1) $statistics$crosstable

NP PP

NP 1821 38
PP 90 411

The predicted probabilities of the double object and prepositional
object constructions for each row of the dative data frame are obtained with

> p = acts2probs (dative.nd1$activationMatrix)$p

>read (p)
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NP PP
[1,] 0.7582780  0.2417220
[2,] 0.1872549  0.8127451
[3,] 0.5710474  0.4289526
[4,] 0.5707516  0.4292484
[5,] 0.5190592  0.4809408
[6,] 0.4767222  0.5232778

> tail (p)
NP PP

[2355,] 0.5009516  0.4990484
[2356,] 0.6145346  0.3854654
[2357,] 0.6999555  0.3000445
[2358,] 0.4434956  0.5565044
[2359,] 0.6017827  0.3982173
[2360,] 0.6433302  0.3566698

Crossvalidation can be carried out as follows:

> dative.nd1.10 = nd1Crossvalidate (RealizationOfRecipient ~.,
+ data = dative)

> summary (dative.nd1.10)$statistics.summary [“Mean”, “C”]

[1] 0.9265221

> summary (dative.nd1.10)$statistics.summary [“Mean”, “accuracy”]

[1] 0.8889831

Permutation variable importance is assessed with

> dative.varimp = nd1Varimp (dative.ndl)

> library (lattice)
> dotplot (sort (summary (dative.nd1)$statistics$accuracy – dative.varimp$accuracy),

+ xlab = “permutation variable importance”)
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