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Abstract Fetal growth restriction (FGR) diagnosis is often made by fetal biometric ultrasound
measurements orDoppler evaluation, butmost babies areonlydiagnosedafter birth, using
the birth weight as a proxy for intrauterine development. The higher risks of neuro-
developmental delay, metabolic syndrome, and cardiovascular illness associated with FGR
impose a shift on the focus during pregnancy. New methodological approaches, like
metabolomics, can provide novel biomarkers for intrauterine fetal development. Recent
evidence on metabolites involved with fetal growth and weight show a consistent role
played by lipids (especially fatty acids), amino acids, vitamin D and folic acid. Fetal energy
source andmetabolism, structural functions, and nervous system functioning need further
evaluations in different populations. In the near future, the establishment of a core set of
outcomes for FGR studies may improve the identification of the role of each metabolite in
its development. Thus, we will concretely progress with the perspective of a translational
capacity of metabolomics for this condition.
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Resumo O diagnóstico da restrição do crescimento fetal (RCF) é frequentemente feito por
medidas biométricas ultrassonográficas ou por avaliação pela Dopplervelocimetria,
mas, na maioria dos casos, o diagnóstico é apenas pós-natal, usando o peso ao
nascimento como um marcador para o desenvolvimento intrauterino. Riscos maiores
de atraso do neurodesenvolvimento, síndrome metabólica e doenças cardiovasculares
associadas com a RCF impõem uma mudança no foco durante a gestação. Novas
abordagens metodológicas, como a metabolômica, podem fornecer novos biomarca-
dores para o desenvolvimento fetal intrauterino. As evidências recentes sobre os
metabolitos envolvidos com o crescimento e peso fetal mostram um papel consistente
desempenhado pelos lipídios (especialmente os ácidos graxos), aminoácidos, vitamina
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Introduction

The impairment of fetal growth has gainedmajor importance
over the past few years. There is an increasing body of
evidence suggesting that long-term health outcomes could
be managed still during pregnancy. Findings among chil-
dren1 and adults2–4whowere bornwith a birth weight (BW)
below average or who were exposed to maternal undernu-
trition in utero5,6 support the hypothesis of the developmen-
tal origins of health and disease (DOHaD). Fetal growth
restriction (FGR; or intrauterine growth restriction, IUGR),
that is, when the fetus does not reach its ‘optimal’ growth
potential, is possibly the underlying condition of future
epidemiological burden of noncommunicable chronic dis-
eases (NCDs).

Fetal growth restriction was recognized as a distinct
condition in perinatology only in the 1960s,7 and it is usually
defined by estimated fetal weight (EFW) < 10th centile or
fetal abdominal circumference < 10th centile.8 Considering
the postnatal growth as a development continuum that
begins in intrauterine life, BWcan be used as a measurement
of fetal growth.9 Then, FGR (or IUGR) can describe fetal
growth impairment of any severity, confirmed at birth or
not,10–14 while small for gestational age (SGA) neonates can
define either FGR or constitutionally small infants.13–15

However, and unfortunately, there is still little consensus,
both from the obstetrics and neonatology standpoints, re-
garding how clinicians should screen, diagnose and manage
these fetuses and newborns. In fact, FGR is responsible for
half of the rate of stillbirths,16 and the odds of neonatal
mortality can be as high as 3.91 (95% confidence interval
[95%CI]: 3.21-4.76).17 Still, suspicion of fetal growth im-
pairment in pregnancy clearly improves perinatal out-
comes.18 Clinical factors, ultrasound scan (US) parameters
or placental biomarkers have shownmodest clues about FGR
pathophysiology and management.

Therefore, the development of new strategies for FGR and
SGA evaluation is necessary. The postgenomic era is marked
by rapid advances in the so-called omics sciences, including
transcriptomics (the analysis of messenger ribonucleic acid
[mRNA]), proteomics (the analysis of proteins) and metab-
olomics.19 The latter is dedicated to studying metabolites,
small molecules between 50 and 2,000 Daltons, which
represent the complex interaction between each individual
and the environment.19,20 With metabolomic platforms, it is
possible to evaluate endogenous compounds or exposure to
contaminants, for instance, and to offer personalized care

based on disease phenotype. In pregnancy, it is still an open
field to appraise maternal and fetal adaptive responses to the
intrauterine environment.

Metabolomic studies have shown maternal metabolic
changes during normal pregnancies21,22 and how BW is
determined;23,24 they soon emerged as a promising predic-
tive and diagnostic tool for preeclampsia.25 We hypothesize
that recent advances in FGR evaluation have at least a similar
potential. Therefore, the aims of the present review are to
summarize the investigations of FGR with a metabolomic
approach, and the future perspectives of translating this
knowledge to the bedside practice.

What are Metabolomics and its Application
on Obstetrics?

The first mention of the term ‘metabolome’ occurred in
1998,26 andmuch has been done since then. The metabolome
is dynamic by nature, and represents a meaningful simulta-
neous evaluation of genetic and environmental influences.27

As FGR is a heterogeneous syndrome and appears to be a
metabolic disorder, both for the mother and the fetus, metab-
olomics is thought to be the best approach to investigate it.

Nuclear magnetic resonance (NMR) and mass spectrome-
try (MS) are the most common analytical platforms applied;
MS can be coupled with liquid or gas chromatography, for
example (Dunn et al27 provide a comprehensive review on
this issue). Two main types of investigations can be made,
with different objectives: untargeted or targeted. The first
one, untargeted or ‘metabolic profiling,’ evaluates simulta-
neously thousands of metabolites in a given sample.19 After
careful bioinformatics data analysis (principal component
analysis [PCA], or partial least squares discriminant analysis
[PLS-DA], for example), the peaks must be matched by
retention time, accurate mass and spectra. The Human
Metabolome Database (www.hmdb.ca) is an example of
repository in which the chemical taxonomy (chemical su-
perclass and class, for example) and known biological pro-
cesses are listed and can be consulted freely.28 Metabolic
pathways can be checked at the Kyoto Encyclopedia of Genes
and Genomes (www.genome.jp/kegg), for example. With
untargeted analysis, it is not possible to determine the
absolute quantities of compounds, but a relative change
between groups. Then, they are generally applied for hypoth-
esis-generating purposes, attempting to comprehend bio-
logical processes.20,27 In sequence, they should be validated
in large-scale studies.27

D e ácido fólico. A fonte de energia fetal e seu metabolismo, a função estrutural e o
funcionamento do sistema nervoso devem ser detalhadamente investigados nos
próximos estudos de validação. Em breve, o estabelecimento de um conjunto de
desfechos a serem descritos para os estudos de RCF pode melhorar a identificação do
papel de cada metabolito no seu desenvolvimento. Assim, iremos progredir no
entendimento da RCF numa perspectiva da capacidade translacional da metabolômica
para este transtorno.
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On the other hand, a targeted analysis is hypothesis-
driven, that is, devoted to measuring prespecified biomark-
ers,19,27 with acceptable accuracy measurements (sensitivi-
ty, specificity, and area under the receiver operating curve
[AUC], for example) to differentiate health conditions.20 In
the latter case, a predictive, diagnostic or prognostic model
can be elaborated with as many metabolites as necessary.20

Sample preparation will ultimately depend on study design
and type of biological sample chosen.27 However, it is
important to note that biomarkers developed for a given
population are only suitable for that population.20 Therefore,
well-delineatedmetabolomic research in perinatal medicine
has the potential to answer relevant gaps in the clinical
practice.

Fetal metabolism depends on the interaction of the fetus
with the maternal organism, and it is mediated at the
placental level. There probably is a trend towards higher
levels of nonessential amino acids (that is, those synthesized
by human cells) with increasing gestational age in maternal
blood,21 while they show downregulated levels in maternal
hair.22 Some metabolic pathways are suspected to influence
BW, such as the carnitine shuttle, de novo fatty acid biosyn-
thesis, 21-carbon (C-21) steroid biosynthesis and metabo-
lism, prostaglandin formation, and glycerophospholipid,
glycosphingolipid and tryptophan pathways.23,24Ultimately,
these metabolites are involved with energy generation,
oxidation of fatty acids,29 immune functions,30 and cell-
membrane organization.31 At the same time, environmental
exposure to organochlorine compounds, such as phthalate
metabolites and perfluorooctanoic acid, are associated to a
decrease in BW,32 in a sex-specific manner.33

It is known that normal pregnancies show metabolic
disruption when submitted to any pathological condition,
such as fetal chromosomal abnormalities (upregulation of
acetone in maternal urine, for example)34; hypertensive
disorders (downregulation of acetate in maternal urine, for
example)34; gestational diabetes mellitus (downregulated
levels of 2-oxobutyric acid, for example)22; restriction of
growth, or any combination of those factors.35 Changes can
be detected in any biological sample, such as blood, urine,
hair or even breastmilk.36 However, the main difficulty for
conducting and interpreting metabolomic studies in repro-
ductive medicine is the significant variety of definitions. For
FGR, EFW by US,11,37 uterine or umbilical artery blood flow
abnormalities,14 or BW10,12,15,38,39 are all criteria applied to
identify these fetuses and newborns. Although not consen-
sual, they represent important FGR phenotypes in the clini-
cal practice. Then, in order to offer a deeper evaluation of the
available knowledge, we have kept the definitions applied by
each study and present the most recent findings on metab-
olomic studies with mothers and newborns, near delivery.

What Metabolomics has Found in Growth-
Restricted Fetuses and Newborns

Maternal blood, urine, and hair have been explored for FGR
evaluation with metabolomics, as well as amniotic fluid,
venous cord blood, and newborn urine. In pregnancy, some

studies have associated maternal levels of certain metabo-
lites with BW. Our group has recently suggested a disruption
of lipid metabolism in the 2nd trimester of SGA pregnancies
(BW < 10th centile).40 Untargeted analyses of maternal
blood15 and hair22,41 have provided reliable predictive accu-
racy that should be validated in different settings. In the third
trimester, there is major deposition of fat in fetal tissues and
in the brain, which has led to some investigations on mater-
nal fatty acid metabolism. Between 26-28w, linoleic acid
levels are positively associated with BW and abdominal
adipose tissue volume, while docosahexaenoic acid is related
to the proportionality of growth (length/height).42 Near
delivery, the mother/newborn ratio of medium-chain fatty
acids is downregulated in pregnancies affected by IUGR with
Doppler abnormalities,14 suggesting the increased need of
energetic and structural metabolites by these newborns.

Most metabolomic studies with newborns have focused
on samples collected near delivery, to get the closest snap-
shot of fetal metabolism. The findings from neonatal and
maternal metabolomic investigations are summarized
in ►Tables 1 and 2.

Favretto et al11 found 22 metabolites that could differen-
tiate adequate for gestational age (AGA) newborns from
newborns with FGR (suspected during pregnancy and con-
firmed after birth, both EFW and BW < 10th centile). A total
of sevenwere alpha-aminoacids (that is, those involved with
protein synthesis), and all compounds were upregulated in
FGR newborns. Tryptophan, phenylalanine, and glutamate
individually had the best accuracy, reaching 100% of sensi-
tivity (the former two compounds) and at least 85% of
specificity (the latter one).11 However, in the newborns
sampled by Sanz-Cortés et al,12 amino acids were only
significant in late-onset IUGR (BW < 10th centile with deliv-
ery > 35w and normal Doppler evaluation). On the other
hand, Liu et al39 searched for amino acids and acylcarnitines
in neonatal blood. Homocysteine, methionine, tyrosine, ala-
nine, ornithine, and serine showed decreased levels in IUGR
< 3rd centile of BW.39 While ornithine can be involved with
cell proliferation, differentiation and apoptosis,43 serine acts
as a neurotransmitter of glutamate N-methyl-D-aspartate
(NMDA) receptors in brain.44 Interestingly, the last two
amino acids were upregulated in SGA children without
catch-up growth.45

In neonatal urine, Dessí et al10,38 and Barberini et al37

found increased levels of myo-inositol in FGR cases (both
EFW and BW < 10th centile). Myo-inositol belongs to the
alcohol and polyols chemical subclass.28 In adipose cells, it
downregulates the release of free fatty acids, and on the
ovaries, it mediates glucose uptake and follicle stimulating
hormone (FSH) signaling.46 Unfortunately, Barberini et al37

grouped SGA and large for gestational age (LGA) newborns
for a final comparison, but there is some evidence pointing to
a higher risk of metabolic events later in life in both
groups2,3,47,48 of newborns. Interestingly, myo-inositol has
been used for the treatment of polycystic ovary syndrome,46

which has a known relationship with metabolic syndrome.
Thus, more research is needed to elucidate which pathways
are affected in SGA and LGA.
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Vitamin D has been involved in a multiplicity of biological
pathways. It regulates calcium transport through the placen-
ta and parathyroid hormone levels, which may play a role in
fetal skeletal development.49 Liquid chromatography cou-
pled to MS is the best approach to measure vitamin D levels.
Evidence from trials suggest a protective effect of maternal
supplementation of vitamin D on BW,50 but less is known
about its direct impacts on BW or its implications regarding
SGA pathogenesis, if there are any. Vitamin D concentration
indeed varies according to ethnicity and smoking patterns,51

variables already associated with impaired fetal growth. In
the 1st trimester, vitamin D levels < 50nmol/L were statisti-
cally associatedwith SGA (BW < 5th centile) infants.52 In the
2nd trimester of women with high risk for preeclampsia,
vitaminD levels� 75 nmol/Lwere associatedwith decreased
risk for BW < 10th centile (adjusted risk ratio, [aRR]: 0.46;
95% confidence interval [95%CI]: 0.24-0.87).53 However, in
low-risk women, levels < 30nmol/L at 15w were not associ-
ated with SGA (BW < 10th centile),54 even when there were
increased parathyroid hormone levels.55 These findings sug-
gest that the thresholds of vitamin D that confer either a risk
or a protective effect are not the same as those used in the
clinical practice to define normal levels in pregnancy. Indeed,
apart from the high prevalence of vitamin D deficiency in
pregnancy and in cord blood, it appears to have no impact on
infant musculoskeletal development at 2y.51

This raises the question of whether there is constitutional
or truly impaired fetal growth regarding BW. Some research-
ers have investigated differences between newborns with
BW < 10th with or without Doppler abnormalities.14 As a
matter of fact, metabolic differences are understandable, and
perhaps expected, due to fetal blood flow redistribution.
Visentin et al14 found lower levels of decanoic and dodeca-
noic acids in FGR (EFW < 3rd centile or < 10th centile plus
Doppler alterations) compared to SGA (EFW and BW < 10th

without maternal or fetal hemodynamic abnormalities) in
both newborns and their mothers. Capric and lauric acids
respectively are involvedwith unsaturated fatty acid biosyn-
thesis, some of them prostaglandin precursors (linoleic acid,
for example).29 In normal pregnancies, they represent an
additional fetal energy source through ketogenesis.21 Thus,
one could suggest a higher maternal transfer of these non-
esterified acids in FGR pregnancies, besides higher fetal use
of ketone bodies (energy and structural roles).

In monochorionic twin pregnancies, for instance, amino
acid pathways appear to be disrupted in pairs with discordant
growth. Cosmi et al56 compared FGR (EFW < 10th centile plus
abnormal Doppler) infants with AGA infants (EFW > 10th

centile, normal Doppler waveforms) from the same index
pregnancy. They found downregulated levels of valine, isoleu-
cine (essential branched-chain amino acids), proline and
tryptophan (nonessential branched-chain amino acids): pro-
line is part of the composition of collagen, while tryptophan
degradation leads to redoxcofactors.30At the same time, there
was an upregulation of phenylalanine (an essential branched-
chain amino acid; precursor of catecholamine neurotransmit-
ters).28 Thesefindings need further consideration, but already
highlight a metabolic shift in FGR pregnancies.

Ultimately, discriminating the ‘truly restricted fetuses’
from the ‘constitutionally small’ ones may require more
than a BWevaluation. From a clinical point of view, it should
at least include adverse perinatal outcomes. At the same
time, froma translational point of view, this is a greatfield for
advancements withmetabolomic studies in a shorter period.

What Should Be Explored

The World Health Organization (WHO) now recommends
iron and folic acid (at least 400mcg) supplementation
throughout pregnancy.57 Apart from its role in preventing
neural tube defects, epidemiological data indicate folate
participation on BW. For instance, its depletion is suspected
to justify the repeated SGA in case of interpregnancy inter-
vals lower than 23 months.58 In fact, a recent systematic
review59 has pointed that folic acid supplementation before
conception decreases the risk of SGA < 10th centile BW
(adjusted odds ratio [aOR]: 0.80; 95%CI: 0.71-0.90) or < 5th

centile BW (aOR: 0.78; 95%CI: 0.66-0.91).59 Additionally, at
the nuclei level, folate acts as a methyl donor, and little is
known about its involvement with the methylated enriched
pathways observed in SGA pregnancies, if there is any.60

Therefore, whether folic acid or homocysteine mediate FGR
pathogenesis or are only biomarkers of disease merits con-
sideration in further metabolomic researches.

Amino acid supplementation to improve fetal weight is
another intriguing relationship. L-arginine is a precursor of
nitric oxide, which regulates placental perfusion. Arginine
in amniotic fluid is directly correlated with BW, body
length and head circumference.61 Evidence from small
trials show a marked increase in BW (mean difference:
0.41; 95%CI: 0.24-0.58), although the characteristics and
follow-up of the participants, as well as the route and
duration of arginine supplementation, were heteroge-
neous.62 Arginine is an essential amino acid for infants,
and evidence from experimental data suggests its role in
inducing protein synthesis that is not dependent on nitric
oxide pathways.63 Fetal growth restriction placental
explants in hypoxic (O2 1%) conditions have half of the
metabolites in common with AGA pregnancies under nor-
mal oxygen tension (O2 6%), suggesting that hypoxia would
play a role in FGR pathogenesis.

Asmetabolomics is a very sensitive and holistic approach,
extra care must be taken regarding sample selection. Evalu-
ating pregnant women or newborns different from those
found in the clinical practice will limit the translational
potential of this technology. Although guidelines for report-
ing observational epidemiologic64 or metabolomic65 studies
are available, they do not fulfill the necessary details for
translational investigations. Meaningful transfer of the bed-
side advancements to the clinical practice is a real concern
and will be achieved only if researchers and clinicians speak
the same language. In the near future, the establishment of a
core set of outcomes for FGR studies may organize a descrip-
tion of clinical data and prevent duplicate efforts. Then, we
believe that concrete progress with metabolomics will ad-
vance faster.
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Conclusion

Metabolomics is a novel and promising area of research in
reproductive medicine. Although some results may contra-
dict each other, the maternal and fetal metabolisms are
highly dynamic, and may adapt according to several influ-
ences. Levels of metabolites in cord blood might represent
increased fetal demands or catabolism, for instance. The
current available knowledge points to a disruption in fetal
energy source and metabolism, structural functions (cell
surface membrane, cell proliferation and apoptosis), and
nervous system functioning (neurotransmitter pathways).
Future validations of metabolomic studies20 in different
populations will set the ideal thresholds for the clinical
practice. Similarly, metabolomic findings may offer clues
about FGR prevention (primary up to tertiary) and treat-
ment. At the end, we envision the possible distinction of
fetuses that reach ‘optimal growth’ from others that do not.
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