Acessibilidade / Reportar erro

Modelagem física e computacional de ondas geradas pelo veto em um terminal portuário: o desempenho do modelo SWAN 40.51 em uma região com elevada reflexão e difração

The SWAN wave model is widely used in coastal waters, and the main focus of this work is on its application in a harbour. A recently released version of SWAN now includes an approximation to compute diffraction, however there are few published works that discuss this matter. The performance of the model is therefore investigated in a harbour where reflection and diffraction play a relevant role. To assess its estimates, a phase-resolving Boussinesq wave model is employed as well, together with measurements carried on at a small-scale model of the area behind the breakwater. For irregular, short-crested waves with broad directional spreading, the importance of diffraction is relatively small. On the other hand, reflection of the incident waves is significant, increasing the energy inside the harbour. Nevertheless, when the SWAN model is set to compute diffraction and reflection simultaneously, it does not achieve convergence. It is concluded that for situations typically encountered in harbours, with irregular waves near reflective obstacles, the model should be used without diffraction.

wind waves; SWAN 40.51 wave model; wave reflection and diffraction


Sociedade Brasileira de Geofísica Av. Rio Branco, 156, sala 2510, 20043-900 Rio de Janeiro RJ - Brazil, Tel. / Fax: (55 21) 2533-0064 - São Paulo - SP - Brazil
E-mail: sbgf@sbgf.org.br