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Abstract - Passion fruit crop yield depends on the behavior of climatic variables, and modeling 
the dependence relationship of these variables regarding crop yield offers information aimed at 
facilitating agribusiness decision making. As main aim, passion fruit crop yield was estimated 
using mathematical models. A multivariate and univariate statistical analysis of meteorological 
variables was carried out during the observation period between 2007 and 2014 of selected weather 
stations, identified and located in the Colombian middle tropics (County of Huila). The relationship 
between yield with the following agroclimatic variables were analyzed: temperature, sunlight, 
relative humidity, rainfall and ENSO at monthly resolution with empirical and mechanistic models, 
recommended in scientific literature. Results showed that the multiple regression model requires the 
highest yield peaks; the adjustment of the multiple regression model is low, while univariate models 
such as the ARIMA model showed better adjustment in the time series analyzed. The Stewart’s 
water-yield model has better performance to estimate yield as a function of evapotranspiration in 
the different phenological phases.
Index terms: yield, crop yield modeling, uncertainty, passion fruit.

Modelagem matemática de dados climatológicos para
 estimar a produção do maracujazeiro-amarelo 

(Passiflora edulis Sims L. F. Flavicarpa)
Resumo - A produtividade da cultura do maracujá depende do comportamento das variáveis   
climáticas, e a modelagem da relação de dependência destas variáveis com a produtividade da 
cultura oferece informações que visam a facilitar a tomada de decisão do agronegócio. Como 
objetivo principal, a produtividade da cultura do maracujá foi estimada por meio de modelos 
matemáticos. Uma análise estatística multivariada e univariada das variáveis   meteorológicas 
foi realizada durante o período de observação entre 2007 e 2014 das estações climatológicas 
selecionadas, identificadas e localizadas no trópico médio colombiano (Região administrativa de 
Huila). Foram analisadas as relações de produtividade com as seguintes variáveis   agroclimáticas: 
temperatura, brilho solar, umidade relativa, precipitação e ENOS em resolução mensal com 
modelos empíricos e mecanísticos, recomendados na literatura científica. Os resultados mostraram 
que o modelo de regressão múltipla requer os maiores picos de rendimento; o ajuste do modelo é 
baixo, enquanto modelos univariados, como o modelo ARIMA, apresentaram melhor ajuste nas 
séries temporais analisadas. O modelo de rendimento de água de Stewart tem melhor desempenho 
para estimar rendimento em função da evapotranspiração nas diferentes fases fenológicas.
Termos para indexação: produtividade, modelagem de rendimento de cultura, incerteza, 
maracujá.
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Introduction

Climate plays an important role in the development 
of crops, and the three most important climate components 
are light, temperature and rainfall (CAMPOS ARANDA., 
2005). In addition, relative humidity and the El Niño-Niña 
Southern Oscillation (ENSO) climatic pattern measured 
from the ONI index are also considered, because these 
extreme phenomena have an impact on crop yields, 
causing threats to food security (IDEAM, 2013).

Additionally, it has been shown that the microclimate 
has an impact on plant growth and development, which are 
linked to climate behavior on a larger scale (macroclimate), 
and under these conditions, it is possible to generalize 
the results of studies to describe the behavior of the 
relationships between vegetation and climate (CAMPOS 
ARANDA., 2005).

In the case of the production of fruit species such 
as Passiflora edulis Sims L. f. Flavicarpa y purpurea, 
it depends on multiple agroclimatic variables, such as 
altitude, latitude, temperature, relative humidity, radiation, 
rainfall, wind speed and sunlight, among others, which are 
conditions that humans cannot control, directly affecting 
crop performance. Management decisions depend on the 
farmer’s knowledge (cultural or learned) regarding the 
climate behavior and its impact on crop yield (MORLEY-
BUNKER, 1999).

The scientific-technical background of production 
forecasts is based on the knowledge of the relationship 
between ecophysiological requirements of the species and 
the environmental supply, referring in this particular case 
to the supply and intensity of meteorological factors, with 
fundamental support of statistics (KANTANANTHA; 
STEWART, 2007), so that they accurately fulfill 
the prediction and are useful for other specialists 
(DELGADILLO-RUIZ et al., 2016; RUÍZ-RAMÍREZ; 
HERNÁNDEZ-RODRÍGUEZ; ZULETA RODRÍGUEZ, 
2011; MARTÍNEZ VENTURA, 2006).

In this regard, forecasting models that estimate 
production volumes in semi-permanent fruit species 
such as passion fruit contribute to its understanding. The 
models most widely used are simulation models (SOTO 
G.; COTES T.; RODRÍGUEZ C., 2017), statistical-
environmental models, statistical-biometric models and 
statistical models by sampling (KANTANANTHA; 
STEWART, 2007).

For this reason, quantitative techniques are useful 
tools to minimize economic losses, strengthening the 
availability and supply of the product in the market. 
In addition, farmers reduce the uncertainty in their 
decisions and economic consequences due to the uncertain 
behavior of the climate system, which has strong impacts 
in the phytosanitary management, quality, production 
volume and finally prices (PANNELL; MALCOLM; 
KINGWELL, 2000; MOSCHINI; HENNESSY, 2001).

Other fields of application using forecasts to 
estimate crop yields are food security, crop insurance 
policy indemnities, import and export plans, as they are 
relevant decisions for planning state subsidies. These 
decisions are considered of national interest, therefore 
of strategic nature (KANTANANTHA; STEWART, 
2007). At producer level, yield forecast before harvest 
time generates information to plan crops and considers 
strategies to minimize eventual losses (KANTANANTHA; 
STEWART, 2007).

For the purpose of this research, empirical and 
mechanistic modeling approaches widely reported in 
scientific literature were analyzed to estimate yield 
from agroclimatic variables, and the advantages of 
their application were analyzed through the selected 
case (KANTANANTHA; SERBAN; GRIFFIN, 2010; 
KANTANANTHA; STEWART, 2007; KUSUMASTUTI; 
DONK; TEUNTER, 2016; MUSSHOFF; HIRSCHAUER, 
2007). Forecasts aim to capture more closely the dynamics 
of each of cultural practices (transitory and permanent), 
taking into account the production cycle (MARTÍNEZ 
VENTURA, 2006).

Materials and methods

Selection of agroclimatic stations
Weather stations were selected from the catalog of 

stations of the Institute of Hydrology, Meteorology and 
Environmental Studies (IDEAM, 2019), according to the 
following criteria: information completeness above 75%, 
greater number of series / year of climatic variables, which 
were main weather stations (CP) and finally the coverage 
of climatic stations taking as reference their minimum 
Euclidean distance to locations of observed production 
units.

The mathematical programming model is described 
below:

Sets
l : Producers
J: Weather stations

Parameters
dij: Euclidean distance from producer i to agroclimatic 
station j.
 Decision variable
xij: Binary variable 1 if the weather station is assigned to 
producer i or 0 otherwise

(1)

Subject to:

(2)
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Where equation (1) is the objective function that 
minimizes the distance between two points, equation (2) 
allows assigning producers to the closest weather stations 
and equation (3) allows all producers to be assigned to one 

(3)
weather station. This model was solved with the Branch 
and Bound method (LAWLER; WOOD, 1966) through 
the Open Solver software (OPENSOLVER.ORG, 2020).
The selected stations are listed below (Table 1):

Table 1. Selected weather stations

CROP CODE ALTITUDE 
(msnm) MUNICIPALITY LATITUDE LONGITUDE BS HR PP T

Passion fruit

21025030 1368 ALTAMIRA 2.079167 -75.736222 X X X X
21035040 1045 SUAZA 1.868389 -75.827778 X X X
21055020 1070 LA PLATA 2.378278 -75.89125 X X X X
21105040 680 CAMPOALEGRE 2.696806 -75.298889 X X X

Source: IDEAM (2019) (BS: Sunlight, HR: Relative Humidity, PP: Rainfall, T: Temperature)

Within the location of the most important passion 
fruit producers, the municipality of La Plata (Huila) stands 
out, located in the central mountain range at coordinates 
2o23’00’’ N and 75o56’00”, average temperature of 
23oC, and altitude of 1180 meters above sea level. Crop 
production has different technification degrees, and 
weather stations with the shortest distance to passion fruit 
producers are 21105040 and 21035040, selected in this 
research, based on the mathematical programming model.

Weather data
Historical data (average / month) of climatic 

variables temperature, relative humidity, sunlight and 
rainfall were collected. ONI indexes from 2000 to 2004 
and from 2007 to 2014 were obtained with monthly 
resolution, and the database construction obeyed the time 
periods with greater availability of information.

Crop yield data
According to reports from the Ministry of 

Agriculture and Rural Development, yield data (ton * 
ha-1) / month of passion fruit cultivation of municipalities 
where weather stations were located were collected, and 
the yield behavior according to the phenological stage of 
the crop was considered.

The first step consisted in the creation of the 
database in a time series structure (DALININA, 
2017; DERRYBERRY, 2014; R, 2019; METCALFE; 
COWPERTWAIT, 2009), evaluating stationarity, 
seasonality and decomposition of crop yield series.

Descriptive exploratory analysis
The methodology proposed by different authors 

was followed (BOX et al., 2015; METCALFE; 
COWPERTWAIT, 2009; CLAYTON et al., 2002; 
SHUMWAY; STOFFER, 2017), since their techniques 
involve aspects of trend and seasonality, among others. 
Analyses were carried out using the version 5.0.0 of the 

Python Programming language under the Jupyter interface 
(programming language for statistical processing and 
graph elaboration) and the Rstudio language version 
1.2.1335 (available at https://jupyter.org, https: //www.
rstudio.com/).

Description of empirical mathematical models
To explain the yield behavior of Passiflora 

edulis Sums L. f. Flavicarpa and purpurea, empirical 
mathematical models based on performance forecasts 
were used, which are a statistical procedure with certain 
disadvantages since it must have significant volume of 
data during several periods of time to generate the model 
reliability. These simple and direct methods have been 
developed with variables such as rainfall, temperature, 
solar radiation and sometimes nutrients to estimate 
yield (VANDENDRIESSCHE; VAN ITTERSUM, 
1995). The techniques reported with this approach are: 
Autoregressive Integrated Moving Average (ARIMA), 
Multiple Regression, robust regression models and Neural 
Networks. Each of the techniques that were developed are 
described below.

Multiple Regression
A regression model in which the dependent 

or response variable “Y” is related to more than one 
explanation variable is called multiple linear regression 
model (DERRYBERRY, 2014) (Eq. 4).

(4)

Where disturbance e i is the error associated with 
measurement i of the Xpivalue, under the assumptions 
that ei ~ N (0,s2 ). The analysis between two or more 
variables can be performed through equations as proposed 
with this statistical analysis method. Residues represent 
the variability that is not captured by the deterministic 
relationship represented by regression functions (HENGL, 
2009; HENGL; HEUVELINK; ROSSITER, 2007).
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Based on descriptive statistical analyses, the model 
of all climatic variables was proposed, applying the 
backward methodology of elimination of less significant 
variables proposed by Montgomery, Peck and Vining, 
(2002).

ARIMA model
The ARIMA model has been widely used in all 

scientific-technical fields to identify temporal stochastic 
processes and estimate models for their prediction and 
control (Box and Jenkins, 1976). In the ARIMA model 
(p, d, q), p is defined as the order of the autoregressive 
process, d is the number of differences that are necessary 
for a process to be stationary and q is the order of the 
moving average process, which can be represented as 
follows (Eq. 5).

logistic regression since between the input layer and the 
output layer, there may be one or more non-linear layers, 
called hidden layers (SCIKIT-LEARN.ORG, 2019).

The input layer consists of a set of neurons that 
represent each input entity. Each neuron in the hidden 
layer transforms values   from the previous layer into a 
weighted linear sum, followed by a nonlinear function, 
such as the hyperbolic tangent function. The output layer 
receives values   from the last hidden layer and converts 
them into output values   (SCIKIT-LEARN.ORG, 2019). 
The regression class used with the multilayer perceptron 
trains with backward propagation without activation 
function, the square error uses it as a loss function, and 
the output is a set of continuous values. The mathematical 
formulation is given by a set of training data (x1,y1), (x2,y2), 
...(xn,yn),where  xi ∈ Rn and yi ∈ {0,1}, where the hidden 
layer learns with the f(x) = W2

g (wT
1x + b1) + b2 function, 

where w1 ∈ Rm and W2, b1, b2 ∈ R are parameters of the 
model W1, W2 are the weights of input and hidden layers, 
respectively, and represent the trend added to the hidden 
layer and the output layer (SCIKIT-LEARN.ORG, 2019).

Description of mechanistic mathematical models
Mechanistic mathematical models assume that 

the crop growth system has known structure and can be 
mathematically described. The aims of these models allow 
integrating knowledge and testing hypotheses; however, 
the models have high predictive level since there are easily 
measurable variables (VANDENDRIESSCHE; VAN 
ITTERSUM, 1995). Within this category, recommended 
models are the water-yield models (ALLEN et al., 1998). 
The main advantage of the latter is the access to knowledge 
for non-experts, non-researchers and farmers.

Mechanistic mathematical models describe crop 
physiology but still require further development to 
improve prediction accuracy (VANDENDRIESSCHE; 
VAN ITTERSUM, 1995). The formal description of 
estimation models considered in this research will be 
given below.

Water-yield models
The water-yield response is a function defined by 

FAO (FAO, 2012), which model addresses this relationship 
through a simple Eq. 6 expressed as:

   

Where Ya and Yx are actual and maximum yields, 
ETa  and ETxare actual and maximum evapotranspiration 
and  Ky  is the yield response factor that represents the 
decrease in evapotranspiration over yield losses.

(5)

Where d is used to convert the original series into 
stationary, parameters  j1...jp...are the autoregressive part,  
q1...qq,…,  belong to the moving averages, the constant 
term and the stochastic disturbance. This methodology 
is based on the use of one-variable data to identify the 
characteristics of its underlying probabilistic structure, in 
contrast to traditional procedures used to identify models 
based on an explanatory theory of the phenomenon under 
study (DALININA, 2017).
         

Robust regression models
The TheilSen Regressor estimator uses the 

generalization of the median in multiple dimensions, 
being therefore anon-parametric statistical model robust to 
multivariate atypical values. This estimator is impartial for 
the real slope in simple linear regression (KUMAR SEN, 
1968). For many distributions of the response error, the 
estimator has high asymptotic efficiency in relation to the 
least squares estimate (KUMAR SEN, 1968).

Gaussian process regression implements Gaussian 
processes for regression purposes, which is possible 
through optimization and random algorithms to improve 
he adjustment (KUMAR SEN, 1968).

Multilayer Perceptron (MLP)
The multilayer perceptron (MLP) trains iteratively 

since each time step is calculated through partial 
derivatives of the loss function with respect to parameters 
of the model to update it (KINGMA; BA, 2014; HE et 
al., 2015).

  MLP is a supervised learning algorithm that 
learns, with the f (.): Rm → Ro  function, training a data 
set, where m is the number of input dimensions and o is 
the number of output dimensions. Given a set of  X = x1, 
x2,...,xm characteristics and a y goal, one can learn through 
a non-linear regression approximation. It differs from 

(6)
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Other yield-water models are described as 
production functions that depend on the crop water 
requirements. The best known and most accepted are the 
Jensen and Stewart’s model. Models are used by simulating 
the relationships of yield with the evapotranspiration 
deficit of various crop growth stages.

The Jensen’s model was developed by Jensen 
(1968) (JENSEN, 1968), and is given by the following 
Eq. 7:

To determine maximum yield, the study on the 
effect of irrigation and fertilization on passion fruit yield 
and quality was considered (DORADO G.; TAFUR 
H.; RIOS R., 2013). From the treatment of maximum 
irrigation and its response to yield without fertilization, the 
following polynomial regression model is obtained, which 
interprets this behavior, with adjusted R of 0.96 (Fig. 1).

From these studies, the following sensitivity 
indexes proposed by Stewart and Jensen are obtained 
for each of the stages and proposed models for each 
phenological stage analyzed for the passion fruit crop 
and the climatic conditions of the station identified with 
code 21055020.

Evaluation of the fit of models
To evaluate the goodness-of-fit of models, 

regression (b) and determination coefficients (R2) were 
analyzed. In addition, estimation errors and modeling 
quality were also calculated through the Mean Absolute 
Deviation calculated as Eq. 10:
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Where Ya is the yield of irrigation deficit treatments; 
Yckis the crop yield with full irrigation treatments; ETai 
is the current crop evapotranspiration of growth stage 
of irrigation deficit treatment; ETcki  is the maximum 
evapotranspiration in the growth stage i of total irrigation;   
λt is the Jensen index of crop yield sensitivity under water 
deficit; i is the growth stage; n is the number of stages.

The above Eq. 8 can be solved by obtaining
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(8)

  The Stewart’s model developed by Stewart (1976) 
(STEWART; HAGAN; PRUITT, 1976) is given by (Eq. 
9)
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Where Kyi is the water deficit sensitivity index of 
the crop yield, the other parameters have been previously 
defined.

Determination of the water deficit sensitivity 
indexes of models

  Given the complexity and availability of 
information to establish the effects of irrigation in relation 
to yield response, regression models are used to estimate  
Kyi and λt constants and the Stewart and Jensen’s models, 
respectively. For the evaluation of models, the weather 
station with the greatest amount of information and 
measured variables was used, which in this case was station 
21055020. To calculate evapotranspiration, the Penman 
Monteith equation recommended by FAO (FAO, 2012) 
and accepted by the international scientific community 
in various research studies for its adjustment with respect 
to observed values was used. Evapotranspiration of the 
passion fruit crop was calculated from crop coefficients 
(Kc) for each phenological stage reported by Torrente 
(2009) (TORRENTE T., 2009) and De Lima (2004) (DE 
LIMA CORREA, 2004). The proposed methodology was 
based on recommendations by FAO (FAO, 2012) and by 
studies (CHEN et al., 2014; FAO, 2012) that facilitate the 
use of empirical techniques to achieve the approximation 
of constants.

(9)
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Where Si is the relative value obtained from the 
yield model and Mi is the observed crop yield value.

Regarding ARIMA, Robust Regression and 
multilayer perceptron models, it is important to note 
that for the selection of the best model to predict the 
series under study, the Akaike information criteria (AIC) 
(CRYER; CHAN, 2008) was used, for which the lower the 
values   of these measures, the better the model is in terms 
of relative quality in relation to the loss of information of 
the statistical model estimated for the crop yield series.
  

Results and discussion

 Dispersion statistics for climatic and yield 
variables 
  The central tendency measures suggest normal 
distribution behavior (Table 2).
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Table 2. Dispersion statistics of weather stations analyzed.
Station 21035040

Crop Variable Minimum Q1 Mean Q3 Maximum Standard 
deviation

Atypical Data

Lower 
limit 

Upper 
limit

Passion
fruit

Yield (ton*ha-1) 0.8058 1.14 1.37 1.59 2.238 0.3291 0.46 2.28

Temperature (oC) 21.3 22.37 22.72 23 24.8 0.602 21.43 23.93

Relative Humidity (%) 67 74 76.14 78 94 3.6646 68 84

Rainfall (mm/month) 9.6 74.47 108.97 140.5 260.5 53.69 0 239.53

ENSO ( index) -1.7 -0.8 -0.3093 0.125 1.6 0.7293 -2.18 1.51
Station 21105040

Crop Variable Minimum Q1 Mean Q3 Maximum Standard 
deviation

Atypical Data
Lower 
limit 

Upper 
limit 

Passion
 fruit

Yield (ton*ha-1) 0.46 0.79 0.99 1.14 1.66 0.27 0.61 2.32

Temperature (oC) 24.4 25 26.12 26.1 24.4 3.6 23.35 27.75

Relative Humidity (%) 54 67 71.16 75 83 6.76 55 87

Rainfall (mm/month) 6.6 50.1 119.23 201.2 347.5 89.16 0 427.85

ENSO ( index) -1.7 -1.1 -0.359 0.4 1.6 0.92 -3.35 2.65

Figure 1. Yield behavior regarding evapotranspiration of the passion fruit crop (Passiflora edulis Sims L. f. Flavicarpa 
and purpurea).
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  Among agroclimatic variables, rainfall has high 
variability, since its records range from 6.6 mm / month to 
364.7 mm / month, a similar case was found for sunlight, 
which ranges from 54.2 hours / month to 218.9 hours / 
month, on average, and relative humidity does not exceed 
94%. The analysis of atypical data under the methodology 
of interquartile ranges as a measure of statistical dispersion 
allows locating the extreme values   of variables analyzed in 
the case of station 21035040, variable Relative Humidity 
had extreme values   that correspond to 87%, 90, 5% and 
94%, which occurred in the period from June to August 
2008 respectively, based on historical information reported 
by IDEAM. The anomaly of the La Niña phenomenon 
was reported in the Andean region with strong intensity 
in periods between June 2007 and February 2008, and 
according to the source consulted, the occurrence of this 
phenomenon generated excessive rains in the middle and 
southern part of the Andean region, which significantly 
affected air temperature and rainfall (IDEAM, 2014). 
Another extreme value detected was rainfall of 260.5 mm 
/ month in November 2013.

 In station 21105040, relative humidity had atypical 
value of 54% in September 2009; in this period, El Niño 
phenomenon with weak intensity was reported by IDEAM, 
where there was a rainfall deficit condition (IDEAM, 
2014), and according to observed data, rainfall in that 
period corresponded to 19.5 mm / month.

Passion fruit crop yield
In the seven years considered in station 21035040 

near passion fruit producers, the average passion fruit 
crop yield was 1.38 ton * ha-1 month, 75% of this variable 
reached maximum value of 1.59 ton * ha-1 month, with 
maximum total value of 2.23 ton * ha-1 month. Cyclical 
pattern of annual variation was observed, with higher 
production volume in the months of February and March 
and lower production volume in the months of July and 
August (Fig.2).

Figure 2. Multiple boxes representing passion fruit crop yield / month. Station 21035020.

 In the cross-display diagrams for climatic variables, 
marked variations were observed in relation to crop yield. 
Less marked annual cyclical variations were detected for 
temperature, and some atypical values   in some months 
for variables sunlight and rainfall.

On the other hand, the bivariate correlation matrix 
for station 21035040 shows less strong and positive 
association between yield and temperature (0.3426), as 
well as between ENSO and temperature (0.389) (Fig. 3).
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Figure 3. Cross correlation matrix between variables. Station 21035040

In station 21105040, the strongest linear associa-
tion was found between variables rainfall and relative 
humidity (0.636), and strong negative association betwe-
en relative humidity and temperature (-0.80), the other 
variables present less strong associations (0.36). The 
linear relationship is positive and less strong between 
yield and temperature for station 21035040 (0.34), while 
for station 21105040, yield has association with relative 
humidity (0.3) and rainfall (0.36) (Fig. 04).

Mathematical models to predict low yield with 
empirical approach

Multiple linear regression model
In this methodology, five models were tested to 

find the agroclimatic variables that best explained passion 
fruit crop yield. As previously explained, the statistical 
analysis did not show significant linear association 
between variables. In this sense, it was decided to 
analyze multiple regression models to explain yield for 
the selected stations (Table 3).
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Figure 4. Cross correlation matrix between variables. Station 21105040

Table 3. Estimated multiple regression coefficients for the different weather stations analyzed.
Station Variables Coefficients Pr(>[t]) Indicators

21035040

Intercept -5.04 0.026 R2 0.141
HR 0.0079 0.493 Adj R2 0.103
PP 0.0002 0.71 AIC 53.47
T 0.2544 0.001 BIC 66.29
ENSO -0.0624 0.196

21105040

Intercept -12.34 0.003 R2 0.327
HR 0.0471 0.002 Adj R2 0.266
PP 0.0004 0.501 AIC 22.63
T 0.4052 0.001 BIC 32.09
ENSO -0.1055 0.108
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In the first multivariate regression model, variable 
temperature, p-value significantly lower than 0.05 was 
observed (0.001); additionally, the probability value of the 
F statistic indicates that the model is significant at 5 %, 
with p-value (0.007) lower than 0.05. Low yield variability 
explained through the model was also observed, evidenced 
by R2 (0.141) and adjusted R2 (0.103) (CRYER; CHAN, 
2008). In the case of the multivariate regression model of 
station 21105040, it was observed that p-value lower than 
0.05 (0.002) corresponds to relative humidity, (0.001), 
temperature and low adjustment value with R2 (0.327) 
and adjusted R2 (0.266).

Although the adjustment of models is low, the 
possibility of estimating descriptive models is suggested; 
for practical purposes of the research, it was decided to 
continue with the analysis of residuals as validation of 
assumptions that give statistical support to estimates and 
predictions of the model (Fig. 5).

In Figure 5, the normal probability graph for each 
of stations 21035040 and 21105040, a line is observed in 
the studentized residuals, demonstrating the non-normality 
of errors.

Figure 5. Analysis of residuals

The Shapiro Wilks test is applied in this first 
analysis, as a normality test and to test the hypotheses 
Ho: Residuals have normal behavior, Ha: Residuals do 
not present normality for a = 0.005 with confidence level 
of 95 %, the p-value of the test for calculated residuals 
of station 21035040 is 0.003632, which is lower than a, 
confirming the rejection of the null hypothesis and the 
non-normality of residuals.

Rev. Bras. Frutic., Jaboticabal, 2021, v. 43, n. 3:  (e-182)                                                                      



11Mathematical modeling of climatological data to estimate passion fruit crop yield...

  According to the above, to the multiple regression 
model for station 21035040, the significant variable 
that best explains yield is temperature. To improve the 
estimation of the model, parameters b are once again 
determined, where the independent variable is temperature 
and the dependent variable is yield. The expression 
obtained was:

Yield = 0.1872 Temperature - 2.8767      (11)

To verify the good specification, the Shapiro Wilks 
test is applied, and the p-value result of 0.007516 once 
again confirms the violation of the normality assumption 
of residuals.

To determine the good specification of the model, 
ANOVA was applied and F test was implemented, the 
hypotheses to be tested are Ho: Poor model specification 
and Ha: Good model specification. In this case, p-value 
0.0006318 < a = 0.005 was obtained, which indicates 
rejecting the Ho hypothesis, which suggests that the 
model is biased and inconsistent. Under these criteria, 
it is necessary to apply data transformation to improve 
normality assumptions and model specification.

The suggested method for the transformation is 
Box-Cox (KUTNER et al., 2005), as it allows correcting 
biases in the distribution of errors and unequal variances, 
and to carry out the transformation, it is necessary to select 
a range of λ values, searching for the transformation 
to approximate data. When estimating the probability 
function for lambda, it is obtained through the Box-Cox 
transformation function, implemented in R.

  In this case, the maximum probability function of 
lambda of 0.3838 suggests the transformation of natural 
logarithms for data. When applying the transformation 
and estimating the Shapiro Wilks normality test, p-value 
0.5354 was obtained, with reliability of 95%, and the 
hypothesis of normality of residuals is accepted and the 
homoscedasticity assumption is verified.

To confirm the homoscedasticity assumption, the 
Breusch Pagan test was applied to confirm the equality 
of variances. P-value of 0.228, which accepts the null 
hypothesis, was obtained. Finally, low correlations 
were found between the explanatory variables of 
proposed models, which is why the assumption of 
non-multicollinearity between regression variables was 
validated.

For the independence assumption, the Durbin 
Watson test was applied to test the hypothesis of 
autocorrelation equal to zero and for the alternative non-
zero, the p-value is 6.306e-13, which determines that the 
alternative hypothesis was accepted. This result is due to 
the nature of data, where serial autocorrelation is shown.

The multiple linear regression models estimated for 
station 21105040 take previously indicated expressions, 
considering only variables that better explain yield (Eq. 
12).

Yield = 0.0438 Relative Humidity + 0.2932 Temperature 
-9.1566                      (12).

The adjustment of models is low, which reveals 
that climatic variables alone do not fully explain yield 
(ton * ha-1 month), and other variables such as agrological 
soil class, fertility level, soil management, management 
and availability of water resources, etc., should also be 
considered. Additionally, each of the tests explained above 
were applied to each of the multiple regression models to 
verify assumptions, finding results and conclusions similar 
to those obtained with station 21035040.

ARIMA model
Figure 6 shows yield associated with climatic 

variables for stations 21035040, 21105040, stationarity, 
seasonality and decomposition of series of the yield 
variable (ton * ha-1 month) in the analyzed time horizon. A 
pattern with annual periodicity was observed, with higher 
peaks in the first quarter of the year and lower peaks in 
the third quarter of the year with slight trend from 2011, 
which continues until 2014, where maximum yield of the 
series exceeds 2.23 ton * ha-1 month of passion fruit. The 
series was then decomposed into its seasonal, trend and 
residual parts.

The passion fruit yield series is stationary, a result 
corroborated by the Dickey Fuller test, with which the 
hypothesis is rejected at 5% significance (Table 04).

Table 4. Dicey Fuller statistic to test the seasonality of 
series.

Dickey-Fuller Statistic = - 6.463

Lag order = 4

P-Value = 0.01
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Using the auto.arima function of the forecast library, 
the best ARIMA model for the analyzed performance 
variable is (Table 05):

Table 5. ARIMA Models for Passion Fruit

ARIMA(0,1,0)

AIC=-341.78

The graph of residuals of the second model (Fig. 7) 
correct distortions of the original model, and the AIC is 
lower with respect to ARIMA (0, 1.0), which is why this 
model was selected as the best model.

Figure 6. Decomposition of the passion fruit yield time series (Passiflora edulis Sim L. f. Flavicarpa and purpurea)

When obtaining the residual graphs of the passion 
fruit yield autoregressive model ARIMA (0,1,0) and 
ARIMA (12,1,0), there is a clear pattern present in ACF 
/ PACF and the residual graphs of the model repeats at 
lag 12. This suggests that the models may be better with 
a different specification, such as p = 12 or q = 12. 

Figure 7. Residuals for the ARIMA (0, 1, 0) and ARIMA (12, 1.0) model of passion fruit yield (Passiflora edulis Sims 
L. f. Flavicarpa and purpurea).

Finally, the ARIMA (12, 1.0) model that obtained 
lower AIC = -347.8 is expressed with the following Eq. 13:

(13)
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Robust regression models
Robust regression models were defined considering 

yield as a function of explanatory variable temperature. 

Using the Anaconda jupyter package, the following results 
were obtained (Table 6).

 Table 6. Adjustment values   for robust regression models
21035040 21105040

Technique VD VI R2 MSE VD VI R2 MSE
Theil Sen regression Yield T -112.97 12.22 Yield T -5.69 0.754

Regression Gaussian Processes Yield T -17.68 2.00 Yield T -19.29 2.280

From these results, it was observed that the 
adjustment of models is minimal, which shows that these 
techniques are not adequate for data under analysis.

Multilayer Perceptron (MLP)
  Given the low adjustment of the multiple 

regression and the results of the correlation matrix between 
variables, it was suggested that these relationships may 
be nonlinear. This is why the multilayer perceptron is 
considered a nonlinear multiple regression method. Input 
neurons are defined through training data considered 
for the different agroclimatic stations analyzed, which 
variables are relative humidity, temperature, sunlight, 
rainfall and the ENSO index.

Using the sklearn.neural_network import 
MLPRegressor (SCIKIT-LEARN.ORG, 2019) python 
function, MLP with 3 hidden layers was estimated with 
neurons equal to input variables where the activation 
function is f (x) = max (0,x). The solution method is an 
optimizer of the quasi Newton family of methods, and the 
number of iterations for the MLP estimation is 1500. The 
yield results obtained for each of the selected stations are 
shown in Table 7.

Table 7. Comparison of forecasts for passion fruit crop yield (Passiflora edulis Sims L. f. Flavicarpa and purpurea).
Passion Fruit Yield 
Station 21035040

MLP
Forecast

Passion Fruit Yield 
Station 21105040

MLP
Forecast

1.43314023 0.79780071 1.6509231 1.14620891
1.31485592 0.84468479 2.35607436 1.31609017
1.12100004 1.2214109 2.12598271 1.16243562
0.80585048 0.75954478 1.91085364 2.48672649
0.85456356 1.06203469 1.75314122 1.69345305
1.10338232 0.52045073 1.49466672 1.2669856
1.36292007 0.79937955 1.0744673 1.27769041
1.14657253 0.85864893 1.13941807 1.37414176
1.25797974 1.08403344 1.47117643 1.22978414
1.23819233 0.54353454 1.81722676 1.4826291
1.76705577 1.09270819 1.52876337 1.62689978
1.59448703 0.95293264 1.67730632 2.02684065
1.43314023 1.37955492 1.48583079 1.5963763
1.31485592 1.01198073 2.12046692 1.40880192
1.12100004 1.19241073 1.91338444 1.13741794

MAD 0.36709809 MAD 0.42875147
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According to results, multilayer perceptron models 
have average mean absolute deviation of 0.36, which 
indicates that the accuracy and adjustment are very low 
given the deviation of the forecast with respect to yield 
observed in each of the selected stations.

Mathematical Models to Predict Low Yield with 
Mechanistic Approach

Kyi and λt estimated for the Stewart and Jensen 
models are observed in the following figure in the pre-
flowering stage, using Kc (DE LIMA CORREA, 2004; 
TORRENTE, 2009) reported in literature for passion fruit 
crop (Fig 8).

Figure 8. Sensitivity indexes for the Jensen and Stewart models in the pre-flowering stage (2007-2014)

It was observed that the sensitivity indexes 
associated with the effect of irrigation on yield are 
different for each of the years throughout the analysis 
period, according to Kc  result obtained by De Lima, it 
shows that Kyi<1, which means that the crop is more 
tolerant to water deficit and partially recovers from stress, 
showing proportionally smaller yield reductions due to the 
decrease in water use (FAO, 2012). In general, for passion 
fruit cultivation, the behavior is associated with Kyi <1 for 
Kc  proposed by De Lima and Torrente.

  For the flowering stage, Figure 9 shows the 
calculated values   of sensitivity indexes of water-yield 
models.

Regarding results obtained considering Kc  proposed 
by De Lima, the sensitivity index  Kyi  is lower than 1, while 
in the case of Kc proposed by Torrente, Kyi  is greater than 1, 
only for the year 2007. In general, as in the pre-flowering 
stage, passion fruit crop is tolerant to water deficit during 
the flowering stage.

Figure 9. Sensitivity indexes for the Stewart and Jensen model in the flowering stage (2007 - 2014)
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Figure 10. Water sensitivity index in the harvest stage (2009 -2012)

  Finally, during the harvest stage (Fig. 10), Kyi > 
1, which indicates that they Kc interpret the crop yield 
conditions as a function of the water needs, confirming that 
the crop is tolerant to water stress during all phenological 

stages. Sensitivity index constants for the phenological 
phases of passion fruit crop calculated for the Stewart 
and Jensen equations under the mechanistic approach are 
described below (Table 8):

Table 8. Sensitivity indexes for the Stewart and Jensen models.
Kc  ( De Lima) Kc  ( Torrente)

Stage  Ky Stewart  λt Jensen  Ky Stewart λt  Jensen

Pre-flowering 0.48096728 0.27548971 0.64389582 -1.0901561

Flowering 0.24107874 0.22017158 0.37195351 0.42013473

Harvest 1.05949943 1.21841269 1.28406811 1.56592423

Comparison of empirical and mechanistic models
Empirical models such as multiple linear regression 

describe yield through explanatory variables, and ARIMA 
through the history of autoregressive components of 
series, moving averages and trend smoothing. According 
to results and due to the low adjustment of regression 
forecast models, their use for descriptive purposes is 
recommended. In the same comparative analysis, it could 
be observed that in the initial years, the model tends to 
underestimate peaks of higher yield, since it is not able 
to take into account temporal variations, which is one of 
the advantages of the ARIMA model over multiple linear 
regression (Fig. 11).

Regarding mechanistic models, the best yield 
was obtained for the Stewart model, using the Kc value 
of proposed by De Lima with Mean Absolute Deviation 
(MAD) of 0.39; deviations of the Jensen Model and 
the Stewart Model for Kc of Torrente, they have higher 
Mean Absolute Deviation compared to the other models. 
Furthermore, the multilayer perceptron as a technique to 
predict nonlinear associations obtained MAD of 0.367. 
Finally, the order according to the minimization of errors 
is recommended within the empirical models: ARIMA, 

multilayer Perceptron, while within mechanistic models, 
the Stewart water-yield model using KC recommended 
by De Lima.

The climatic condit ions affect  the crop 
ecophysiology, and by understanding and managing 
these variables, the environmental offer in association 
with the cultural management of farmers can be optimized 
(FISCHER; MELGAREJO, 2017).

In tropical conditions, the incidence of temperature 
more significantly explains crop yield in accordance with 
other investigations (CLEVES et al., 2016; MAYORGA et 
al., 2020). It was evidenced that crop evapotranspiration 
significantly influences aspects such as crop quality and 
yield (FISCHER; MELGAREJO; CUTLER, 2018).

This article contributes to technical scientific 
knowledge based on empirical models constructed 
from data, initially considering multivariate models, to 
determine the relationship between independent variables 
temperature, relative humidity, rainfall, sunlight, the 
ONI index and dependent variable yield. According to 
literature, new analysis variables are incorporated such 
as the ONI index, sunlight and relative humidity.
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Figure 11. Original series and yield forecast of passion fruit crop (Ton * ha-1) using empirical and mechanistic 
techniques.

  The document makes significant contributions 
to the discrimination of the different methodologies 
reported in literature for yield forecasting, such as 
mechanistic and empirical mathematical models. Among 
mechanist models, it was possible to determine the water 
sensitivity index and the recommended crop coefficient 
for passion fruit and regarding empirical ones, machine 
learning models such as robust regression and multilayer 
perceptron were tested, and this knowledge allows 
establishing the best methodology to predict crop yield.

  In future studies, it is suggested to estimate 
specific models and develop all the necessary error and 
coefficient tests for each variable in order to establish that 
in these models, there is greater adjustment coefficients 
to improve their stability and provide a valid basis on 
which it can be predicted, so that the results of forecasts 
are considered acceptable and close to future reality.

Conclusions

  Some alternatives to be considered in the 
future are the analysis of ARIMA models with the 
inclusion of explanatory variables, the use of Multiple 
Linear Regression models with lagged data and the 
modeling of Multiple Series, including in this case other 
series corresponding to some variables (evaporation, 
transpiration, evapotranspiration etc.).

Missing data of the main climatological variables 
limit the application of models, and the disarticulation 
among public entities that administer data is evident, 
which affects the quality of results.

The use of methodologies and models that 
evaluate the effect of agroclimatic factors on yield are a 
fundamental tool to be used in decision making by farmers, 
contributing to reduce the likelihood of uncertainties.

Inferential statistics for the construction of models 
allow the deduction and estimation of the phenomena 
from available information. The modeling of data patterns 
allows the researcher to draw inferences and confirms 
hypotheses about the characteristics obtained from future 
observations. The hypotheses established in this article 
such as the relationship between yield and climatic 
variables could not be confirmed through the analyzed 
information, given that correlations that coexist between 
variables can be nonlinear in nature and the methods 
applied to find this correlation are obviously based on 
linear relationships.

Univariate models such as ARIMA better explain 
yield behavior since MAD of 0.007 was obtained, while 
the water-yield model has better performance and explains 
the yield behavior as a function of evapotranspiration 
related to temperature, rainfall and wind speed. The 
absolute deviation of errors was 0.309 using Kc proposed 
by De Lima. The multivariate regression model is a tool 
that allows describing the behavior of the climatic variable 
system, and its predictive use is not recommended due 
to its low performance. The multilayer perceptron had 
performance measured through MAD of 0.367.

Rev. Bras. Frutic., Jaboticabal, 2021, v. 43, n. 3:  (e-182)                                                                      



17Mathematical modeling of climatological data to estimate passion fruit crop yield...

References

ALLEN, R.G.; PEREIRA, L.S.; RAES, D.; SMITH, 
M. Evapotranspiración del cultivo. Guias para la 
determinación de los requerimientos de agua de los 
cultivos. Roma, 1998. Disponível em: http://www.fao.
org/3/a-x0490s.pdf. Acesso em: 22 jul. 2019. (5)

BOX, G.E.P.; JENKINS, G.M.; REINSEL, G.C. Time 
series analysis: forecasting and control. 5.ed. New York: 
Wiley, 2015. (2)

CAMPOS ARANDA, D.F. Agroclimatologia cuantitativa 
de cultivos. México: Trillas, 2005. 

CHEN, J.; KANG, S.; DU, T.; GUO, P.; QIU, R.; CHEN, 
R.; GU, F. Modeling relations of tomato yield and fruit 
quality with water deficit at different growth stages under 
greenhouse condition. Agricultural Water Management, 
New York, v.146, p.131–148, 2014. (1)

CLAYTON, T.C.; ROBERSON, J.A; ELGER, D.F.; 
MONTGOMERY, D.C.; PECK, E.A.; VINING, G. 
Introducción al análisis de regresión lineal. Ciudad de 
Mexico: Compañía Editorial Continental, 2002. (2)

CLEVES LEGUIZAMO, J.A.; TORO, J.C.; MARTÍNEZ 
BERNAL, L.F. Los balances hídricos agrícolas en 
modelos de simulación agroclimáticos. Una revisión 
analítica. Revista Colombiana de Ciencias Hortícolas, 
Tunja, v.10, n.1, p.149–163, 2016.  (1)

CRYER, J.D.; CHAN, K.-S. Time series analysis. New 
York: Springer, 2008. (2)

DALININA, R. Introduction to Forecasting with 
ARIMA in R. 2017. Disponível em: https://blogs.oracle.
com/ai-and-datascience/post/introduction-to-forecasting-
with-arima-in-r (5)

DE LIMA CORREA, R.A. Evapotranspiração e 
coeficiente de cultura em dois ciclos de produção do 
maracujazeiro amarelo. 2004. Dissertação (Mestre em 
Agronomia) - Escola Superior de Agricultura Luiz de 
Queiroz, Piracicaba, 2004. (4)

DELGADILLO-RUIZ, O.; RAMÍREZ-MORENO, 
P.P.; LEOS-RODRÍGUEZ, R.A.; GONZÁLEZ, J.M.S.; 
VALDEZ-CEPEDA, R.D. Pronósticos y series de tiempo 
de rendimientos de granos básicos en México. Acta 
Universitaria, Guanajuato v.26, n.3, p.23–32, 2016. (1)

DERRYBERRY, D. Basic data analysis for time series 
with R. Nova Jersey: Wiley, 2014. (2)

DORADO G., D.; TAFUR H., H.; RIOS R., L. Rendimiento 
y calidad de la fruta del Maracuyá Amarillo (Passiflora 
edulis) en respuesta a la combinación de riego y 
fertilización. Ingeniería de Recursos Naturales y del 
Ambiente, Bogotá, v.12, p.109–117, 2013. (1)

FAO. Respuesta del rendimiento de los cultivos al agua. 
Roma, 2012. (2)

FISCHER, G.; MELGAREJO, L.M.; CUTLER, J. Pre-
harvest factors that influence the quality of passion fruit: 
A review. Agronomia Colombiana, Bogotá, v.36, n.3, 
p.217–226, 2018. (1)

FISCHER, G.; MELGAREJO, L.M. Factores que influyen 
en la calidad pre y poscosecha de las frutas pasifloráceas. 
In: CONGRESO LATINOAMERICANO Y I MUNDIAL 
DE PASIFLORAS, 3., 2017, Neiva, Huila. Anais […]. San 
Agustín-Huila: Corporación Cepass, 2017. (3)

HE, K.; ZHANG, X.; REN, S.; SUN, J. Delving deep 
into rectifiers: surpassing human-level performance 
on imagenet classification. In: INTERNATIONAL 
CONFERENCE ON COMPUTER VISION (ICCV), 
2015, Washington. Proceedings […]. Washington: 
Computer Vision Foundation, 2015. p.1026–1034. (3)

HENGL, T. A practical guide to geostatistical mapping. 
Luxembourg: Office for Official Publications of the 
European Communities, 2009. 270 p. (2)

HENGL, T.; HEUVELINK, G.B.M.; ROSSITER, D.G. 
About regression-kriging: From equations to case studies. 
Computers & Geosciences, Oxford, v.33, n.10, p.1301–
1315, 2007. (1)

IDEAM - Instituto de Hidrología, Meteorología y 
Estudios Ambientales. Efectos del cambio climático en 
la producción y rendimiento de cultivos por sectores. 
Bogotá, 2019. Disponível em: http://www.ideam.gov.
co/documents/21021/21138/Efectos+del+Cambio+Clim
atico+en+la+agricultura.pdf/3b209fae-f078-4823-afa0-
1679224a5e85. Acesso em: 11 jul. 2019. (5)

IDEAM - Instituto de Hidrología, Meteorología y 
Estudios Ambientales. Actualización del componente 
meteorológico del modelo institucional del IDEAM 
sobre el efecto climático de los fenómenos El Niño 
y La Niña en Colombia, como insumo para el Atlas 
Climatológico. Bogotá, 2014. (2)

JENSEN, M. Water consumption by agricultural plants. 
In: KOZLOWSKI, T.T. Water deficits and plant growth: 
development, control, and measurement. New York: 
Academic Press, 1968. p.1–22. (2)

Rev. Bras. Frutic., Jaboticabal, 2021, v. 43, n. 3  (e-182)                                                                      



18 L. N. R. Castañeda et al.

KANTANANTHA, N.; STEWART, H.M. Crop decision 
planning under yield and price uncertainties. Atlanta: 
Georgia Institute of Technology, 2007. (2)

KINGMA, D.P.; BA, J. Adam: a method for stochastic 
optimization. In: INTERNATIONAL CONFERENCE 
FOR LEARNING REPRESENTATIONS, 3., 2015. San 
Diego. Conference paper […]. Disponível em: http://
arxiv.org/abs/1412.6980. Acesso em: 10 jun. 2019. (3)

KUMAR SEN, P. Estimates of the regression coefficient 
based on Kendall’s tau. Journal of the American 
Statistical Association, New York, v.63, n.324, p.1379–
1389, 1968. (1)

KUSUMASTUTI, R.D.; DONK, D.P.VAN; TEUNTER, 
R. Crop-related harvesting and processing planning: a 
review. International Journal of Production Economics, 
Amsterdam, v.174, p.76–92, 2016. (1)

KUTNER, M.H.; NACHTSHEIM, C.J.; NETER, J.; LI, 
W. Applied liner statiscal models. 5.ed. New York: Mc 
Graw Hill Irwin, 2005. (2)

LAWLER, E.L.; WOOD, D.E. Branch-and-bound 
methods: a survey. Operations Research, Würzburg,  
v.14, n.4, p.699–719, 1966. (1)

MARTÍNEZ VENTURA, C. Pronósticos de producción 
agrícola. Archivos de Economía, Bogotá, n.305, p.1–31, 
2006. Disponível em: http://bibliotecadigital.agronet.gov.
co/bitstream/11348/5014/1/200652212721_Pronósticos 
de producción agrícola.pdf. Acesso em: 24 set. 2018. 

MAYORGA, M.; FISCHER, G.; MELGAREJO, LUZ 
M.; PARRA C, A. Growth, development and quality 
of Passiflora tripartita var.mollissima fruits under two 
environmental tropical conditions. Journal of Applied 
Botany and Food Quality, Quedlinburg, v.93, p.66–75, 
2020. (1)

METCALFE, A.V.; COWPERTWAIT, P.S.P. Introductory 
time series with R. New York: Springer New York, 2009. 
(2)

MOSCHINI, G.; HENNESSY, D.A. Uncertainty, risk 
aversion, and risk management for agricultural producers. 
In: PINGALI, P.K.; EVENSON, R. Handbook of 
agricultural economics. Amsterdam: Elsevier, 2001. 
v.1. (2)

MUSSHOFF, O.; HIRSCHAUER, N. What benefits are 
to be derived from improved farm program planning 
approaches? – The role of time series models and 
stochastic optimization. Agricultural Systems, Oxford, 
v.95, n.1–3, p.11–27, 2007. (1)

OPENSOLVER. OpenSolver for Google Sheets:  
OpenSolver for Excel. 2019. Disponível em: https://
opensolver.org/opensolver-for-google-sheets/. Acesso 
em: 9 jul. 2020. (5)

PANNELL, D.J.; MALCOLM, B.; KINGWELL, R.S. 
Are we risking too much? Perspectives on risk in farm 
modelling. Agricultural Economics, Reading, v.23, n.1, 
p.69–78, 2000. (1)

R Foundation. R: the R Project for statistical computing. 
2019. Disponível em: https://www.r-project.org/   (5)

RUÍZ RAMÍREZ, J.; HERNÁNDEZ RODRÍGUEZ, 
G.E.; ZULETA RODRÍGUEZ, R. Análisis de series de 
tiempo en el pronóstico de la producción de caña de 
azúcar. Tierra Latinoaméricana, Chapingo, v.29, n.1, 
p.103–109, 2011. (1)

SCIKIT-LEARN. Multi layer perceptron regressor. 2019. 
Disponível em:  https://www.python-machinelearning.
com/multi-layer-perceptron-regressor/ (5)

SHUMWAY, R.; STOFFER, D.S. Time series regression 
and exploratory data analysis. New York:  Springer, 
2017. (2)

SOTO G., A.M.; COTES T., J.M.; RODRÍGUEZ, D.C. 
Modelo de simulación del crecimiento y desarrollo de 
la papa criolla. Ciencia en Desarrollo, Tunja, v.9, n.1, 
2017. (1)

STEWART, J.I.; HAGAN, R.M.; PRUITT, W.O. 
Production functions and predicted irrigation 
programmes for principal crops as required for water 
resources planning and increased water use efficiency. 
Washintong: US Departament of Inbterior, 1976.  (2)

TORRENTE T.A. Potencial de agua en el suelo y su 
relación hídrica en los cultivos de Passifloras. Neiva: 
Colciencias, 2009. (2)

VANDENDRIESSCHE, H.J.; VAN ITTERSUM, M.K. 
Crop models and decision support systems for yield 
forecasting and management of the sugar beet crop. 
European Journal of Agronomy, Amsterdam, v.4, n.3, 
p.269–279, 1995. (1)

Rev. Bras. Frutic., Jaboticabal, 2021, v. 43, n. 3:  (e-182)                                                                      


