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We suggest a mathematical potential well with spherical symmetry and apply to the 1d Schrödinger equation.
We use some well known techniques as Stationary Perturbation Theory and WKB to gain insight about the
solutions and compare them each other. Finally, we solve the 1d Schrödinger equation using a numerical approach
with the so-called Numerov technique for comparison. This can be a good exercise for undergrad students to grasp
the above cited techniques in a quantum mechanics course.
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1. Introduction

In Quantum Mechanics books we usually find trivial
examples when Stationary Perturbation Theory (SPT),
Wentzel-Kramers-Brillouin (WKB) and even other tech-
niques are discussed. The interesting applications are left
to some complicated exercises at the end of the chap-
ter [1–6]. Most of the books apply those techniques to the
simple harmonic oscillator with V (x) ∼ x2 or at most
to the x4 potential in 1d. Increasingly, the computer is
becoming part of the physics courses and it would be
very interesting to have certain classes of problems to be
solved in a Quantum Mechanical course.

Nowadays, several numerical techniques has been suc-
cessfully employed to solve the Schrödinger equation to
obtain both the energy levels and the respective wave
functions. In particular, for this kind of differential equa-
tion a powerful method among others is that proposed
by Boris Vasil’evich Numerov [7]. This method takes
the advantage of the fact that the Schrödinger equation
is an eigenvalue equation to handle the wave function
subjected to certain boundary conditions in order to
minimize the energy for each level. Its algorithm is very
efficient and converges very fast with at least O(h6) of
precision. Under this perspective, it is a good exercise to
solve the 1d-Schrödinger equation using this technique
to gain good insights about the Schrödinger equation
during the classes [8].

In view of that, we suggest a mathematical potential
well, which can be expanded in even exponent power
series inside the well, becoming a good exercise to treat
it perturbatively or using the WKB method or other
well-know Quantum Mechanics techniques to compare
with the powerful numerical results. In what follows
we compare some states order by order to a good nu-
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merical calculation in determining the solutions of the
1d-Schrödinger equation.

This article is sketched as follows: in section 2 we
present the mathematical potential well. In section 3 we
apply the potential well to the 1d-Schrödinger equation
and analyses some particular aspects for both analytical
and WKB approximation. In section 4 we present the
Stationary Perturbation Theory to calculate the energy
levels and some wave functions to compare with. In
section 5 we discuss about the Numerov’s numerical
approach to solve the 1d-Schrödinger equation. Finally,
in section 7 we draw conclusions and perspectives.

2. The potential well

Now we will introduce a mathematical potential whose
series expansion is interesting because its symmetry and
divergence at specific points. In 3D this mathematical
potential is given by

V (r) = V0

(
1 − kr cot(kr)

(kr)2

)
(1)

where k has m−1 units, r =
√
x2 + y2 + z2 in m, and V0

in J. k must be such that when r equals some value, say
a, the product kr must be equal to π. As a consequence
k = π/a and V (r) diverges at r = a. Outside this interval
the cotangent function makes the potential oscillates
between regions with negative and positive divergences
with V0 positively defined, which difficult the analysis
and we will not consider this situation in the present
work.

In figure 1 we display the 3D plot for z-coordinate
equals zero. If one varies z, the diameter of the circle at
the bottom of the figure becomes narrower as |z| grows up
to a maximum value z = a, making x = 0 and y = 0 such
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Figure 1: Surface plot of the mathematical potential in Eq. (1).

that r = a, which is a point of divergence at the center of
the circle. For pedagogical applications the z-coordinate
will be set zero from now on. Note that the surface figure
generated is formed basically by symmetrical curves with
minimum values.

In particular, we are interested in those curves with
minimum values given by

lim
r→0

V (r) = V0

3 (2)

i.e., those curves that passes through the point (0, 0, 0).
Let us take the curve belonging to the plane (x, 0, 0),
which has the limit (2) above and, consequently, r = |x|.
However, as we already mentioned, Eq. (1) is spherically
symmetric, which means that if we substitute r = |x|
by −r = −|x|, the potential remains the same. As a
consequence we can drop the absolute value of |x| and
write only x to have a 1d version of this mathematical
potential

V (x) = V0

(
1 − kx cot(kx)

(kx)2

)
(3)

This 1d potential is plotted in figure 2. As one can
see, in the symmetrical interval kx ∈ [−π, π], it takes
a minimum value at V0/3 and diverges at ±π. This is
the potential we will use to solve the 1d Schrödinger
equation.

To assess the singularities of this potential we firstly
consider the series expansion of the cotangent function
around the origin given by

cot kx = B0

kx
+

∞∑
n=1

(−1)n22nB2n(kx)2n−1

(2n)! B2n,

0 < |kx| < π (4)

where B2n are the Bernoulli numbers: B0 = 1, B1 = − 1
2 ,

B2 = 1
6 , B4 = − 1

30 , B6 = 1
42 , B8 = −1

30 , etc. As expected,
this function exhibits a singularity at the origin. If one
multiplies both sides by kx, this series can be rewritten
as

Figure 2: 1d plot of the potential.

kx cot (kx) = B0 +
∞∑

n=1

(−1)n(2kx)2n

(2n)! B2n (5)

where the singularity is now removed. If we use the value
of B0 = 1 and divide both sides by (kx)2 with x 6= 0, we
can rewrite this series as

(
1 − kx cot (kx)

(kx)2

)
= −4

∞∑
n=1

(−1)n(2kx)2n−2

(2n)! B2n,

|kx| < π (6)

This series converges for all the values in the interval
kx ∈] − π, π[, as one can check taking the limit x → 0 in
Eq. (6). Thus, the 1d potential can be expressed as

V (x) =

−4V0
∞∑

n=1

(−1)n(2kx)2n−2

(2n)! B2n if |kx| < π

∞ if |kx| = π
(7)

The first terms of the infinite series are given by

∞∑
n=1

(−1)n(2kx)2n−2

(2n)! B2n = −B2

2 + B4

6 (kx)2 −

B6

45 (kx)4 + B8

630(kx)6 + · · · (8)

Notice that the potential will be given in even expo-
nents of the series, which favors the use of the harmonic
oscillator Hamiltonian as the unperturbed Hamiltonian
when perturbation theory is employed. The potential plot
in the O(x2) approximation is also displayed in figure 2.
We will see the employment of approximated methods in
the next sections.

3. 1d Schödinger equation

The 1d Schrödinger equation with is given by
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− ~2

2m
d2ψ(x)
dx2 + V (x)ψ(x) = Eψ(x) (9)

For this particular potential the 1d Schrödinger equa-
tion can be solved analytically in a very special situation.
To see that, let us consider the potential given by Eq. (3)
and define a new variable ξ = kx such that Eq. (9) can
be rewritten as

d2φ(ξ)
dξ2 − 2υ0

(
1 − ξ cot(ξ)

ξ2

)
φ(ξ) = −2εφ(ξ) (10)

where φ(ξ) ≡ ψ(ξ/k), υ0 = mV0
~2k2 , and ε = mE

~2k2 . We want
to solve this equation for ξ with the boundary conditions
φ(±π) = 0, where the potential diverges. Note that υ0
is dimensionless. V0 can assume any positive value in
dimensions of ~2k2/m provided that E is greater than
V0/3. For simplicity we consider this positive value equals
1 from now on.

It is straightforward and important to notice that,

1 − ξ cot(ξ)
ξ2 = − 1

sin(ξ)
d

dξ

(
sin(ξ)
ξ

)
, (11)

then we plug the above identity in Eq. (10) to obtain

d2φ(ξ)
dξ2 + 2υ0

φ(ξ)
sin(ξ)

d

dξ

(
sin(ξ)
ξ

)
+ 2εφ(ξ) = 0. (12)

As we can note, if we choose a Spherical Bessel Func-
tion j0(ξ) = sin(ξ)/ξ we obtain,

d2

dξ2 j0(ξ) + 2υ0

ξ

d

dξ
j0(ξ) + 2εj0(ξ) = 0. (13)

In this sense we must impose υ0 = 1 and 2ε = 1 to
obtain a common solution for Spherical Bessel Function
of the first kind of the zeroth-order. Consequently we
have

V0 = ~2k2

m
and E = ~2k2

2m , (14)

valid for a wave function φ(ξ) = A sin(ξ)/ξ. We shall
demonstrate a posteriori that this is actually the ground
state wave function with eigenvalue E = 0.5~2k2/m
using a numerical approach to solve the 1d Schrödinger
equation (9).

Now it is a good exercise to employ some approximate
approach to have an idea about the energy levels for
the bound states without too much effort. The Wentzel-
Kramers-Brillouin (WKB) approximation is perfect for
such a situation, because the bounded particle in this
case has a sufficiently high momentum around the center
of the potential as well as we can expect that its wave
function varies rapidly with position, much more rapidly
than the potential [1], as is the case when one considers
the particle in a box.

To this end we can approximate the potential to O(x2)
with the aid of Eq.’s (7) and (8), as plotted in figure 2. The
boundary condition for the potential well in Eq. (9) with
WKB method is such that V (±π) → ∞ implies φ(±π) =
0. In the pedagogical exercise of one-dimensional square
well potential with perfectly rigid walls in a symmetrical
interval −a ≤ x ≤ a where V (x) = 0 and V (±a) = ∞,
the WKB method gives us an exact solution of energy
levels [3–5]. Clearly the potential (7) has rigid walls in
−π ≤ kx ≤ π in O(x2)(as can be seen in figure 2), so
that we can use WKB method to obtain approximated
energy levels. Thus, in the classical region of the potential
E > V (x), the WKB method gives the following solution

ψ(x) ∝ C√
p(x)

e±iσ(x) (15)

where σ(x) = 1
~
∫
p(x)dx, and p(x) is the momentum

given by

p(x) =
√

2m[E − V (x)]. (16)

The linear combination of solutions (15) is also a solu-
tion and

ψ(x) ≈ 1√
p(x)

[
C1e

iσ(x) + C2e
−iσ(x)

]
.

Due to the symmetry of the well −π ≤ kx ≤ π, it
admits even wave functions

ψeven(x) ≈ A√
p(x)

cos[σ(kx)], (17)

and odd wave functions

φodd(x) ≈ B√
p(x)

sin[σ(kx)]. (18)

As already mentioned, the potential (7) has rigid walls
in kx = ±π and the wave function must be zero at these
points. For even wave function, φeven(π) = 0, we have

σ(π) = π

2 ,
3π
2 ,

5π
2 , · · · (19)

while for the odd wave function, φodd(π) = 0, we have

σ(π) = 2π
2 ,

4π
2 ,

6π
2 , · · · (20)

so we assign

σ(π) = nπ

2 and σ(−π) = −nπ

2 where n = 1, 2, 3, · · ·

It follows that

σ(π) − σ(−π) = 1
~

∫ π/k

−π/k

p(x) dx,

then it is straightforward to obtain
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1
~

∫ π/k

−π/k

p(x)dx = nπ with n = 1, 2, 3, · · · (21)

Now one can write explicitly the potential (7) to O(x2)

V (x) ≈ V0

(
1
3 + 1

45(kx)2
)
, (22)

where in the symmetrical interval [−π, π] we have O(1) �
O(x2) � O(x4), such that the momentum (16) can be
written as

p(x) ≈

√
2m
(
E − 1

3
~2k2

m

)(
1 −

(~2k2

m )(kx)2

90
(
E − 1

3
~2k2

m

)) .
and the integral (21) can now be calculated

1
~

√
2m
(
E − 1

3
~2k2

m

)[
2π
k

−
(~2k2

m ) π3

k

135
(
E − 1

3
~2k2

m

)] = nπ,

it follows that

En =
[

1
8

(
4π2

135 + n2

2 +
√

4π2

135n
2 + n4

4

)
+ 1

3

]
~2k2

m
.

(23)
where we put the label n in En to indicate that the
energy depends on n. Note that for n → ∞, En ∼ n2 as
we can expect for a particle in a box. This approximation
gives a good idea about the energy levels although the
corrections do not differ significantly from the energy
levels of the particle in a box. For example, consider n = 1
in Eq. (23). One obtains E1 ≈ 0.5244~2k2/m, while for
a particle in a box with an energy shift of V0/3 and
a length a gives 0.4583~2k2/m. For n = 8 one obtains
E8 = 8.406~2k2/m and 8.333~2k2/m for a particle in a
box.

It is straightforward and important to notice that
the ground state energy, for n = 1, is approximately
E = 0.5~2k2

m as seen in Eq. (14). The WKB approach
indicates the approximate values of energy of a quantum
system, but as we have seen it is necessary to solve
integrals like equation (21), with p(x) =

√
2m[E − V (x)],

where there are some difficulties to calculate it when the
potential is a function expanded in a power series.

In fact, one must employs the WKB approach calcu-
lating correctly the turning points for each energy, which
is a tough task once theses points depend on the energy,
and the condition (21) does not apply anymore. But this
will be left to the section results only for comparison
reasons. For now, the resulting equation (23) gives us a
good idea about the energy levels for our problem. In
the next section we shall see the Stationary Perturbation
Theory where we obtain approximated values of energy
and the wave functions for some specific cases.

4. Stationary Perturbative Theory

We have already encountered from equations (7) and (8)
that the expansion of potential contains terms like x2, x4,
and so on. Thus, it is useful to make an approach with the
Stationary Perturbation Theory to study the effect of the
perturbed potential with x4 and x6 on the energy levels
into the one-dimensional harmonic oscillator Hamiltonian
[2, 4–6]. As we shall see, the Stationary Perturbation
Theory is also a good technique to compute the first
levels of energy and the respective wave functions [9].
However, the calculations can be very tough as soon as
we go to higher levels of energy. Needless to say that
the respective wave functions are also cumbersome to
compute. This is due to the fact that the potential (7) is
an infinite series and we can only probe some terms of the
series. To circumvent this inconvenience one can resort
to numerical techniques as we will see in the next section.
Nevertheless, it remains important to understand the
basic physics of the approximate solutions even before
we explore a more accurate numerical method. Let us
write the potential well (7) expanded to sixth order,

V (x) ≈ V0

(
1
3 + 1

45(kx)2 + 2
945(kx)4 + 1

4725(kx)6
)
,

as we already set V0 = ~2k2

m
, we write the unperturbed

Hamiltonian as

− ~2

2m
d2ψ

dx2 + 1
45

~2k2

m
(kx)2ψ = H0ψ (24)

where H0 is the unperturbed Hamiltonian, which is
the Hamiltonian for an 1d Harmonic Oscillator with
1

45
~2k4

m = 1
2mΩ2.

For the perturbing potential, W , we write

W (x)ψ =
(

1
3 + 2

945(kx)4 + 1
4725(kx)6

)
~2k2

m
ψ. (25)

Using the transformation ξ = kx we now write the 1d
Schödinger equation as

−d2φ(ξ)
dξ2 +1

2ω
2ξ2φ(ξ)+

(
1
3 + 2ξ4

945 + ξ6

4725

)
φ(ξ) = εφ(ξ)

(26)
where we have ω = mΩ

~k2 ≡
√

2
45 and ε = mE

~2k2 dimension-
less constants.

Now, it is convenient to define the creation and anni-
hilation operators respectively [6, 9],

a† =
√
ω

2

(
ξ − ip

ω

)
, a =

√
ω

2

(
ξ + ip

ω

)
, (27)

where we define the operator p = −i d
dξ . These operators

obey the rules below
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a†a = N, [a, a†] = 1, [N, a†] = a†, [N, a] = −a,
(28)
also we have

a |n〉 =
√
n |n− 1〉 and a† |n〉 =

√
n+ 1 |n+ 1〉.

(29)
The unperturbed Hamiltonian of the one-dimensional

harmonic oscillator yields energy values

ε(0)
n =

(
n+ 1

2

)
ω, (30)

with ε
(0)
n ≡ mE0

~2k2 , where the Stationary Perturbation
Theory will add corrections to (30).

It is straightforward to obtain the coordinate operators
using equations (27)

ξ =
√

1
2ω
(
a+ a†) , (31)

and with the aid of commutation relations (28) we can
get

ξ4 =
(

1
2ω

)2
[a4 + a† 4 + (4N + 6)a2 + (4N − 2)a† 2

+(6N2 + 6N + 3)] (32)

and

ξ6 =
(

1
2ω

)3 [
a6 + a† 6 + (6N + 15)a4 + (6N − 9)a† 4

+(15N2 + 45N + 45)a2 + (15N2 − 15N + 15)a† 2

+(20N3 + 30N2 + 40N + 15)
]
. (33)

According to Stationary Perturbation Theory, the first-
order correction to the energy is simply equals the mean
value of perturbation term W in the unperturbed state
|n〉,

ε(1)
n = 〈n|W |n〉. (34)

where we set the perturbing term as

W = 1
3 + 2ξ4

945 + ξ6

4725 (35)

We can see that the only non-vanishing terms in the
first-order correction to the energy in Eq. (34)(when we
use the equations (32) and (33)) are 6N2 + 6N + 3 and
20N3 + 30N2 + 40N + 15, such as

ε(1)
n = 1

3 + 2
945

(
1

2ω

)2
(6n2 + 6n+ 3)

+ 1
4725

(
1

2ω

)3
(20n3 + 30n2 + 40n+ 15).

Replacing ω2 = 2
45 into the above equation we can

write

ε(1)
n = 1

3 + 1
84(6n2 + 6n+ 3)

+
√

45
2

(
1

1680

)
(20n3 + 30n2 + 40n+ 15).

(36)

As we mentioned elsewhere, the calculations for higher
levels in Stationary Perturbation Theory is a tough task
with a great quantity of integral calculations. There is
no reason to go beyond once several accurate numerical
techniques are available to solve the Schödinger equation.
As a consequence, we are limited to the first levels of
energy where the first terms in the potential expansion
are important. For this reason we will disregard correc-
tions due to the sixth-order term ξ6, we will simplify the
calculations to second-order of correction to the energy
using just only the term ξ4 of (35) for both energy calcu-
lations and the respective wave functions, keeping this
contribution only in the first-order correction as shown
in Eq. (36). We therefore have

ε(2)
n =

∑
n 6=n′

| 〈n|Wξ4 |n′〉 |2

ε
(0)
n′ − ε

(0)
n

. (37)

The terms of Wξ4 = 2ξ4

945 that contribute to second-

order are
(

1
2ω

)2
[a4 + a† 4 + (4N + 6)a2 + (4N − 2)a† 2],

so that it follows

〈n− 2|Wξ4 |n〉 = 1
84

[
(4n− 2)

√
n(n− 1)

]
〈n+ 2|Wξ4 |n〉 = 1

84

[
(4n+ 6)

√
(n+ 1)(n+ 2)

]
〈n− 4|Wξ4 |n〉 = 1

84

[√
n(n− 1)(n− 2)(n− 3)

]
〈n+ 4|Wξ4 |n〉 = 1

84

[√
(n+ 1)(n+ 2)(n+ 3)(n+ 4),

]
(38)

The values of the matrix elements 〈n|Wξ4 |n′〉 neces-
sary to compute the energy corrections as well as the
respective wave functions are listed in Appendix in the
supplementary material. In what follows, when we cal-
culate the second-order correction for the ground state
energy we find

ε
(2)
0 =

|〈2|Wξ4 |0〉|2

ε
(0)
0 − ε

(0)
2

+
|〈4|Wξ4 |0〉|2

ε
(0)
0 − ε

(0)
4

=
2

196

(−2)
√

2
45

+
6

1764

(−4)
√

2
45

= −0.028234621. (39)

We can continue with this method and obtain some
values for second-order correction values such as
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ε
(2)
1 = −0.2218, ε

(2)
2 = −0.8269

ε
(2)
3 = −2.1176, ε

(2)
4 = −4.3683

ε
(2)
5 = −7.8533, ε

(2)
6 = −12.8468

ε
(2)
7 = −19.6231 (40)

Therefore we can compute the energy values using (30),
(36), (39), and (40) where we have

εn = ε(0)
n + ε(1)

n + ε(2)
n (41)

with ε(i) = mE(i)

~2k2 , i = 0, 1, 2.
Now we move on to obtain the approximate wave

function. The first-order correction of the state vector is
a linear superposition of all the unperturbed states

ψ(1)
n (x) = ψ(0)

n (x) +
∑
n 6=k

〈ψ(0)
k |W |ψ(0)

n 〉
E

(0)
n − E

(0)
k

ψ
(0)
k . (42)

The eigenfunctions of the unperturbed one-dimensional
harmonic oscillator are

ψ(0)
n (u) =

(mω
π~

)1/4 1√
2n n!

Hn(u)e−u2/2, (43)

where u =
√

mω
~ x ≡

( 2
45
)1/4

ξ and Hn(u) are the Her-
mite polynomials,

H0 = 1
H1 = 2u
H2 = 4u2 − 2
H3 = 8u3 − 12u
H4 = 16u4 − 48u2 + 12
H5 = 32u5 − 160u3 + 120u.

(44)

Thus, we can calculate the ground state wave function
using equation (42), it follows that

ψ
(1)
0 = ψ

(0)
0 +

〈ψ(0)
2 |Wξ4 |ψ(0)

0 〉
E

(0)
0 − E

(0)
2

ψ
(0)
2

+
〈ψ(0)

4 |Wξ4 |ψ(0)
0 〉

E
(0)
0 − E

(0)
4

ψ
(0)
4

= ψ
(0)
0 +

〈2|Wξ4 |0〉
E

(0)
0 − E

(0)
2
ψ

(0)
2 +

〈4|Wξ4 |0〉
E

(0)
0 − E

(0)
4
ψ

(0)
4

= ψ
(0)
0 +

√
2

14

(−2)
√

2
45

ψ
(0)
2 +

√
6

42

(−4)
√

2
45

ψ
(0)
4

= ψ
(0)
0 − 0.239578711ψ(0)

2 − 0.069160416ψ(0)
4 ,

we can now put the values of unperturbed functions of
(43) into above result and obtain

ψ
(1)
0 =

(
1
π

√
2
45

)1/4

e−u2/2[1 − 0.084703865(4u2 − 2)

−0.003529328(16u4 − 48u2 + 12)]. (45)

In the same way we can obtain the first excited wave
function as fallows

ψ
(1)
1 =

(
1
π

√
2
45

)1/4

e−u2/2[1.414213562u

−0.099824463(8u3 − 12u)
−0.002495612(32u5 − 160u3 + 120u)]. (46)

where these two wave functions are not normalized yet.
As we already mentioned, the Perturbative Method is
unproductive to obtain accurate results because it is
necessary many calculation that converge slowly. For
this problem with potential well (7), we will employ an
efficient numerical method which can be implemented in
any computer language.

5. Numerical Method

For simplicity, we will write the 1D Schrödinger Equation
exactly like we did in Eq. (10), where υ0 ≡ mV0

}2k2 and
ε ≡ mE

}2k2 . Unlike what we did in the last sections, we will
use from now on x as dimensionless variable instead of ξ
for convenience.

− 1
2
d2

dx2ψ + υ(x)ψ = εψ (47)

The Numerov Method [7] can always be applied if the
differential equation is in the format

d2ψ

dx2 = −g(x)ψ + s(x) (48)

Then we want to solve the equation (47) when the po-
tential V (x) is given by

υ(x) = υ0

(
1 − x cot(x)

x2

)
(49)

we will rewrite it as

d2ψ

dx2 = −2 [ε− υ(x)]ψ (50)

and if we make g(x) = 2 [ε− υ(x)] then

d2ψ

dx2 = ψ′′ = −g(x)ψ (51)

in this case the function s(x) appearing in Eq. (48) is zero.
With this in mind, xk = −π + hk, and k = 0, 1, 2, · · · , N .
Also assume that at xk we have ψk = ψ(xk). Since Eq.
(51) is an homogeneous linear differential equation. There-
fore, if ϕ1(x) is solution to the equation, then is as well
ϕ2(x) = Aϕ1(x), where A is some real constant.
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Figure 3: Assume that the interval is discretized x ∈ [−π, π] in
N equal parts h = xk+1 − xk or equivalently h = 2π/N .

It is worth to mention the special case when A =
−1 then ϕ2(x) = −ϕ1(x). This fact will be important
because in the Numerov Method we need two consecutive
values for the solution, ψk and ψk+1. So let us assume
we start with Ψ0 = 0 then we can guess Ψ1 = ±ε.

From the Boundary Conditions, at x0 = −π we must
have Ψ0 = 0, in other words, this point (−π, 0) has to be
a value for the solution. Guessing a positive or negative
value for Ψ1 will only drive us to +Ψ(x) or −Ψ(x) then
it doesn’t matter if we guess a positive or negative varia-
tion value in the neighborhood of ψ0 , since we will get
either Ψ or −Ψ but both are solutions. Assume that the
amplitudes of some solution ψ when x is discretized in
the interval [−π, π] be given by ψ = {ψ0, ψ1, ψ2, · · · , ψN }.
Accordingly, Ψ = Aψ = {Aψ0, Aψ1, Aψ2, · · · , AψN } con-
stitute also a set of amplitudes which are also amplitudes
for another solution of the Schrödinger Equation (47).

We are free to pick any value for constant A, we can al-
ways adjust it such that Aψ1 = ε, for instance, ε = 0.0001,
or in other words: A = 10−4/ψ1. That is reasonable-since
Ψ0 = 0 and because the solution is assumed to be a
smooth function-then we won’t expect huge variations
from one value to the ones in some neighborhood. If
we can calculate the next value Ψ2 based on Ψ0 and
Ψ1 we can repeat the process and find all other val-
ues of Ψk. We can use the Numerov’s Method to find
Ψk+1 = f(Ψk,Ψk−1), which is derived in the Appendix
??. This method has order 4 of convergence [7].

The selection goes as following, for those values of E,
starting with Ψ0 = 0 and Ψ1 = ε which finish with ΨN ≈
0 will constitute a set of valid values for the solution of
the Schrödinger equation, in this way complying with the
two Boundary Conditions in ±π or Ψ(π) = Ψ(−π) = 0.

6. Results

Unlike what was done in section 3 we must implement
the full WKB method to calculate the energies and the
respective wave functions [3]. There we approximated the
potential to O(x2) and derived an expression for En ∼ n2.
As a consequence the energy levels started from the value
of n = 1. This occurred due to the considerations which
led to the expression (21). To obtain the energies and the
wave functions in WKB for the potential (3) we must find
the turning points for each energy. This is an additional
difficulty because the turning points define the energy.

Table 1: Energies in units of ~2k2

m
calculated using WKB, Sta-

tionary Perturbation Theory (SPT) and Numerov’s numerical
approach for the 1d Schrödinger equation with the suggested
potential V(x).

Level n WKB SPT Numerov
0 0.4579 0.4886 0.5000
1 0.8408 0.9028 0.9424
2 1.4307 1.5566 1.6108
3 2.2465 2.5143 2.5175
4 3.2976 3.8414 3.6672
5 4.5890 5.6014 5.0628
6 6.1237 7.8593 6.7055
7 7.9035 10.6795 8.5963

However, one can circumvent this difficulty by applying
the following WKB constraint

1
~

∫ x2

x1

√
2m[E − V (x)]dx =

(
n+ 1

2

)
π

with n = 0, 1, 2, · · · (52)

where x1 ≡ x1(E) and x2 ≡ x2(E) are the turning points. To
obtain the energy and the respective turning points we passed
the right hand side in Eq. (52) to the left hand side, defining
a new function. Now the task is to determine the respective
values of the energy which makes this new function equals zero,
i.e., for a given level n one must only find roots, remembering
that the turning points are also dependent of the energy. We
did that in Scilab by means of Newton-Raphson algorithm
to find roots, varying the energy with 0.0001~2k2/m for each
step, calculating the respective turning points making E =
V (x), which in turn are used to calculate the integral in Eq.
(52). Thus, using the approximated expression for the energy
levels in section 3 we could assign an initial value bellow these
values to find the energy which minimizes this new function
for a given n. The resulting energies can be visualized in first
column in Table 1. These are the energy values for the full
WKB implementation considering the turning points in each
level of energy. We will not describe the computation of the
respective wave functions here because it is well-established
in the text books [3,4].

Now we call attention to the first level of Numerov’s algo-
rithm calculation. The value of 0.500 ~2k2/m is exactly the
ground state value obtained analytically in section 3. This
method produces good results in solving 1d-Schrödinger equa-
tion like pointed out by F. Caruso and V. Oguri [8]. The
energy results are summarized in the last column and will
serve to compare with other approximated methods. As one
can see, the WKB method gives the best results if compared
with Stationary Perturbation Theory (SPT) for the higher lev-
els. One of the reasons that the SPT gives some discrepancies
is the fact that we only go up to O(x4) in the potential series
to the second-order corrections as we mentioned elsewhere.
However, these discrepancies are only perceptive after n = 4,
giving reasonable results for the energy levels bellow that. As
expected, the WKB method approximates to the exact values
as soon as n becomes big.

In figure 4 we plot |ψ|2 for some wave functions generated
by each method. In figure 4 (a) we plot the analytic expression
for the ground state wave function from section 3 with that
obtained using SPT and the Numerov methods. As one can
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(a) (b)

(c) (d)

Figure 4: (a) is the plot for |ψ|2 of the ground state wave function using the analytic expression, and SPT and Numerov methods.
(b) is the plot for |ψ|2 of the first excited state for both SPT and Numerov methods. (c) is the plot for |ψ|2 of the sixth excited state
for both WKB and Numerov methods. (d) is the plot for |ψ|2 of the seventh excited state for both WKB and Numerov methods.

see, Numerov is quite accurate while the SPT, although not so
accurate, seems to be a reasonable approximation. However,
we cannot say the same in figure 4 (b) for the first excited
state. The SPT result in comparison with Numerov’s solution
is quite different due to the increase in the difference of the
energies between the methods as can be seen in Table 1.
Finally, in figures 4 (c) and (d) we plot the WKB results
for n = 6 and n = 7 with the respective Numerov’s results.
We can see that there is a difference in amplitude and in the
phase which can be explained by the difference in energy as
can be seen in Table 1.

7. Conclusion

We have suggested a mathematical potential as a good exercise
in employing different Quantum Mechanical techniques to
solve the 1d-Schödinger equation. We applied both WKB and
Stationary Perturbation Theory to get the energy states of the
1d-Schödinger equation and compared them with an accurate
numerical solution described elsewhere. One can explore other
applications of such a potential to other physical situations
like to solve the 3d-Schödinger equation for certain conditions
and even to solids. Other possibilities will be explored in
future works.

Supplementary material
The following online material is available for this article:

Appendix - Perturbative Matrix Elments
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