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Magnetic superconductivity
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This paper serves as a primer on superconductivity, inviting students for further investigation. Although
the theory of superconductivity is a many-body quantum theory, here we take a more didactic route based
on thermodynamics and symmetry. We briefly survey the more than a century-old field and provide a one-
sentence definition of a superconductor. Surprisingly, many textbooks lack such a definition, usually introducing
superconductors through their properties rather than by definition. We explain the concept of an order
parameter, symmetry, and symmetry breaking. Based on this, we clarify the difference between conventional and
unconventional superconductors, which is frequently a confusing topic for newcomers. We provide the reader with
a taste of a current research topic in the field of unconventional superconductivity and magnetism. For this, we
explain the concept of time-reversal symmetry breaking in condensed matter physics, which is usually associated
with a form of magnetism. Here, we show that time-reversal symmetry might be broken in superconductors,
leading to magnetic properties due to superconductivity itself. For this purpose, we utilize the method of the
Ginzburg-Landau theory for phase transitions. We discuss the field of chiral superconductivity and guide the
interested reader to further study.
Keywords: Superconductivity, symmetry, time-reversal.

Este artigo serve como uma introdução à supercondutividade, convidando o estudantes a estudarerm mais
assunto. Embora a teoria da supercondutividade seja uma teoria quântica de muitos corpos, aqui optamos por
uma rota mais didática baseada em termodinâmica e simetria. Fazemos uma breve revisão do campo, que tem mais
de um século, e fornecemos uma definição em uma frase de um supercondutor. Surpreendentemente, muitos livros
didáticos carecem de tal definição, geralmente introduzindo supercondutores através de suas propriedades, em
vez de por definição. Explicamos o conceito de um parâmetro de ordem, simetria e quebra de simetria. Com base
nisso, esclarecemos a diferença entre supercondutores convencionais e não convencionais, o que frequentemente é
um tópico confuso para iniciantes no assunto. Também fornecemos um vislumbre de um tópico de pesquisa atual
no campo da supercondutividade não convencional e magnetismo. Para isso, explicamos o conceito de quebra
de simetria de reversão temporal na física da matéria condensada, que geralmente é associado a uma forma
de magnetismo. Aqui, mostramos que a simetria de reversão temporal pode ser quebrada em supercondutores,
levando a propriedades magnéticas devido à própria supercondutividade. Para esse propósito, utilizamos o método
da teoria de Ginzburg-Landau para transições de fase. Discutimos o campo da supercondutividade quiral e
orientamos o estudo de quem tiver interesse em se aprofundar no assunto.
Palavras-chave: Supercondutividade, simetria, reversão-temporal.

1. Introduction

This paper is based on an invited talk, originally titled
Magnetic Superconductivity, presented by one of the
authors at the XI Brazilian School of Magnetism, held
in November 2023 in Porto Alegre, Brazil. The primary
audience comprised undergraduate and graduate stu-
dents without previous knowledge of superconductivity.
Both the talk and paper target students aspiring to
delve into the field of unconventional superconductivity,
providing them with initial exposure to the subject and
guiding them towards relevant references in the field.

The prerequisite to follow this paper is a basic
understanding of thermodynamic potentials, such as free
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energy, and introductory knowledge of the Schrödinger
equation. Superconductivity is inherently a quantum
mechanical phenomenon that lacks a classical equivalent.
However, by accepting a few definitions that we intro-
duce here, we suspect that it is already possible to get a
feel of how it is to develop a simple project in the field
of theory of superconductivity. This approach allows for
a smoother transition into the more technical aspects of
superconductivity, making the subject more accessible
to those with a preliminary background in related fields.

Textbooks often introduce superconductors through
some of their non-universal properties, frequently leav-
ing clear definitions wanting. This issue becomes more
pronounced in the burgeoning field of unconventional
superconductivity, where introductory texts can appear
particularly arcane. To address this, we seize the
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opportunity to provide clear definitions of conventional
and unconventional superconductivity. While a thor-
ough understanding of these topics typically necessi-
tates a grounding in group theory and the microscopic
Bardeen-Cooper-Schrieffer (BCS) theory, we choose to
bypass these prerequisites, adopting a colloquium-style
approach. This allows students to assess whether pursu-
ing a more advanced project in superconductivity aligns
with their interests, providing a more accessible entry
point into the subject without sacrificing depth.

Albeit its cutting-edge appeal, superconductivity was
discovered more than a century ago in 1911, a decade
before the formulation of the Schrödinger equation. The
first successful quantum theory of superconductivity
called the Bardeen-Cooper-Schrieffer (BCS) theory, had
to await almost half a century since the discovery,
which was published in 1957 [1]. Now, almost 70 years
after BCS theory, there is still no consensus on the
cause (or causes) of superconductivity in many mate-
rials. However, the situation differs from 1950, when
theoretical proposals were lacking. Today, there is a
menu of apparently good theories that await critical
experimental tests.

Although BCS theory is a microscopic quantum
theory, it abstains from specifying the cause of super-
conductivity, which we call the pairing mechanism in
the technical literature. BCS works for almost all mech-
anisms, which explains its success and universality. Two
partial reasons for the slow progress in mechanism
research are that mechanism theory has a reputa-
tion of being hard, and designing experiments perhaps
even harder. Because of the difficulty of studying the
root cause of superconductivity, two schools of study
emerged in the field, which has been reasonably well-
identified since 1990. The first school are the mechanism
people, which apply sophisticated mathematical tech-
niques borrowed from high-energy physics to elucidate
the mechanisms of superconductivity. Nowadays, we call
these techniques condensed matter field theory. This
important field has a steep learning curve, and despite
its remarkable progress in recent years, the detailed
technical understanding still eludes many in the field.
The second school are the symmetry people. Instead
of focusing on specific causes, this school recognized
that one may narrow down the menu of possibilities by
studying the symmetry properties of the materials. This
allows one to formulate impossibility theorems, which
is a powerful and easy-to-learn tool. In this paper, we
aim to introduce the reader to the second school. While
we will touch upon pairing mechanisms, they will be
presented as given.

In Sec. 2, we explore where one finds superconductors
and the significance of their study. Following this, Sec. 3
lays the foundation for superconductivity, axiomatically
introducing the necessary quantum mechanical concepts.
In Sec. 4, we delve into the crucial symmetries necessary
to understand both conventional and unconventional

superconducting states. Sec. 5 employs a comparison
with ferromagnetism to elucidate the Landau theory of
spontaneous symmetry breaking. Finally, in Sec. 6, we
construct the basic theory of a two-component super-
conductor, revealing three thermodynamically distinct
superconducting phases, including a chiral phase char-
acterized by its exotic magnetic properties. We conclude
with a brief discussion in Sec. 7, and provide a guide of
references for the interested.

2. Where, When and What?

2.1. Where?

Many of us are familiar with the visually stunning
film Avatar from 2009, featuring the breathtaking land-
scape of the Hallelujah Mountains, inspired by China’s
Zhangjiajie National Forest Park. In the movie, these
towering mesa-like formations are composed of a fic-
tional element called unobtanium, which serves as an
ambient pressure and temperature superconductor on
the planet Pandora. These superconducting islands pos-
sess the remarkable ability to memorize the magnetic
flux that threads through them, allowing them to lev-
itate at a fixed height above the ground. While this
scene captivates audiences with its science fiction allure,
the underlying physical phenomenon is anything but
fictional. In reality, however, humanity has not yet
discovered how to engineer ambient temperature and
pressure superconductors. Presently, our superconduct-
ing materials require frigid temperatures, typically below
−200◦C; see Fig. 1 for a sample of superconducting
materials.

Unfortunately, superconductors on Earth are not as
plentiful as those on Pandora, but they certainly exist.
Where can we find them? As of the writing of this paper,
superconductivity finds its most prominent applications
in niche fields requiring the generation of powerful
magnetic fields. These applications include magnetic res-
onance imaging (MRI) technology, ubiquitous in modern
hospitals, magnetic levitation systems utilized in high-
speed trains, and particle accelerators. The astute reader
might wonder: what about energy transmission? Aren’t
superconductors incredibly efficient electrical conduc-
tors? Indeed. Not long ago, many researchers would
motivate their research proposals envisioning a future
where superconductors would revolutionize the power
grid. So why, over a century after the discovery of
the first superconductor, are our power cables still
not superconducting? As often occurs in fundamental
research, the practical outcomes don’t always align
with initial expectations, but in the long run, often
surpasses them. Currently, due to the significant cooling
requirements, superconducting energy transmission isn’t
the most economically viable option for widespread
implementation. Consequently, superconductors remain
primarily employed in specialized applications.

Revista Brasileira de Ensino de Física, vol. 46, suppl. 1, e20240094, 2024 DOI: https://doi.org/10.1590/1806-9126-RBEF-2024-0094



Möckli e Azambuja e20240094-3

Figure 1: Historical overview of the discovery dates of superconducting materials and their respective critical temperatures, separated
by “families.”

2.2. When?

In Fig. 1, we present a sample of superconductors catego-
rized by their year of discovery and critical temperature,
with each symbol in the legend representing a different
family. The blue circles (◦) denote simple metallic
alloys, which constituted the first family discovered
and were predominantly explained by electron-phonon
interaction. These alloys held sway in the field for
approximately half a century. However, in 1986, ceramic
copper and oxygen-based superconductors, known as
cuprates, were serendipitously discovered. Cuprates cur-
rently hold the record for the highest critical tem-
perature among superconductors at ambient pressure
and are thus termed high-temperature superconductors
compared to simple alloys. Working with cuprates offers
the advantage of utilizing liquid nitrogen for cooling
instead of liquid helium. Additionally, cuprates possess a
more intricate chemical composition than metallic alloys,
leading to more complex phenomena. Another family
often regarded as “high temperature” comprises iron-
based materials, represented by the stars. This family
initially surprised the scientific community, as iron, a
typical magnetic material, was found to be a crucial
ingredient for superconductivity. Due to their intrinsic
multi-orbital structure, the theoretical framework used
for simple alloys needed expansion to accommodate
additional degrees of freedom and alternative electron-
based pairing mechanisms.

Intriguing and exotic families of superconductors
include ferromagnetic and chiral varieties. Ferromag-
netic superconductors refer to materials where mag-
netism and superconductivity coexist, albeit with the

magnetism originating independently of superconductiv-
ity. In contrast, chiral superconductors exhibit magnetic
properties that emerge from the superconducting state
itself. Additionally, families such as heavy-fermions,
Heusler’s compounds, and 2D materials each possess
unique properties that are subjects of intense study.
Fig. 1 is not exhaustive; it serves merely as a sample
of the history of superconductivity.

Where might we discover superconductors in the
future? The vision of superconducting power grids
and levitating vehicles remains a tantalizing prospect,
contingent upon the speculative discovery of a cost-
effective ambient-temperature superconductor. In the
interim, other less speculative applications include high
magnetic field energy storage systems, fusion reactors,
and quantum sensors. Among the most promising and
serendipitous applications of superconductivity is quan-
tum computing. The physical realization of a qubit
network, essential for quantum computers, appears most
achievable through superconducting devices, offering
robust coherence maintenance for qubits. Additionally,
there is a realistic prospect of developing superconduct-
ing electronics. Rather than relying on semiconductor
chips, all common operations could be executed on
superconducting chips. To actualize this, superconduct-
ing equivalents of transistors, diodes, capacitors, and
inductors are necessary, a field currently under active
research.

However, in a philosophical standoff with many fun-
damental research investors, the real impact of funda-
mental science can hardly be predicted. New solutions
create new interesting problems, which historically have
their long-term value systematically underestimated.
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2.3. What?

Textbooks usually introduce superconductors through
their properties [2, 3], without providing a clear defini-
tion. The emphasis underscores the empirical properties,
which include:

1. The absence of measurable resistivity without a
magnetic field;

2. Exhibiting perfect diamagnetism in the presence
of weak magnetic fields;

3. Manifesting an energy gap within the material’s
energy spectrum.

These properties, together with the fact the super-
conducting state begins at a thermodynamic phase
transition at a certain critical temperature Tc, are
typically heralded as benchmarks for identifying new
superconductors. Demonstrating these characteristics
is often seen as a critical step in substantiating the
discovery of novel superconducting materials. However,
while these attributes are emblematic of conventional
superconductors, they do not universally apply, thus
lacking in both explanatory and predictive capacities.
Consequently, this approach to defining superconductors
falls short of offering a good definition.

For instance, some superconductors host topological
defects, such as vortices or skyrmions, which may be
either extrinsic or intrinsic. These topological objects
exhibit peculiar relaxation dynamics that typically lead
to residual resistivity. Some superconductors may lack
diamagnetic behaviour and instead appear paramag-
netic. The presence of an energy gap can be obscured by
factors such as magnetic impurities or a lack of perfect
macroscopic coherence. A material can be superconduct-
ing even if it does not exhibit any of the empirical
properties mentioned above. These properties are merely
consequences of the deeper physical phenomenon that
defines superconductivity. Admittedly, the one-line def-
inition of superconductivity is likely incomprehensible
to most undergraduate physics students, which is why
introducing superconductors through their characteristic
phenomena seems more didactic.

Based on Refs. [4, 5], we now attempt a one-sentence
definition. Don’t worry about its technicality. We will
unpack its meaning shortly.

Superconductivity is a macroscopic coherent quantum
state of pairs of fermions that breaks the U(1)
phase invariance symmetry. (1)

We now explain this definition in three steps: the
quantum state, the U(1) symmetry, and the coherent
state.

3. The Order Parameter

First, superconductivity is a quantum state. This means
that superconducting phenomena cannot be explained

by a classical theory. Several topics in solid state theory
have a useful classical description, such as the Drude
model of resistivity. This is not the case for superconduc-
tivity. The state is described by a complex wavefunction
Ψ(r, t), which has an amplitude Ψ0(r, t) = |Ψ(r, t)| and
a phase φ(r, t), such that

Ψ(r, t) = Ψ0(r, t)eiφ(r,t). (2)

Eq. (2) is a general wavefunction that applies not only
to superconductors. In a superconductor, however, the
phase and amplitude are rigid. They might fluctuate,
but if they do, the oscillations are usually small around
an equilibrium value.

Second, the quantum state is macroscopic, which
means that the field Ψ(r, t) describes the entire super-
conductor. The simplest microscopic quantum theory of
superconductivity was obtained by Bardeen, Cooper and
Schrieffer, which is simply known as BCS theory [1].
There, they considered the simplest case where Ψ(r, t)
has no spatial or time variations, such that one may
write Ψ = Ψ0eiφ. Then, Ψ is a fixed complex number,
also referred to as the superconducting order parameter.
For simplicity, we henceforth ignore the spatial and
temporal variations of the order parameter. However,
it is important to note that our overarching definition of
superconductivity is applicable even in the more general
cases where such variations may be considered.

So far, we have understood that the superconducting
state can be represented by a fixed complex number that
we may view as an arrow in the complex plane. The
arrow has a fixed amplitude Ψ0 and a fixed phase φ.
The angular part eiφ is a unit vector over the unit circle.
The unit circle is parametrized by a single parameter: the
angle φ. For this reason, one names the symmetry group
of the unit circle as U(1). Therefore, saying that a system
has U(1) symmetry is just a fancy way of saying that
it has the same symmetry as a circle. Does the arrow
Ψ ∼ eiφ have the symmetry of a circle? We can check.
If we rotate a circle it remains unchanged. However, if we
rotate eiφ by an arbitrary angle in the complex plane,
it generally changes its direction. Therefore, a rigid Ψ is
not U(1) symmetric. We then say that Ψ ̸= 0 breaks
the U(1) phase invariance symmetry. A nuanced yet
crucial aspect of quantum mechanics is that the specific
value of φ is not directly observable; only relative phases
can be measured. Despite this lack of experimental
access to φ, it is its fixed nature that leads to the
hallmark properties of superconductors mentioned at the
beginning of Sec. 2.3.

Third, the superconducting wavefunction represents
a coherent state of fermion pairs, called Cooper
pairs. In condensed matter physics, these fermions are
electrons, though superconductivity can emerge in astro-
physical objects like neutron stars. In a superconductor,
there is always an effective interaction that serves as
a mechanism that pairs up electrons. These paired-up
electrons can be thought of as being in a bound state,
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the collection of which is described by Ψ, which has the
same phase ϕ for the entire collection. For this reason,
we call it a coherent state of pairs of electrons.

To comprehend the formation of this global wave
function, it’s essential to recognize that the notion of
tightly bound, localized pairs of electrons is merely a
simplified depiction. To clear a common misconception
we appeal to Bardeen [6]:

The key thing is pairing, not pairs. There
is no localized pairing of electrons into
“pseudo-molecules” which obey Bose statis-
tics. Although this analogy is often used,
particularly by Bogoliubov and coworkers,
I think it is misleading. The reason for the
condensation is not Bose-Einstein statistics,
but it comes from the exclusion principle;
pairing allows one to make best use of the
available phase space to form a coherent low-
energy ground state.

Typically, the average volume occupied by a Cooper
pair exceeds that of a single electron by a considerable
margin [7, 8], resulting in pair overlap. With this picture,
it is more appropriate to think of the superconducting
state as many electrons coming in and out of these
bound pairs, always switching partners in a complex
dance. For temperatures above the Tc, the electrons
are “uncoordinated”, and no superconducting state is
achieved, that is, no coherent state of fermion pairs
is achieved. On the other hand, if the conditions are
right (if the temperature is low enough, no exceedingly
high external magnetic field, etc.) this dance of multiple
electrons exchanging partners creates a macroscopic
“cooperation” of the quantum state that acquires a
unified phase and amplitude, just as a group of dancers
will move as one when performing a well-trained chore-
ography.

The nature of the interaction leading to Cooper
pairing can be diverse. The most famous example is the
electron-phonon interaction. In this case, the excitations
of the ionic lattice vibrations sway the electrons just
in the right way to move in tandem. Because of the
regularity of the crystal which is communicated through
local interactions, Cooper pairing occurs for the entire
condensate in a synchronized way. Other possible causes
of a superconducting interaction may come from purely
electronic mechanisms, such as spin fluctuations. In real
materials, many possible pairing mechanisms coexist,
and identifying the dominant interaction is not always
an easy task.

That said, we see that the fundamental unit of
superconductivity is a pair of electrons. For those with a
background in quantum mechanics, it’s known that pairs
of interacting spin-1/2 particles form either a singlet or a
triplet state. This extends to the macroscopic quantum
state of a superconductor, which can manifest as a
singlet, a triplet, or, in certain exotic situations, a super-
position of both singlet and triplet states. To simplify

our discussion, we will not delve into the specifics of
spin configurations.

Undergraduate projects in the field of superconduc-
tivity frequently encounter a significant learning curve.
This challenge primarily stems from the complexity of
quantum theory for many-particle systems, which is
more aptly conveyed through the use of field oper-
ators—a subject typically reserved for graduate-level
study. Consequently, projects that involve BCS theory
are often restricted to students in their final under-
graduate year. Nonetheless, substantial progress can be
achieved by adopting the definition presented in (1),
while temporarily setting aside the intricate micro-
scopic underpinnings of this definition. By acknowledg-
ing that superconductivity can be characterized by a
rigid complex order parameter, students can employ
undergraduate-level thermodynamics concepts to phe-
nomenologically analyze the system’s free energy. This
approach effectively circumvents the daunting learning
curve, allowing the deeper theoretical exploration to be
deferred until graduate studies.

4. Symmetries of Unconventional
Superconductors

Symmetry is the property of a system that remains
unchanged under certain transformations. In physics,
the role of symmetry is to provide us with selection rules,
that is, a specification of what is possible and impossible.
This enables us to discard many microscopic theories
based on symmetry alone and helps us to pinpoint
the class of microscopic theories that remain good
candidates. For some practical purposes, the microscopic
theories may even be unnecessary. Here we discuss three
transformations: phase changes, spatial rotations, and
time-reversal symmetry.

4.1. Broken gauge symmetry

In the case of the U(1) symmetry, the transformations
are on the phase of the wavefunction, which is why
it is also called a gauge symmetry. The terms gauge
symmetry and phase invariance symmetry are used
synonymously. In Sec. 2 we already mentioned that one
of the prime consequences of gauge symmetry breaking
is the phenomena of superconductivity, which occurs
at a thermodynamic phase transition, and accompanies
other properties such as the expulsion of the magnetic
induction from the interior of the material under the
action of weak magnetic fields. This phenomenon is
also known as the Meissner effect. According to the
definition (1), a superconductor necessarily lacks gauge
symmetry, since the phase acquires rigidity. The strength
of symmetry breaking is quantified by the amplitude Ψ0,
because Ψ2

0 is proportional to the density of electrons
that condense into the coherent state. The only way to
restore gauge symmetry is with Ψ = 0, for which the
material is in its normal (non-superconducting) state.
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4.2. Spatial rotations

In a more general context, the phase φ(r, t) can exhibit
spatial modulation. As long as φ(r, t) remains rigid over
time, the system qualifies as a superconductor because
the U(1) symmetry is still broken.

Let us first consider an example where no spatial sym-
metry is broken. Spatial rotations refer to transforma-
tions that change the orientation of objects or coordinate
systems in space without altering their shape or size.
Suppose Ψ(r) = s, where s represents a complex number
independent of r. Given that s is merely a complex
number, it is invariant under spatial rotations. Drawing
a parallel to atomic physics, one refers to Ψ(r) = s
as an s-wave order parameter, reflecting the symmetry
characteristics of an s-orbital. Spatial rotations leave
the s-wave unchanged, indicating that s-wave order
parameters break the U(1) symmetry without violating
any additional symmetries. Superconductors that solely
break the U(1) symmetry, without affecting other sym-
metries, are often termed conventional superconductors.

In contrast, an unconventional superconductor is char-
acterized by an order parameter that breaks additional
symmetries beyond U(1). The past three decades have
witnessed significant advancements in the field of uncon-
ventional superconductivity, leading to a somewhat
paradoxical situation. The term unconventional might
imply rarity or deviation from the norm according to its
standard definition. However, unconventional supercon-
ductors are becoming increasingly prevalent, not rarer.
In this context, unconventional is better understood as a
reduction in symmetry. We may generalize the definition:

Unconventional superconductivity is a macroscopic
coherent quantum state of pairs of fermions that
breaks additional symmetries beyond U(1). (3)

As a first symmetry-reduced example, consider a
wavefunction that has the same spatial symmetries as
an atomic p-orbital, Ψ(r) = p(r). We could write down
the specific mathematical expression for the spherical
harmonic for p(r), or any other function that has the
symmetries of a p-orbital. However, for our purposes, we
find it unnecessary to get distracted with mathematical
details. The important thing is to remember that if
we rotate a px-orbital around the z axis by π, then
the transformed configuration has the opposite sign as
compared to the initial configuration. For this reason,
an order parameter that shares the symmetries of a
p-orbital is frequently called a p-wave. Since it is not
rotationally symmetric, a p-wave is an unconventional
order parameter. A similar analysis would apply to
d- and f -waves.

The orbital physics analogy is used extensively in
specialized literature. However, we stress that the anal-
ogy only serves as a proxy for the actual symmetry-
reduced functions. Orbitals, or spherical harmonics, arise
by studying for instance the hydrogen atom, which has

full rotational symmetry. Then, angular momentum l
is a good quantum number, such one establishes the
nomenclature s (l = 0), p (l = 1), d (l = 2), and so forth.
The analogy fails because a crystalline solid is not fully
rotationally symmetric. Spatial symmetries are discrete,
and angular momentum is not a good quantum number
in solids. Yet, the proxy orbital analogy renders itself
useful in a simplified discussion.

4.3. Time-reversal symmetry

Time-reversal symmetry refers to a property of a system
where it remains invariant when the direction of time
is reversed. This concept might seem abstract since,
unlike spatial rotations, reversing time is not a physical
action we can perform. For illustration, take the equation
of motion x(t) = x0 + vt. If time is reversed, the
trajectory becomes x(−t) = x0 − vt, mirroring the
original path but in the opposite direction. Although
directly reversing time, t → −t, is not possible, we
can obtain the same equation of motion by inverting
velocity, v → −v. This approach allows us to investigate
time-reversal symmetry by observing whether reversing
motion (i.e., changing v → −v) retraces the original
trajectory backwards. If the path diverges from the
original one upon this inversion, it indicates a violation
of time-reversal symmetry.

The paradigmatic example of time-reversal symmetry
breaking is the motion of an electron under the influence
of a magnetic field; see Fig. 2. In the illustration, the
electron (black disk) is embedded in a uniform magnetic
induction field B and hence experiences a Lorenz force
F ∼ −v×B. After moving a quarter of a circumference,
we reverse the electrons’ velocity v → −v. This also
changes the sign of the Lorenz force, which causes
the reversed (dashed-gray) trajectory to be different.
In condensed matter physics, the presence of time-
reversal symmetry breaking usually implies that there
is a magnetic field, magnetization, or another effective
field that works as if it were a type of magnetic field.

How does time-reversal symmetry affect wavefunc-
tions? Wavefunctions obey the Schrödinger equation
iℏ ∂tΨ(r, t) = HΨ(r, t). If the Hamiltonian H does not
explicitly depend on time, then the solution has the
form [9]

Ψ(r, t) = e− i
ℏ HtΨ(r, 0). (4)

Figure 2: Reversal of motion of an electron (disks) under the
influence of a magnetic field B experiencing the Lorentz force
F ∼ ∓v × B. The dashed-gray arc illustrates the reversed
trajectory.

Revista Brasileira de Ensino de Física, vol. 46, suppl. 1, e20240094, 2024 DOI: https://doi.org/10.1590/1806-9126-RBEF-2024-0094



Möckli e Azambuja e20240094-7

Note that the time-reversed wavefunction Ψ(r, −t) =
Ψ∗(r, t). Therefore, in quantum mechanics (ignoring
spin), the time-reversed wavefunction may simply be
obtained by complex-conjugating the original one.

Now let us apply this to superconductivity. A
superconducting order parameters breaks time-reversal
symmetry if Ψ(r, t) ̸= Ψ∗(r, t). It is clear that if Ψ is real,
then time reversal is preserved, as in the s-wave Ψ = s.
To break time reversal, the order parameter should have
both a real part and a relative imaginary part, such
as p + ip or s + if . Materials with relative complex
components are called chiral superconductors [10].

We must alert the reader that there are conflicting
usages of the term unconventional superconductivity in
the community. It is rather common to hear talks or
online definitions suggesting that unconventional super-
conductors are materials that display superconductivity
which does not conform to conventional BCS theory or
its extensions. This is not true, because the theory of
unconventional superconductors is a rather straightfor-
ward generalization of BCS theory [11]. Others say that
unconventional superconductors are those that have a
pairing mechanism that is different from the electron-
phonon interaction, and hence are not described by BCS
theory. In our view, this is a bad definition and also
reveals a common misconception. The misconception is
that BCS theory only describes superconducting states
originating from the electron-phonon interaction. How-
ever, as we mentioned before, BCS theory only specifies a
generic attractive interaction, that could have any origin.
There are non-phonon superconductors that are very
well described by BCS theory. Different superconducting
states become thermodynamically distinguishable not
necessarily due to the pairing mechanism, but mostly
because of the different symmetry properties. For this
reason, we argue that the symmetry-based definition is
the more consistent one.

5. Ginzburg-Landau Theory

The primary physical consequences of symmetry break-
ing include phase transitions, the rigidity of the
order parameter, collective excitations, and topological
defects [12]. These phenomena can be analyzed through
the phenomenological Landau framework. In statistical
mechanics, understanding the Hamiltonian, H, is crucial
for calculating the partition function, Z = tr

(
e−βH)

,
where β = 1/(kBT ) is the inverse temperature. This
enables the determination of the system’s free energy,
F = −kBT ln Z. The order parameter of the system
adopts a value that minimizes the free energy, which cor-
responds to thermodynamic equilibrium where entropy
reaches its maximum. However, the challenge arises
when the Hamiltonian H is either not fully understood
or is too complex for direct analytical computation of
the free energy. Nevertheless, an understanding of the
symmetries of the normal state, alongside the symmetry

broken during the phase transition, can significantly
constrain the possible forms of the free energy. Thus,
even in the absence of detailed microscopic insights or
in cases of computational complexity, the principles of
symmetry can provide substantial information based on
selection rules alone.

In condensed matter physics, common order param-
eters include density, magnetization, polarization, and
the superconducting wave function. Among these, the
Landau theory of ferromagnetism serves as a particularly
instructive example, illustrating the core principles of
phase transitions and symmetry breaking. To introduce
the fundamental aspects of Landau theory, we recall the
case of ferromagnetism.

5.1. Ferromagnetism

In studying the transition from a high-temperature
paramagnet to a low-temperature ferromagnet, we know
that a magnetization M (order parameter), develops
below the Curie temperature Tc. Based on symmetry
considerations alone, we now would like to guess the form
for the free energy as a function of the magnetization M .
Here, the order parameter M is a real vector, which is
zero above Tc, and finite below. The symmetry that the
magnetization M breaks is the rotational symmetry of
the spins, which may be expressed in terms of the group
SO(3). Unlike for the superconducting order parameter,
here, the order parameter M already corresponds to a
physical observable, which is why it is perhaps more
didactic than beginning with the superconducting case.

The system is mathematically defined by its Hamil-
tonian. Since the Hamiltonian represents the system, it
must have the same symmetries as the system. The para-
magnet has rotational SO(3) symmetry, which implies
that the Hamiltonian also must preserve SO(3). Because
the free energy is connected to the Hamiltonian via
βF = − ln tr

(
e−βH)

, the free energy must also preserve
the high-temperature symmetry. Supposing that the
system has the symmetries of SO(3), then the free
energy must respect these symmetries, even below Tc.
Below, but close to Tc, we may develop an expansion of
the free energy in terms of the order parameter:

F [M ] = F0 +���c1M + c2M
2 +���c3M

3 + c4M
4 + . . . ,

(5)

where F0 is the free energy of the normal state, and
the {ci} are real coefficients that may be derived from
the Hamiltonian, or used as phenomenological coeffi-
cients. The first term c1M should immediately alarm.
The reason is that the free energy is a scalar, whereas M
is a vector. Therefore, only even powers such as M2 =
M ·M = |M |2 are allowed in the free energy expansion.
Next, we must check whether the remaining terms
survive the symmetry requirements for the free energy.
Any rotation in SO(3) leaves |M |2 invariant, which
confirms that all even powers of the order parameters
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are symmetry-allowed. Therefore, the free energy close
to Tc may be phenomenologically expressed as

F [M ] = F0 + a

(
T

Tc
− 1

)
M2 + b

2M4 + . . . , (6)

where a, b > 0 and M = |M |. The phenomenological
parameter b is necessarily positive to guarantee that the
free energy is bounded from below. From Eq. (6) we
see that if T ≥ Tc, M = 0 minimizes the free energy.
If T < Tc, M > 0 minimizes the free energy. In the ferro-
magnetic state (M > 0), spin rotation symmetry SO(3),
which is a symmetry of the free energy (or Hamiltonian),
is broken. Obtaining the temperature dependence M(T )
close to Tc in terms of the phenomenological parameters
(a, b) is now a straightforward task.

5.2. Superconductivity

Real materials have a crystal structure that lacks full
rotational symmetry. As a working example, inspired
by cuprates and strontium ruthenate, consider a system
with the following discrete symmetries of a square:

• C4(z): Rotations of π/2 about the z axis (x, y) →
(y, −x);

• C2(z): Rotations of π about the z axis (x, y) →
(−x, −y);

• C2(x): Rotations of π about the x axis (x, y) →
(x, −y);

• C2(d): Rotations of π about the diagonal in the
x − y plane (x, y) → (y, x).

Then, the free energy (or Hamiltonian) of the super-
conductor should respect these four discrete spatial
symmetries, plus U(1).

In a superconductor, the order parameter is its
wavefunction; see Eq. (2). For simplicity, ignoring the
spatial and temporal variations, the superconducting
free energy will have the form

F [Ψ] = F0 + a

(
T

Tc
− 1

)
Ψ2

0 + b

2Ψ4
0 + . . . (7)

The free energy cannot contain the term c1Ψ, because
Ψ is a complex function and F is real. Also, only the
amplitude Ψ0 = |Ψ| occurs in the free energy because, in
this example, the system is homogeneous. Minimization
of the free energy with respect to Ψ0 determines the
temperature dependence Ψ0(T ). Although the phase φ
of the order parameter is rigid, the minimization of
the free energy cannot provide it, because only relative
phases relate to observables. Since there is only one
order parameter component in Eq. (7), it is customary
to choose φ = 0, such that the order parameter is real.
Since Ψ0 does not depend on the spatial coordinates,
any spatial symmetry operation leaves Ψ0 invariant,
which shows that Eq. (7) respects the symmetries of the
system.

We may readily generalize Eq. (7) for unconventional
order parameters that break spatial symmetries, but
there is no hope of getting an order parameter that
breaks time-reversal symmetry from Eq. (7), since this
would also require a relative imaginary component.

6. Two-component Superconductors

Let us assume that in an unconventional 2D supercon-
ductor, the order parameter can be represented by a
two-component vector Ψ = (Ψx, Ψy). The configuration
of Ψ, determined by minimizing the free energy, can
lead to chiral superconductivity if Ψx and Ψy develop
a relative imaginary component, thereby breaking time-
reversal symmetry. When expanding the real free energy
in terms of the complex vector Ψ, we must identify
symmetry-permitted terms. Since F is a real scalar, it
cannot be directly proportional to Ψ. Moreover, the
term Ψ2 = Ψ2

x + Ψ2
y is generally complex and thus

also not permissible. Let’s focus on identifying the first
symmetry-allowed term in the free energy expansion.

6.1. The quadratic term |Ψ|2

The first good candidate is

|Ψ|2 = (Ψx, Ψy) · (Ψ∗
x, Ψ∗

y) = |Ψx|2 + |Ψy|2, (8)

which is a real scalar, just as F . We now have to check
whether |Ψ|2 remains invariant under the symmetries
of the free energy, in this case, C4(z), C2(z), C2(x),
C2(d) and U(1). The absolute value |Ψ|2 is certainly
U(1) gauge invariant, since a change of the phases of Ψx

and Ψy does not manifest in |Ψ|2. The C4(z) about the
x axis transforms the order parameter components as
(Ψx, Ψy) → (Ψy, −Ψx). Substituting these transforma-
tions in Eq. (8) shows that |Ψ|2 remains invariant under
C4(z). The C2(z) takes (Ψx, Ψy) → (−Ψx, −Ψy), which
yields |Ψ|2 → |Ψ|2. The C2(x) rotation transforms the
components as (Ψx, Ψy) → (Ψx, −Ψy), which also does
not change |Ψ|2. Lastly, the C2(d) rotation exchanges
the components (Ψx, Ψy) → (Ψy, Ψx), which also leaves
|Ψ|2 intact. The term |Ψ|2 survived all symmetries of the
system and for this reason will appear in the free energy
(Eq. (11)) expansion with its exclusive phenomenological
parameter (b1).

6.2. The quadratic term (((((((ΨxΨ∗
y ∓ Ψ∗

xΨy

Because Ψ has two components, there are other possible
quadratic real combinations, namely, ΨxΨ∗

y ∓ Ψ∗
xΨy.

Following the same transformations as in Sec. 6.1, you
may check that ΨxΨ∗

y − Ψ∗
xΨy acquires a minus sign

under C2(d) and ΨxΨ∗
y+Ψ∗

xΨy a minus sign under C4(z).
Since ΨxΨ∗

y ∓ Ψ∗
xΨy breaks at least one symmetry of

the system, this quadratic combination is prohibited.
We were able to state an impossibility, without detailed
knowledge of the Hamiltonian.
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6.3. Quartic terms

To enumerate all feasible fourth-order combinations,
first consider the expression:

|Ψ|4 = |Ψx|4 + |Ψy|4 + 2|Ψx|2|Ψy|2. (9)

Drawing from the discussions in Section 6.1, it is evident
that the term |Ψ|4 satisfies all symmetries of the square.
Furthermore, it is important to recognize that the
components |Ψx|4 + |Ψy|4 and |Ψx|2|Ψy|2 independently
adhere to all symmetry requirements. This observation
allows for the assignment of distinct phenomenological
parameters to these components. Specifically, we opt to
associate the parameter b3 with |Ψx|2|Ψy|2. While the
selection of b3 is not the sole possibility, as delineated in
various references such as Refs. [10, 13–15], any chosen
parameterization leads to a model that captures the
same superconducting instabilities effectively.

In the previous Sec. 6.2, we saw that ΨxΨ∗
y ∓ Ψ∗

xΨy

acquires a minus sign under some transformations,
which prohibits the term from entering the free energy.
However, the minus sign is taken care of by taking the
square:(

ΨxΨ∗
y ∓ Ψ∗

xΨy

)2 = Ψ2
xΨ∗

y
2 + Ψ∗

x
2Ψ2

y ∓ 2|Ψx|2|Ψy|2,

(10)

which shows that this term is allowed in the free energy.
Note that |Ψx|2|Ψy|2 is also contained in Eq. (10), which
receives its own phenomenological parameter b3. Then
we could associate an independent phenomenological
parameter b2 to either

(
ΨxΨ∗

y ∓ Ψ∗
xΨy

)2 [10] or Ψ2
xΨ∗

y
2+

Ψ∗
x

2Ψ2
y [14]. We choose the latter. We could continue the

exercise for the sixth-order terms, but if we are close
enough to Tc, it is usually sufficient to truncate the free
energy at the quartic order.

6.4. The free energy

We may now construct the free energy for the two-
component superconductor up to the fourth order by
including all the symmetry-allowed combinations with
their respective phenomenological parameters:

F [Ψ] = F0(T ) + a(T )|Ψ|2 + b1

4 |Ψ|4

+ b2

2

(
Ψ2

xΨ∗
y

2 + Ψ∗
x

2Ψ2
y

)
+ b3|Ψx|2|Ψy|2 + . . .

(11)

Here a(T ) = a(T/Tc − 1), with a > 0. The prefactors
for the {bi} were chosen for later convenience. The free
energy contains three variational parameters: the ampli-
tudes |Ψx| and |Ψy|, and the relative phase α = φy −φx.
To see this explicitly, we may write the components as
Ψx = |Ψx|eiφx and Ψy = |Ψy|eiφy , such that Eq. (11)

updates to

F [|Ψi|, α] = F0(T ) + a(T )
(
|Ψx|2 + |Ψy|2

)
+ b1

4
(
|Ψx|2 + |Ψy|2

)2

+ (b2 cos(2α) + b3) |Ψx|2|Ψy|2 + . . . , (12)

where the variational parameters (|Ψx|, |Ψy|, α) are now
explicit. To find the equilibrium values for the variational
parameters Ψmin = (|Ψ′

x|, |Ψ′
y|, α∓), we minimize the

free energy in Eq. (12) with respect to Ψmin to obtain

|Ψ′
x|2 = |Ψ′

y|2 =
a

(
1 − T

Tc

)
b1 ∓ b2 + b3

,

α∓ =
{

π
2

π
, ⇒ F [Ψmin] = F0(T ) −

a2
(

1 − T
Tc

)2

b1 ∓ b2 + b3
.

(13)

From the solutions for the amplitudes in Eq. (13),
we recognize that we must require b1 ∓ b2 + b3 > 0
simultaneously for the phenomenological parameters,
which guarantees that the free energy is bounded from
below. If the free energy were not bounded from below,
this would equivalently mean that there is no maximum
bound for entropy, which would imply that that system
would not equilibrate. The two inequalities b1 ∓b2 +b3 >
0 give rise to two distinct superconducting phases where
the amplitudes of the components are equal, but with
a phase difference of α− = π/2 or α+ = π. Feeding
these phases into Ψmin = (Ψ′

x, Ψ′
y) gives us a two-

component chiral phase (1, i) and a two-component real
phase (1, −1), respectively. Substituting the solution
Ψmin back into the free energy gives us the minimal free
energy value F [Ψmin] in Eq. (13), which, for a > 0 and
b1 ∓ b2 + b3 > 0 gives F [Ψmin] < F0(T ).

Do the phases (1, −1) and (1, i) exhaust all the possi-
bilities? No. We must also entertain the possibility that
one-component superconductivity is more favourable,
which, due to the symmetry of the free energy in
Eq. (12) is not contemplated in the solutions in Eq. (13).
Therefore, let us examine the value that the free energy
acquires if one of the components vanishes, say Ψy = 0.
Then, we find that the minimum value for the single-
component free energy is

F(1,0) = F0(T ) − a2

b1

(
1 − T

Tc

)2
. (14)

If F(1,0) < F [Ψmin], this means that single-component
superconductivity is more favourable than a two-
component phase. The inequality F(1,0) < F [Ψmin] leads
to the additional condition ∓b2 + b3 > 0, which, when
satisfied, stabilizes the one-component phase (1, 0); see
dashed lines in Fig. 3.

The same analysis could have been performed
using various other parametrizations. Another pop-
ular parametrization has a Bloch-sphere form
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Figure 3: Superconducting phases of the free energy in Eq. (11).
The blue region (1, 0) stabilizes a single component order
parameter. The red region (1, −1) is a real two-component order
parameter with relative phase α+ = π. The green region (1, i)
is a chiral two-component order parameter with relative phase
α− = π/2. The gray region is unstable, since in this region, the
energy is unbounded from below (b1 ∓ b2 + b2 < 0).

Ψ = (Ψx, Ψy) = Ψ0
(
cos θ, eiφ sin θ

)
, such that the three

variational parameters are now {Ψ0, θ, φ}. This would
lead to another equivalent free energy given by

F [Ψ0, θ, φ]
= F0(T ) + a(T )Ψ2

0

+ 1
4

[
b1 + sin2(2θ) (b3 + b2 cos(2φ))

]
Ψ4

0 + . . .

(15)

Using Eq. (12) or Eq. (15) is a matter of taste. Here
we mention the advantage and disadvantage of using
Eq. (15) relative to Eq. (12). The main advantage of the
{Ψ0, θ, φ} parametrization is that the single-component
phase (1, 0) is easy to spot, which occurs for sin2(2θ) = 0,
for which θ = nπ/2, n ∈ Z. The main disadvantage is
that the analytical solution for the minimized parameter
Ψ′

0 is more complicated than Eq. (13).

6.5. Phase diagram

The free energy model in Eq. (11) gives three distinct
superconducting phases. A one-component phase (1, 0),
a real two-component phase (1, −1), and a chiral phase
(1, i). We now wish to map out a phase diagram for these

phases in the parameter space spanned by b3/b1 × b2/b1.
For this, for each pair in the parameter space, we must
compare the free energies, and check which phase has the
lowest free energy value. The single-component phase
has the free energy given by Eq. (14). From Eq. (13), we
see that the two-component phases have free energies
given by

F(1,−1) = F0(T ) −
a2

(
1 − T

Tc

)2

b1 + b2 + b3
,

F(1,i) = F0(T ) −
a2

(
1 − T

Tc

)2

b1 − b2 + b3
. (16)

Therefore, by comparing the three free energies F(1,0),
F(1,−1) and F(1,i), we can determine the stable phase,
which we plot in Fig. 3.

According to our definition of an unconventional
superconductor in (3), all of the superconducting phases
in Fig. 3 are unconventional. The single-component
phase (1, 0) is not equivalent to a conventional super-
conductor described by the free energy in Eq. (7).
To see this consider for instance the C4(z) rotation
that takes (Ψx, Ψy) → (Ψy, −Ψx). This transforms
(1, 0) → (0, −1), which shows that even though the
order parameter has a single component, it does not
have the same spatial symmetries as the free energy. This
makes the (1, 0) phase unconventional because it breaks
spatial symmetries in addition to U(1). The (1, −1) also
breaks C4(z) because (1, −1) → (−1, −1). This changes
the relative phases between the components, which
thus corresponds to a different superconducting state.
However, for the chiral phase (1, i), the C4(z) rotation
transforms (1, i) → (i, −1). We have the freedom to
shift the phase by −i(i, −1) = (1, i), which retains the
relative phase! The chiral phase retains C4(z) symmetry.
We may also check that the chiral phase respects all
other spatial symmetries (C4(z), C2(z), C2(x), C2(d)) of
the free energy; see Tab. 1. The chiral order parameter
retains the spatial symmetries, but it breaks time-
reversal symmetry, which also renders it unconventional
according to the definition.

7. Discussion

To our knowledge, chiral or magnetic superconduc-
tors were first conjectured by Volovik and Gor’kov in
1984 [15], initially perceived as too exotic to naturally

Table 1: Transformation properties of the order parameters under spatial transformations and time-reversal T . The blue entries are
equivalent to the original order parameter by a phase shift. The green entries indicate a broken symmetry.

Phase C4(z) C2(z) C2(x) C2(d) T
(Ψx, Ψy) (Ψy, −Ψx) (−Ψx, −Ψy) (Ψx, −Ψy) (Ψy, Ψx) (Ψ∗

x, Ψ∗
y)

Single (1, 0) (0, −1) (−1, 0) (1, 0) (0, 1) (1, 0)
Two (1, −1) (−1, −1) (−1, 1) (1, 1) (−1, 1) (1, −1)
Chiral (1, i) (i, −1) (−1, −i) (1, i) (1, i) (1, −i)
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occur in materials. However, experimental physics has
since made significant strides, with the discovery of
several strong candidate materials exhibiting supercon-
ducting states breaking time-reversal symmetry. For
comprehensive introductions and reviews on the subject,
we recommend consulting references such as [10, 16, 17].

In superconductors, the breaking of time-reversal
symmetry can occur either intrinsically or extrinsically.
In the intrinsic case, time-reversal symmetry is spon-
taneously broken by the superconducting state itself,
without any external intervention. One possibility as
to how this can be manifested, is as rotating sur-
face currents that develop spontaneously due to the
imaginary component of the order parameter, making
the material display distinct magnetic properties. On
the other hand, time-reversal symmetry is extrinsically
broken when a magnetic field is applied to a material,
causing a transformation of an initially non-chiral order
parameter into a chiral one. For example, monolayer
NbSe2 is believed to exhibit single-component s-wave
superconductivity [18]. However, due to the absence
of inversion symmetry in its crystal structure, which
is a crucial spatial symmetry, the system theoretically
allows for the coexistence of singlet and triplet order
parameters. Although there is no triplet order parameter
in the absence of a magnetic field, the application
of a magnetic field induces an if triplet component,
resulting in the emergence of a chiral s + if state in
the order parameter. Ongoing experiments are actively
investigating this chiral phase [19]. One paradigmatic
example of intrinsic time-reversal symmetry breaking is
Sr2RuO4 [20], an unconventional superconductor with a
complex history of theoretical and experimental investi-
gations. Despite ongoing debates regarding the precise
form of its order parameter, the scientific community
appears to be converging towards the consensus that
Sr2RuO4 hosts a chiral singlet order parameter.

7.1. Where to begin?

For those interested in exploring more about super-
conductivity, we recommend a selection of modern
resources. Beginners may find the books by Annett [13]
and Tinkham [7] to be excellent starting points. For a
more encyclopedic introduction, the book by Ketterson
and Song [8] is recommended, which draws inspiration
from the seminal work of de Gennes [29]. Intermedi-
ate readers may benefit from the works of Kita [21],
Tsuneto [22], and Combescot [23].

Accessing material on unconventional superconductiv-
ity can be particularly challenging. A foundational text
in this area is the book by Mineev and Samokhin [24],
along with Kita [21]. Due to the scarcity of Ref. [24],
the school papers by Sigrist [14, 25] serve as excellent
alternatives. Another seminal resource in the field is the
review paper in Ref. [11].

Superconductivity research utilizes various methods.
The mean-field Bogoliubov-de Gennes method [8, 28, 29]

is an accessible yet powerful approach for simulating
superconductors in real space, despite its approximate
nature. The quantum Monte Carlo technique offers an
exact alternative but is limited by the sign problem
for certain Hamiltonians, its time-consuming nature,
and its inability to simulate large systems. The quasi-
classical approximation, detailed in [21, 30], is effec-
tive for studying real-space problems both numerically
and analytically, provided the order parameter’s energy
scale is significantly smaller than the Fermi energy.
An introduction to path integral methods applied to
superconductivity may be found in Ref. [31]. For an
introduction to field theoretical methods, we suggest
Refs. [5, 26, 27].
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