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Equivalence between the Dirac oscillator and a spin-1/2
fermion embedded in a transverse homogeneous magnetic

field: movement in a (2 + 1)-dimensional world
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It is shown that the Dirac oscillator in a (2 + 1)-dimensional spacetime can be interpreted as a spin-1/2 fermion
embedded in a transverse homogeneous magnetic field.
Keywords: Keywords: Dirac oscillator, relativistic planar motion, transverse homogeneous magnetic field.

The planar Dirac oscillator embedded in a transverse
uniform magnetic field has emerged in applications to
optical models [1]- [3] and graphene [4]- [10]. In a recent
work, it has been shown in a simple way that the pla-
nar Dirac oscillator and a spin-1/2 fermion embedded
a transverse homogeneous magnetic field are equivalent
problems [11]. This achievement, put into effect with 4×4
realizations of the Dirac matrices in a (3+1)-dimensional
world, fills with suspicions of wrongdoing many works
diffused in the literature. In the present work, even with
a content easy to deal with by graduate students in
Physics, the same achievement is reached by using 2 × 2
realizations of the Dirac matrices in a (2+1)-dimensional
world.

In the Minkowski spacetime, the behaviour of a spin-
1/2 fermion of mass m subject to the most generic set of
interactions is governed by the Dirac equation (in natural
units ~ = c = 1)

(γµpµ − m − V) Ψ = 0, (1)

where pµ = i∂µ and V is the interaction potential matrix.
The gamma matrices satisfy the algebra {γµ, γν} = 2gµν ,
where gµν stands for the matrix element of the Minkowski
metric tensor with g00 = −gii = 1, gµν = 0 if µ 6= ν,
i.e. with signature (+ − −−) . With the adjoint spinor
Ψ = Ψ†γ0, the requirement

(
γ0γµ

)† = γ0γµ compels
the current density Jµ = ΨγµΨ to obey the continuity
equation

∂µJµ = iΨ
(
γ0V†γ0 − V

)
Ψ (2)

in such a way that Jµ is conserved only if
(
γ0V

)† = γ0V
[12]. In this way, the most general Dirac equation can
also be written in the form
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i
∂Ψ
∂t

= HΨ =
(
γ0−→γ · −→p + γ0m + γ0V

)
Ψ, (3)

with H† = H.
In (3 + 1) dimensions, γµ can be represented by a

4 × 4 matrix and the general interaction potential matrix
V can be written as a linear combination of sixteen
Γ-matrices. Usually, the basis elements are chosen in
such a way that the bilinear form ΨΓΨ has a definite
transformation property under Lorentz transformations,
as listed in Table 1 (see, e.g. [13]- [14]).

The magnetic field (
−→
B = −→

∇ ×
−→
A ) coupled by the mini-

mal prescription −→p → −→p −q
−→
A , for example, corresponds

to an interaction potential matrix given by

V = −q−→γ ·
−→
A (potential matrix for the space

component of a vector coupling). (4)

On the other hand, the Dirac oscillator is obtained by
the nonminimal prescription −→p → −→p − imωγ0−→r , corre-
sponding to

V = imωγ0−→γ · −→r (potential matrix for the
Dirac oscillator). (5)

Table 1: Basis elements of the 4×4 matrix space and the Lorentz
property of ΨΓΨ. I4×4 is the 4×4 unit matrix, γ5 = iγ0γ1γ2γ3

and σµν = i[γµ, γν ]/2.
Γ number of elements Lorentz property of ΨΓΨ

I4×4 1 scalar
γ5 1 pseudoscalar
γµ 4 vector

γ5γµ 4 pseudovector
σµν 6 tensor
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In (2 + 1) and (1 + 1) dimensions, though, γµ can be
represented by a 2 × 2 matrix and four matrices form the
base of the vector space of all Hermitian 2 × 2 matrices.
In terms of the unit matrix plus the Pauli matrices σ1,
σ2 and σ3, one finds scalar and vector structures in 2 + 1
dimensions (in the sense of proper Lorentz transforma-
tions), and scalar, pseudoscalar and vector structures in
(1 + 1) dimensions.

The interaction potential matrix of the Dirac oscilla-
tor under Lorentz transformations changes depending
on the dimensions of the Minkowski spacetime. As a
matter of fact, the prescription leading to the Dirac os-
cillator results in a kind of tensor interaction in (3 + 1)
dimensions that can be interpreted as that one describing
the behaviour of a particle with anomalous magnetic mo-
ment [15]. On the other hand, the Dirac oscillator exhibits
a pseudoscalar Lorentz nature in 1 + 1 dimensions [16].
Therefore, it is natural to ask about the Lorentz nature
of the interaction potential matrix corresponding to the
(2 + 1)-dimensional version of the Dirac oscillator. In
order to answer this question, for the sake of generality,
we go in reverse. As one might guess from the comments
on the previous paragraph, the (2 + 1)-dimensional Dirac
oscillator is coupled necessarily by a linear combination of
scalar and vector couplings. Choosing the representation
γ0 = σ3 and −→γ = σ3

−→σ , with −→σ = (σ1, sσ2) and s = ±1,
the most general Hamiltonian in (2 + 1) dimensions can
be written as

H = −→σ ·
(−→p −

−→
V

)
+ V 0 + σ3(m + S), (6)

where V µ = (V 0,
−→
V ), with time component V 0 and space

component
−→
V = (V 1, V 2), denotes the vector potential,

and S denotes the scalar potential. Therefore, the most
general interaction potential matrix V = γµVµ + S can
be written as

V = −σ3
−→σ ·

−→
V + σ3V 0 + S. (7)

Using the identity

σiσj = δijI2×2 + i

3∑
k=1

εijkσk, (8)

where I2×2 is the 2 × 2 unit matrix, δij is the Kronecker
delta and εijk is the Levi-Civita symbol, one can write
−→σ ·

−→
V = i−→σ · σ3

−→v , where −→v =
(
V 2, −V 1)

, in such a
way that one ends up with

H = −→σ · (−→p − isσ3
−→v ) + V 0 + σ3(m + S). (9)

Note that the interaction potential matrix related to
the space component of a vector potential

−→
V in (6) has

been replaced in (9) by that one with the same matrix
structure of the Dirac oscillator but with a more general
potential function.

We now turn to the the case of a minimally coupled
magnetic field

−→
V = q

−→
A . In particular, for a particle

immersed in a uniform magnetic field
−→
B = Bk̂ with

−→
A

expressed in the symmetric gauge
−→
A = −→

B × −→r /2, one
finds

H = −→σ ·
(

−→p − is
qB

2 σ3
−→r

)
+ σ3m, (10)

which represents exactly the Dirac oscillator with fre-
quency equal to ω = |q|B/(2m).

It has been shown that the interaction potential matrix
typical of the Dirac oscillator, i.e. iγ0−→γ · −→v , is precisely
that one characteristic of the vector coupling −−→γ ·

−→
V in

a (2 + 1)-Minkowski spacetime. Then, we showed that
the Dirac oscillator for an electrically charged particle
can be interpreted as the problem describing a spin-1/2
fermion minimally coupled to a transverse homogeneous
magnetic field.
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