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Wien peaks and the Lambert W function
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Exact expressions for the wavelengths where maxima occur in the spectral distribution curves of blackbody
radiation for a number of different dispersion rules are given in terms of the Lambert W function. These dis-
persion rule dependent “Wien peaks” are compared to those wavelengths obtained in a setting independent of
the dispersion rule chosen where the “peak” wavelengths are taken to be those obtained on dividing the total
radiation intensity emitted from a blackbody into a given percentile. The account provides a simple yet accessible
example of the growing applicability of the Lambert W function in physics.
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São apresentadas em termos das funções W de Lambert as expressões exatas para os comprimentos de onda
para os quais ocorrem máximos das curvas espectrais do corpo negro para algumas diferentes regras de dispersão.
Estes “picos de Wien”, dependentes da regra de dispersão, são comparados àqueles obtido independentes desta
regra, onde os comprimentos de onda de “pico” são obtidos dividindo-se a intensidade de radiação total emitida
por um corpo negro em um dado percentil. Isto fornece um exemplo simples e acesśıvel da crescente aplicabili-
dade das funções W de Lambert.
Palavras-chave: radiação de corpo negro, picos de Wien, função W de Lambert, polylogarithm.

1. Introduction

In the analysis of the spectral distribution of black-
body radiation, the wavelengths λmax where maxima in
Planck’s spectral distribution law BD(T ) occur have,
and continue to remain, of particular interest [1–13].
As is well known [14], such maxima occur at different
wavelengths depending on the type of dispersion rule,
D , chosen. Such a choice, however, is completely arbi-
trary and lay in it usefulness [10]. Such arbitrariness
in the choice of dispersion rule becomes apparent when
one recognises that the Planck function BD(T ) is a den-
sity distribution function which is defined differentially
by

dWD = BD(T ) dD . (1)

So regardless of the particular dispersion rule cho-
sen, all possible BD(T ) still represent the same physical
blackbody radiation spectrum. Eq. (1) makes it clear
that BD(T ) is differential in nature. Planck’s function
BD(T ) therefore gives the intensity of the emitted ra-
diation (power emitted per unit area) per unit physical
quantity interval D from a blackbody at absolute tem-
perature T and not the intensity of the emitted radia-
tion as a function of the physical quantity D .

In this paper we consider eight common dispersion
rules and show how the maxima in the continuous spec-
tra for each can be expressed in closed form in terms
of the recently defined Lambert W function [15, 16].
The eight dispersion rules we consider are summarized
in Table 1. In naming each of the respective maxima
we follow that given in Ref. [10]. Here, the peak in
the spectrum resulting from the linear wavelength dis-
persion rule has historically been referred to as Wien’s
displacement law while all other peaks in the spectra re-
sulting from any other type of dispersion rule are simply
referred to as a Wien peak.

Since dWD represents the power in the differential
interval dD , each of the different representations for
dWD in Table 1 must correspond to each other since
the powers must be equal. This should come as no
surprise since what we are dealing with here is simple
energy conservation. If we recall that the total inten-
sity I (power per unit area) emitted from a blackbody
at temperature T is obtained by integrating dWD over
its entire range this becomes apparent since it gives the
familiar Stefan–Boltzmann law

I =

∫ ∞

0

dWD

∫
dΩ = σT 4. (2)
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Table 1 - The eight dispersion rules considered in this paper.

D BD(T ) dD Dispersion rule

ν2 2νBν2 (T ) dν frequency-squared

ν Bν(T ) dν linear frequency

√
ν 1

2
√

ν
B√

ν(T ) dν square root frequency

ln ν 1
ν
Bln ν(T ) dν logarithmic frequency

lnλ 1
λ
Blnλ(T ) dλ logarithmic wavelength

√
λ 1

2
√

λ
B√

λ(T ) dλ square root wavelength

λ Bλ(T ) dλ linear wavelength

λ2 2λBλ2 (T ) dλ wavelength-squared

Here the constant σ is the Stefan–Boltzmann constant
while the integration of the solid angle Ω is taken over
the half-sphere.2

It should be noted that moving from a frequency
representation ν to a wavelength representation λ, or
vice versa, is not simply a matter of substituting ν =
c/λ into Planck’s function.3 Instead, since the Planck
function is a density distribution function which is de-
fined differentially, it is the differential dν = −c/λ2dλ
which needs to be substituted when moving between
the two representations. Here the minus sign can be ig-
nored since it is an artifact resulting from the direction
of integration taken in Eq. (2) [4].

On finding the dispersion rule dependent Wien
peaks, we compare these to what can be thought of as
a peak wavelength obtained in a setting independent of
the dispersion rule chosen. Here such a “peak” is taken
to be the wavelength obtained on dividing the total ra-
diation intensity I emitted by a blackbody at a given
temperature into a given percentile. The corresponding
dispersion rule giving each of these so-called percentile
peaks can then be found on matching the percentile and
Wien peak wavelengths.

The purpose of the present paper is two-fold.
Firstly, we wish to raise awareness of the growing im-
portance of the Lambert W function in the field of
physics. Many authors continue to remain unaware
that all the Wien peaks resulting from any arbitrary
dispersion rule can be written in closed form in terms
of the now familiar Lambert W function, despite a re-
cent publication of a closed-form expression for Wien’s
displacement constant b in Wien’s displacement law
λmaxT = b [18].4 Secondly, while many examples from

physics where the Lambert W function arises have now
been found (see, e.g., Refs. [18,20–34]), the problem of
determining closed-form expressions for the Wien peaks
provides what is undoubtedly the simplest illustration
of the use of this function in physics.

2. Exact analytic expressions for the
Wien peaks

Starting out with the well-known expression for the
Planck function in the linear wavelength spectral rep-
resentation, namely

Bλ(T ) =
2hc2

λ5(exp(hc/kBλT )− 1)
,

all other spectral distribution functions in any other
equivalent representation can be found. The fundamen-
tal constants h, c, and kB are Planck’s constant, the
speed of light in a vacuum, and Boltzmann’s constant
respectively. The positions of maxima in the spectral
distribution functions for blackbody radiation give the
so-called Wien peaks. These are obtained by taking the
derivative of BD with respect to either the wavelength
(in the wavelength representation) or the frequency (in
the frequency representation) and equating the result
to zero. When this is done, regardless of the spectral
representation one is working in, the following equation
results

m

[
exp

(
hc

kBλT

)
− 1

]
− hc

kBλT
exp

(
hc

kBλT

)
= 0. (3)

Here m > 1 and depends on the dispersion rule chosen
(see Table 2). Setting u = hc/(kBλT ) and rearrang-
ing algebraically, Eq. (3) reduces to the more compact
transcendental equation

(u−m)eu−m = −me−m. (4)

The solution to the above transcendental equation can
be expressed in closed form in terms of the Lambert W
function.

The Lambert W function, denoted by W(z), is de-
fined to be the inverse of the function f(z) = zez satis-
fying

W(z)eW(z) = z. (5)

Referred to as the defining equation for the Lambert
W function, Eq. (5) has infinitely many solutions

2Explicitly, if the surface of a blackbody is taken to lie in the xy–plane, denoting the angle to the zenith by ϕ and the azimuthal

angle by θ, then
∫
dΩ =

∫ 2π
0 dθ

∫ π/2
0 cosϕ sinϕdϕ = π.

3The interpretation of the Planck function has a long and venerable reputation of leading many an author astray. In the past many
have made the egregious mistake of referring to the Planck function as an ‘intensity function of either the wavelength or frequency’, often
belied by its true differential nature. Instead, its correct differential interpretation as an ‘intensity per unit wavelength or frequency
interval’ is pertinent in understanding why it is not possible to simply substitute ν = c/λ into Planck’s function when moving between
the two representations. For further discussion on this point, see Refs. [1] and [17].

4Interestingly, an alternative closed-form expression for the Wien displacement constant in Wien’s displacement law that makes
no use of the Lambert W function but instead calculates b explicitly using a method based on Cauchy’s integral theorem is given in
Ref. [19].
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(most of which are complex) and is therefore multi-
valued. If its argument is real, Eq. (5) can have ei-
ther one unique positive real root W0(x) if x ≥ 0 ex-
cept for W0(0) = 0; two negative real roots W0(x)
and W−1(x) if −1/e < x < 0; one negative real root
W0(−1/e) = W−1(−1/e) = −1 if x = −1/e; and no
real roots if x < −1/e. By convention, the branch sat-
isfying W(x) ≥ −1 is taken to be the principal branch
and is denoted by W0(x) while the branch satisfying
W(x) ≤ −1 is known as the secondary real branch and
is denoted by W−1(x).

Returning to the problem of determining the Wien
peaks, as Eq. (4) is exactly in the form of the defining
equation for the Lambert W function, it can be solved
in terms of this function. For the non-trivial5 solution
we have

u = m+W0(−me−m). (6)

Closed-form expressions for the wavelengths of the
Wien peaks in terms of the Lambert W function im-
mediately follow. They are given by

λmaxT =
hc

kB
(
m+W0(−me−m)

) . (7)

Table 2 - Closed-form expressions for the Wien peaks for the eight
different dispersion rules considered in this paper.

D m λmaxT λmaxT
(exact) (numerically)

ν2 2
hc

kB(2 +W0(−2e−2))

hc

kB(1.593 624 . . .)

ν 3
hc

kB(3 +W0(−3e−3))

hc

kB(2.821 439 . . .)

√
ν 7/2

hc

kB(7/2 +W0(−7/2e−7/2))

hc

kB(3.380 946 . . .)

ln ν 4
hc

kB(4 +W0(−4e−4))

hc

kB(3.920 690 . . .)

lnλ 4
hc

kB(4 +W0(−4e−4))

hc

kB(3.920 690 . . .)

√
λ 9/2

hc

kB(9/2 +W0(−9/2e−9/2))

hc

kB(4.447 304 . . .)

λ 5
hc

kB(5 +W0(−5e−5))

hc

kB(4.965 114 . . .)

λ2 6
hc

kB(6 +W0(−6e−6))

hc

kB(5.984 901 . . .)

In the case of Wien’s displacement law, Wien’s dis-
placement constant b was first expressed in closed form
in terms of the Lambert W function in [18]. It corre-
sponds to the m = 5 (linear wavelength spectral repre-

sentation) case in Eq. (7). Table 2 contains a summary
of results for the Wien peaks for all eight dispersion
rules considered in this paper. Note the Wien peak in
both the logarithmic frequency and wavelength spectral
representations are equal and as such is often referred
to as the wavelength–frequency neutral peak.

In addition to the elegance which an explicit ex-
pression for the Wien peaks provides, the availability
of analyticity facilitates further analysis due to its new
gained mathematical convenience. It is instructive to
plot λmaxT as a function of the dispersion rule param-
eter m, as described by Eq. (7). In Fig. 1 we plot the
dimensionless quantity λmaxT/(hc/kB) as a function of
m. The figure shows the expected shifting in the peak
wavelength λmax in the Planck function from shorter
wavelengths in any of the wavelength representations
(m ≥ 4) to longer wavelengths in the frequency rep-
resentations (1 < m ≤ 4). The cut-off point which is
seen to occur at m = 1 indicates that any frequency
representation at or above that of a frequency-cubed
no longer contains a peak in its spectral distribution
function. No physical significance however should be
attached to this cut-off point. It just tells us that the
Planck function will no longer be a singly peaked func-
tion if a dispersion rule in the frequency representation
at or above that of a frequency-cubed is chosen. Phys-
ically, the total intensity I emitted from a blackbody
at a given temperature T must remain unchanged, re-
gardless of the particular dispersion rule chosen, this
being a consequence of the Stefan–Boltzmann law.

Figure 1 - The Wien peaks (peak wavelengths λmax) as a func-
tion of the dispersion rule parameter m. Here the vertical axis
has been normalised so it appears as a dimensionless quantity.
A cut-off point where peaks are no longer found in the spectral
distribution curves of blackbody radiation is seen to occur for
values of m at and below one.

5Note if the secondary real branch for the Lambert W function were to be chosen, the trivial solution results and is apparent on
recognising the simplification W−1(−me−m) = −m for m > 1.
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3. Dispersion rule independent per-
centile peaks

Which Wien peak one uses depends on the application
one has in mind. The conventional choice is the peak
given by Wien’s displacement law as found within the
linear wavelength spectral representation. Often it is
however more convenient to define a wavelength that
can be thought of as a “peak” of sorts, yet is indepen-
dent of the dispersion rule chosen. Here such a peak
is taken as the wavelength (or frequency) that divides
the total radiation intensity into a certain percentile p̄,
where 0 ≤ p̄ ≤ 1. As alluded to in the introduction
we refer to these wavelengths as the percentile peaks
and will denote them by λp̄. For example, in the often
used median case, p̄ = 0.5 and the percentile peak is
the wavelength that divides the total radiation inten-
sity into two equal halves. Once the percentile peak is
found it in turn can be used to determine the type of
dispersion rule Planck’s spectral distribution law would
correspond to. Here matching the percentile peak wave-
length to an equivalent Wien peak allows such a deter-
mination to be made.

The peak wavelength that divides the total radia-
tion intensity into a certain percentile p̄ is found on
solving ∫ Dp̄

0

dWD

∫
dΩ = p̄σT 4. (8)

As Eq. (8) is independent of the spectral representation
chosen, in the linear wavelength representation one has∫ λp̄

0

2πhc2

λ5[exp( hc
kBλT )− 1]

dλ = p̄σT 4. (9)

Using the change of variable u = hc/(kBλT ), setting
α = hc/(kλp̄T ), and noting that the Stefan–Boltzmann
constant σ is given by 2π5k4B/(15c

2h3), Eq. (9) reduces
to ∫ ∞

α

x3

ex − 1
dx = p̄

π4

15
. (10)

The integral appearing in Eq. (10) is evaluated in the
appendix. The result is

α3Li1(e
−α) + 3α2Li2(e

−α) + 6αLi3(e
−α)

+6Li4(e
−α) = p̄

π4

15
, (11)

where Lis(x) is the polylogarithm function [35]. For a
given p̄, Eq. (11) must be solved numerically to find α.
Once α is known the percentile peak wavelength follows
and is given by λp̄T = hc/(kBα).

The percentile peak wavelengths can be related back
to a Planck function corresponding to a particular dis-
persion rule by matching the peak wavelength for a
given percentile to the Wien peak. Doing so allows

one to associate a given percentile p̄ to an equiva-
lent dispersion rule. From Eq. (4), as u = α is the
solution we seek, solving for the dispersion rule pa-
rameter m yields m = αeα/(eα − 1). The equivalent
dispersion rule can now be found as follows. In the
frequency representation we set D = f(ν) = νβ so
that dWνβ = βνβ−1Bνβ (T ) dν. Similarly, in the wave-
length representation we set D = f(λ) = λγ so that
dWλγ = γλγ−1Bλγ (T ) dλ. In each case, substituting
for dW{νβ ,λγ} into Eq. (2) and solving for the peak
wavelength leads to an equation of the form given by
Eq. (7) with the dispersion rule parameter m given by

m =

{
4− β, for 0 < β < 3,
4 + γ, for γ > 0.

(12)

As an example, for the median percentile case
(p̄ = 0.5), on solving Eq. (11) numerically one finds
α = 3.503 018 . . . which gives m = 3.611 755 . . .. Since
m < 4, the median percentile case falls on the frequency
representation side of the wavelength–frequency neutral
peak divide and thus can be represented by a frequency
dispersion rule D = νβ with index β = 0.388 244 . . ..
The case for other percentiles and the associated dis-
persion rule each corresponds to are summarized in Ta-
ble 3.

Finally, from Eq. (11), it is also possible to find the
percentile p̄ corresponding to each of the various Wien
peaks. For the eight dispersion rules considered here,
they are summarized in Table 4. Note that while it is
possible to express each percentile appearing in Table 4
in exact form in terms of polylogarithms and the Lam-
bert W function, for brevity we give each value for p̄ in
decimal form.

Table 3 - Equivalent dispersion rules associated with eleven dif-
ferent percentiles as found on matching the percentile peak wave-
lengths λp̄T = hc/(kBα) to their corresponding dispersion rule
dependent Wien peaks.

p̄ α m D

0.01 9.937 050 . . . 9.937 530 . . . λ5.937 530...

0.1 6.554 228 . . . 6.563 575 . . . λ2.563 575...

0.2 5.376 478 . . . 5.401 455 . . . λ1.401 455...

0.3 4.613 189 . . . 4.659 411 . . . λ0.659 411...

0.4 4.016 206 . . . 4.089 911 . . . λ0.089 911...

0.5 3.503 018 . . . 3.611 755 . . . ν0.388 244...

0.6 3.032 090 . . . 3.185 687 . . . ν0.814 312...

0.7 2.573 955 . . . 2.786 369 . . . ν1.213 630...

0.8 2.096 264 . . . 2.390 034 . . . ν1.609 965...

0.9 1.534 548 . . . 1.956 216 . . . ν2.043 783...

0.99 0.628 717 . . . 1.347 084 . . . ν2.652 915...
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Table 4 - Equivalent percentile required to give the Wien peak
associated with each of the eight different dispersion rules con-
sidered in this paper.

D m p̄

ν2 2 0.890 787 . . .
ν 3 0.646 006 . . .√
ν 7/2 0.525 338 . . .

ln ν 4 0.417 710 . . .

lnλ 4 0.417 710 . . .√
λ 9/2 0.325 876 . . .
λ 5 0.250 054 . . .
λ2 6 0.141 088 . . .

4. Conclusion

We have shown how the Wien peaks in the spectral dis-
tribution curves of blackbody radiation for a number
of common dispersion rules can be expressed in closed
form in terms of the recently defined Lambert W func-
tion. The dispersion rule dependent Wien peaks were
then compared to the so-called percentile peaks, a dis-
persion rule independent peak wavelength of sorts, ob-
tained as that which divides the total radiation inten-
sity emitted from a blackbody into a given percentile.
Associating an equivalent percentile to each Wien peak
for the eight different dispersion rules considered was
then made.

The Lambert W function has recently emerged as
one of the important special functions of mathemati-
cal physics. By bringing the function to the attention
of a wider audience through an accessible example, as
was provided here, we hope one will be sufficiently con-
vinced of the usefulness of such a function to warrant
its adoption and further use in physics. Here recogni-
tion and familiarity are important if any function is to
be put to greater use. While we recognise mathemati-
cal functions in themselves are not expected to uncover
any new physics, as was seen here, those who choose
to work with such a function benefit from having ac-
cess to an existing body of mathematical knowledge.
The continued usefulness of such a function is therefore
expected to lay in helping to elucidate the physics in-
volved in a particular problem, which in the past, may
have otherwise proved difficult to extract.

Appendix

In this appendix we evaluate the integral appearing in
Eq. (10). Consider the slightly more general case of∫ ∞

α

xn

ex − 1
dx. (13)

Here n > 0 while physically α is positive. If Eq. (13) is
rewritten as ∫ ∞

α

e−xxn

1− e−x
dx, (14)

recognising the term 1/(1 − e−x) as the sum of the
convergent geometric series

∑∞
k=0 e

−kx, on shifting the
summation index and interchanging the order of the
integration and summation, the integral becomes∫ ∞

α

xn

ex − 1
dx =

∞∑
k=1

∫ ∞

α

xne−kxdx. (15)

With the change of variable u = kx the integral appear-
ing in Eq. (15) can be written in terms of the upper
incomplete gamma function Γ(s, a) =

∫∞
a

us−1e−udu,
namely ∫ ∞

α

xn

ex − 1
dx =

∞∑
k=1

Γ(n+ 1, kα)

kn+1
. (16)

When n is an integer the upper incomplete gamma func-
tion can be evaluated explicitly in terms of standard el-
ementary functions using integration by parts. For the
case of n = 3 we have

Γ(4, kα) = e−kα[(kα)3 + 3(kα)2 + 6(kα) + 6]. (17)

The polylogarithm function Lis(x) is defined as

Lis(x) =
∞∑
k=1

xk

ks
, |x| < 1. (18)

Here we restrict our attention to order indices s which
are real. On combining Eq. (17) with Eq. (16) the four
resulting infinite sums are nothing more than the poly-
logarithm Lis(e

−α) of orders 1 through to 4. The result
appearing in Eq. (11) then follows. Note the polylog-
arithm is also known as Jonquière’s function and can
be thought of as a generalisation of the logarithm since
when s = 1

Li1(x) =

∞∑
k=1

xk

k
= − ln(1− x). (19)
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