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Structure of the theories of probability
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We examine the concept of probability from its emergence within the realm of the games of chance and
the development of the theory of probability until the appearance of the treatise of Kolmogorov on this subject.
The discipline related to that theory is framed as the science of aleatory events. Probability is understood as
a primitive concept represented by a measure assigned to the space of events and obeying the fundamental
postulates of the theory. The measurement of probability is the ratio of the number of the observed favorable
outcomes and the total number of observed outcomes when these numbers are larger enough.
Keywords: Theory of probability, chance in dice games, Bernoulli trial, central limit theorem, Markov chain.

1. Introduction

The theory of probability as well as geometry are some-
times considered pure mathematical theories. However,
geometry can be understood as the science related to the
distance, shape, and size of figures in real space. This
understanding is not recent and is at the very beginning
of the science of geometry. A similar appreciation can be
made of the theory of probability which can be framed
as the science of real aleatory events. The connection
between the concept of probability and aleatory events
is also at the genesis of the science of probability which,
in retrospect, is to be found in the realm of the games
of chance.
The recognition of the theory of probability as the

science of aleatory events is accomplished by the under-
standing that the probability of an event is interpreted as
the frequency of the occurrence of that event. Notice that
frequency is neither the probability nor the definition of
probability. Given the possible outcomes of an aleatory
experiment, the probability of an event is determined
by assigning a number between zero and unity to each
one of the mutually exclusive elementary events. The
possible outcomes of an aleatory event constitute the
space of events or the sample space. In the case of the
throwing of a die, it consists of the set of numbers from
one to six.
A relevant aspect of probability that we wish to

emphasize here is that it should be understood as a
primitive concept of the theory. A primitive concept such
as time, space and mass cannot be defined in terms
of other more fundamental concepts [1]. Nevertheless,
they can and are apprehended by our minds, and are
consolidated once we know how they are measured. Time
is measured by a clock, distance by a ruler, and weight by
a balance. The probability of an event is measured by the
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frequency of its occurrence in a real experiment. Notice
that these forms of measurement are not the definitions
of the concepts.
The concept of probability grew up within the realm

of the games of chance and the earliest probability calcu-
lation were based on a general rule of equiprobability of
the elementary outcomes in the throwing of dice. Since
we do not expect to find data of observed frequencies
associated to these calculations, a question then arises as
to how the probabilistic calculations were compared with
real frequencies. This question is answered by bearing
in mind that estimates of the real frequencies were
empirically known to the experienced dice players.
The probability related to frequency is not the only

concept of probability that has been conceived. There
are other concepts with the name of probability. Carnap
claimed that there are two fundamentally different kinds
of probability which he calls logical probability and
statistical probability [2]. The first kind of probability
is understood as a degree of confirmation, which he
also termed inductive probability because it is related
to what he called inductive inference.
Hacking pointed out [3] the existence of two kinds

of probability, which he called the duality aspect of
probability. One type of probability he called epistemic
probability, understood as the “degrees of belief in
propositions quite devoid of statistical background” [3].
The duality was also pointed out by Poisson and
by Cournot who used the French words chance for
the aleatory concept and probabilité for the epistemic
concept [3]. Both Poisson and Cournot remarked that
the former is an objective concept whereas the latter
depends on our knowledge about the event and is thus
subjective [4, 5].

The term probability and its cognates in other lan-
guages did not always have the current scientific mean-
ing, which emerged in the second half of the seventeenth
century [3]. The earlier meaning of the term probability
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was the state of being approved or worthy of approval [3].
The French word probabilité appeared in the modern
sense in the last pages of a book on logic, known as the
Port Royal Logic, published in 1662 [6]. Although the
term probability in the modern sense appeared around
the second half of the seventeenth century, the concept
of probability related to frequency appeared before this
date, as we have seen above, and was called by other
names such as chance.
In the following we analyze the development of the

concept of probability and of the theory of probabil-
ity [7–12] starting from its emergence within the realm of
the games of chance, including Cardano and Galileo. It is
usual to proclaim that the theory of probability started
with the exchange of letters between Pascal and Fermat
in 1654, an attribution that was made by Laplace. In
his treatise on the theory of probability of 1812 [13], he
stated that the birth of this science is due to these two
Frenchmen, and that it was subsequently extended by
Huygens and developed by Jacob Bernoulli, Montmort
and Moivre. However, the concept of probability is much
older. Laplace himself conceded that before Pascal and
Fermat, people were determining for quite a long time
the ratio between favorable and unfavorable cases in
games of chance [14, 15].

In addition to the works of the authors mentioned
by Laplace, we analyze his treatise on the theory of
probability, and the works of Daniel Bernoulli, Lagrange,
Poisson, Bertrand, Borel, Markov, ending with the trea-
tise of Kolmogorov on the foundations of the probability
theory, published in 1933. Our focus will rest on the
exposition of the theoretical aspects which in many cases
are identified as the methods of probability calculation.

2. Chance in Dice Games

Un coup de dés n’abolira
jamais le hasard
Toute pensée émet un coup de dés

Mallarmé, 1897 [16]

2.1. De Vetula

De Vetula [17] is the name of a poem written in
Latin in France in the mid-thirteenth century contain-
ing probability calculations [19]. It was ascribed to a
medieval author who wrote the poem in the form of an
autobiography of the Roman poet Ovid [19]. The oldest
printed versions are from the last decades of the fifteenth
centuries [19]. In the first of three parts of the book the
author describes the calculation of chances in the throw
of three dice. According to Bellhouse [19], the poem was
well known and some readers may well have understood
clearly the probability calculations contained in the
poem, and that an elementary probability calculus may
have been established in Europe from the second half of
the thirteenth century.

The translation of the first half of the passage of the
poem dealing with the throw of dice is as follows [19]:
Perhaps, however, you will say that certain numbers
are better /Than others which players use, for the
reason that, /Since a die has six sides and six single
numbers, /On three dice there are eighteen, /Of which
only three can be on top of the dice. /These vary
in different ways and from them, /Sixteen compound
numbers are produced. They are not, however, /Of equal
value, since the larger and the smaller of them /Come
rarely and the middle ones frequently, /And the rest, the
closer they are to the middle ones, /The better they are
and more frequently they come.

In these lines the author explains that in a throw of
three dice, there are 16 possible outcomes, which are
the numbers from 3 to 18, as shown in the last column of
the upper table of Figure 1. Each outcome is the sum of
the pips on the top of the dice. The outcomes are not of
equal value, that is, they do not have the same frequency.
The largest and the smallest are less frequent and the
middle ones are more frequent and are thus considered
better numbers.

The translation of the second half is as follows [19]:
These, when they occur, have only one configuration of
pips on the dice, /Those have six, and the remaining ones
have configurations midway between the two, /Such that
there are two larger numbers and just as many smaller
ones, /And these have one configuration. The two which
follow, /The one larger, the other smaller, have two
configurations of pips on the dice apiece. /Again, after
them they have three apiece, then four apiece. /And five
apiece, as they follow them in succession approaching
/The four middle numbers which have six configurations
of pips on the dice apiece.

In these lines the author explains that each outcome
corresponds to one or more configurations, as can be seen
in the upper table of Figure 1. The smallest and largest
outcomes correspond to a small number of configura-
tions. The middle ones corresponds to a larger number of
configurations. For instance, the outcome 17 corresponds
to just one configuration which is (665). The outcome
15 correspond to three configurations which are (663),
(654), and (555). The total number of configurations is
56, which are the possible configurations of the pips on
the top of the three dice.

The author then explains that each configuration
can come in various ways of falling, except those con-
figurations in which the numbers are equal such as
(333) in which case there is just one way of falling.
A configuration where two numbers are equal and one is
different correspond to three ways of falling. For instance
the configuration (332) corresponds to the ways (3,3,2),
(3,2,3), and (2,3,3). A configuration where the three
numbers are different, the number of ways of falling is
six. For instance, the configuration (532) corresponds
to the ways (5,3,2), (5,2,3), (2,5,3), (2,3,5), (3,2,5), and
(3,5,2).
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Figure 1: Two tables from a printed version of 1534 of the poem
De Vetula [17], written around 1250. The upper table shows the
possible configurations of three dice and the possible outcome in
the last column. The bottom table shows the possible outcomes
in the first and second column, the number of configurations
(punctaturae) and the number of ways of falling (cadentiae).

Using the three rules above and taking into account
the configurations shown in the upper table of Figure 1,
we may determine the ways of falling for each outcome of
the last column, and they are shown in the bottom table
of Figure 1. For instance the outcome 10 corresponds to
27 ways of falling. The total number of ways of falling is
216. The chance a certain number is thus related to ways
of is falling which is the number of its permutations.
A question that should be raised here is whether the

ways of falling (cadentiae) are not just combinatorial
calculations without relation to actual throw of dice.
This does not seem to be the case because the words
rarely and frequently, which are understood as related
to actual throw of dice, were explicitly mentioned in the
poem.

2.2. Commentary to the Divine Comedy

In a commentary on the Divine Comedy of Dante called
L’Ottimo Commento one finds an indication of the
calculation of chances in a throw of three dice [20, 21].
The preface of a printed version of the commentary,
published in 1827–1829 [20], says that the author of
the commentary was a contemporary of Dante and that
the antiquity of the commentary is attested by the
mentioning of some events that occurred in 1333.

The passage related to the game of dice corresponds
to the first lines of the sixth canto of the Purgatorio,
which reads [22]:

Quando si parte il gioco de la zara,
colui che perde si riman dolente,
repetendo le volte, e tristo impara.

When the game of zara starts, the one who loses is sore,
repeating the throws, and in sadness learns. The game
of zara [22, 23] was usually played with three dice. Each
player throws the dice and at the same time tries to
guess the number of the sum of the pips on the top of
the dice by declaring the number aloud. If the guess is
correct, the player gets a number of coins equal to the
number called. Otherwise, the player pays a number of
coins equal to the number that came out.
The author of the commentary states that the number

three comes in one way. The number four comes in a
way such that one die has the number two and the
other two dices have aces. Thus we cannot expect too
much from these numbers. They are called unlucky
and are not considered in the game. The same can be
said about the numbers eighteen and seventeen which
are equally unlucky. The number between them can
come in multiple ways and the best ones are those that
come in more that one way. These comments indicate
that the more frequent numbers are those that can
be obtained in more ways. However, no quantitative
calculations are given, and it is unclear whether the ways
are related to partitions or permutations.

2.3. Cardano

Cardano (1501–1576) wrote a book about the games
of chance which was found among his manuscripts and
published posthumously in 1663 within his collected
works [24–26]. The book began to be written when he
was twenty-five years of age and was rewritten when he
was sixty-four [24]. The book presents a calculation of
the chances in the throw of dice which we describe here.
In the throw of two dice there are six results such that

the numbers on the top faces are equal, and 15 in which
the results are distinct. Doubling this last results we find
30 which added to six make up 36 cases (permutations),
which Cardano calls the cycle. In the upper table of
Figure 2, it is shown the number of cases corresponding
to a certain sum of points of the top faces of two dice. For
2 and 12 points there is just one case; for 3 and 11, two
cases; for 4 and 10, three cases, for 5 and 9, four cases,
for 6 and 8, five cases; and for 7, six cases. For instance,
for 4 points, the cases are (1,3), (2,2), and (3,1).
In the throw of three dice, there are 6 results in which

the number are all equal. There are 30 results in which
two number are equal and one different, and they occur
in three ways, which make up 90 cases. The number
of results with three different numbers is 20, each one
occurring in six ways, which makes 120 cases. The total
number of cases (permutations) is 216 which is the cycle.
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Figure 2: A table from the book of Cardano on games of chance
published in 1663 [26]. The upper part shows the number of
cases in the throw of two dice. There is a misprint: at the right
of the number 7 should be the number 6 and not 8. The lower
part shows the number of cases in the throw of three dice.

In the lower table of Figure 2, it is shown the number
of cases corresponding to a certain sum of points of the
top faces of three dice. For 3 and 18 points there just one
case; for 4 and 17, three cases; for 5 and 16, six cases,
for 6 and 15, ten cases, for 7 and 14, fifteen cases; for 8
and 13, twenty one cases; for 9 and 12, twenty five cases;
and for 10 and 11, twenty seven cases. For instance, for
5 points, the cases are (1,1,3), (1,3,1), (3,1,1), (1,2,2),
(2,1,2), and (2,2,1).

Cardano then proceeds to determine the number of
cases for some combinations of points. The number of
cases containing at least one ace is 11 out of 36. The
number of cases containing one of the points 1 and 2 is
20, that of the points 1 to 3 is 27, that of 1 to 4 is 32,
that of 1 to 5 is 35, and that of 1 to 6 is 36. Thus, if
someone wants a one, or a two or a three, the number of
favorable cases is 27 out of 36.

Cardano repeats this reasoning for the case of three
dice finding respectively the numbers 91, 152, 189, 208,
215, and 216 cases out of 216. Thus for getting at least
one ace in the throw of three dice the chance is 91/216.
Cardano then argues that if one wishes to get at least one
ace in two successive throws of three dice the chance is
the square of this number. In three successive throws,
it is the cube of this number. It becomes clear that
Cardano is using a power formula for the chances in
successive throws.

It is worth mentioning that Cardano established a
general rule that guided his calculations. This rules
concerns the possible cases of what he called the cycle,
which are 6 for one die, 36 for two and 216 for three
dice. According to this rule, the chances are determined
in proportion of the favorable to the unfavorable cases in

the cycle. For instance in the calculation of the chance
of getting at least one ace in a throw of three dice there
are 91 favorable cases out of 216. They are as follows.
One case with all faces equal to 1; 15 cases with exactly
two aces, such as (1,3,1); and 75 cases, such as (1,3,5).
In other terms, Cardano is assuming as a principle that
the cases of a cycle have equal chances.

2.4. Galileo

In a text about the throw of dice written by Galileo
(1564–1642) but which he left unpublished, he discusses
the reason why some numbers are more frequent than
others in a throw of three dice. The text appeared in his
collected works published in 1718 [27, 28]. Galileo gives
the example that the number 9 has the same number of
partition as the number 10 but the dice-players consider
the 10 more advantageous than 9. The partitions of 9
are six in number: (126), (135), (144), (225), (234), and
(333). The partitions of 10 are also six: (136), (145),
(226), (235), (244), and (334). If we consider that the
partitions have equal chances, than the frequency of
9 and 10 would be the same. But Galileo argues in a
different direction.
The results that are to be considered with equal

chances are not the partitions but the permutation one
can make with each one of the three dice. For the number
9 they are 25 in number: (1,2,6), (1,6,2), (3,3,3) and so
on. That is, for each partition we have to consider the
possible permutations. For the number 10 they are 27 in
number, which is larger than 25.
We see that the reasoning of Galileo is the same as

that of Cardano. The results that are to be consider
with equal chance are the permutations and not the
partitions. It is interesting to note that Leibniz gave
examples of the throw of dice that leads one to think
that he considered that the partitions have equal chances
and not the permutations [29]. He said that in the throw
of two dice, the number 12 is as feasible as the number
11, and that the number 7 is three times more feasible
than those numbers [29].
It is worth mentioning that Galileo reported that dice

players claim that in a game of three dice, the number
10 is more advantageous than the number 9. As the
difference between the probabilities corresponding to
these outcomes is about one percent, we see that the dice
players mentioned by Galileo estimated fairly precisely
the frequencies of the outcomes.

3. Pascal and Fermat

The solution of a problem related to the games of chance
was the subject of a series of letters exchanged between
Pascal and Fermat in 1654 [30–32]. The problem, known
as the problem of points (problème des partis), concerned
the division of a stake between two players of a game of
chance when the game was interrupted before its close.
The game has several rounds and the players have equal
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chance to win each round. The winner of the game is
the player who wins a certain predetermined number of
rounds.
The division of a stake is not properly a probabilistic

problem but becomes one when if it is assumed that
the division should be proportional to the chances each
player has of winning the game if it proceeded. This
was the point of view taken by Pascal and Fermat. The
problem is thus reduced to finding in how many ways
each player could win the game if the game had not
been interrupted.
The solution given by Fermat is as follows. Suppose

that one player need two rounds to win the game and the
other needs three rounds. In four rounds one or the other
player will win the game. Thus we have to consider all
the 16 possible results of the game in four rounds, which
are represented by

aaaa aaab aaba aabb
abaa abab abba abbb
baaa baab baba babb
bbaa bbab bbba bbbb

where the letters from left to right indicate who is the
winner in the successive rounds. The letter a and b
indicate that the winner of a round is the first or the
second player, respectively. We see that the number of
possible results with at least two letters a is 11 and with
at least three letters b is 5. As the first player needs two
rounds, he will win the game in 11 and the second in 5
out of the 16 possibilities. Therefore the stake is divided
in the proportion of 11 to 5.
Pascal then applies the Fermat method to the case of

three players. The first player needs one round to win,
and the second and the third need two rounds each. In
this case the game ends in three rounds and there are 27
possible cases which are

aaa aab aac aba abb abc aca acb acc
baa bab bac bba bbb bbc bca bcb bcc
caa cab cac cba cbb cbc cca ccb ccc

where the letter a, b and c indicate that the winner of
a round is the first, the second, or the third player,
respectively. As the first player needs just one round
he wins in 17 cases, whereas the other two players win
in 5 cases each, as they need two rounds. It should be
remarked that in the case abb, it is the first player who
wins the game. The second player wins the last two
rounds but the first player had already won the game as
he needed just one round. Notice that according to the
convention used here, the first letter to the left represent
the first round.
In the general case of two players, let us suppose that

the first player needs n rounds to win the game and the
second player needs m rounds, where m is larger than
n. After ` = n + m − 1 rounds, one of the players will
certainly win the game. We then consider the sequences
of the letters a and b, which represent the results of the
rounds of the game. Let us consider the sequences in

Figure 3: The arithmetic triangle from a figure of the treatise of
Pascal on this subject [33]. The number in a square is the sum
of the number inside the upper and left squares in accordance
with the property (3).

which the letter a appear k times, which represents the
number of results in which the first player wins k rounds
and consequently the second player wins ` − k rounds.
The first player wins the game if k ≥ m because in this
case the second player wins at most n− 1 rounds, which
is insufficient to win the game. Therefore, if we denote
by P `k the number of of sequences in which the letter a
appear k times, then the second player wins the game in
a number of times equal to

B =
∑
k≥m

P `k , (1)

and the first player wins the game in a number of times
equal to

A =
∑
k<m

P `k . (2)

The stake is divided in proportion A and B for the first
and second players, respectively. In the above example,
n = 2, and m = 3 and ` = 4, and P 4

0 = P 4
4 = 1,

P 4
1 = P 4

3 = 4, P 4
2 = 6, from which follows B = 4 + 1 = 5

and A = 1 + 4 + 6 = 11.
We should remark that each one of the possible cases,

which is represented by a sequence of letters, is assumed
to have equal chances. This assumption, which is to be
understood as a principle of the theory, is not explicit
mentioned by either Pascal or Fermat but is implicit in
their reasonings.

Pascal showed that the numbers P `k are the numbers
appearing in the arithmetic triangle shown in Figure 3.
The demonstration appeared in a treatise on the arith-
metic triangle [33] published posthumously in 1665 but
written probably by the end of 1654 [32]. The numbers
shown in this triangle are defined by

P `+1
k = P `k + P `k−1, (3)
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and P `0 = 1 and P `` = 1. That is, all the numbers in
the square cells of the first row and first column are set
equal to one. The others are obtained by the rule (3)
which states that the number in a certain cell is the sum
of the numbers in the upper and left cells.
From the rule (3), Pascal demonstrated several results

for P `k . One of them, which was stated as a problem, is to
determine a formula for P `k . As an example, he showed
that P 6

4 equals 6.5.4.3/4.3.2.1 = 15. A generalization of
this result is

P `k = `(`− 1) · · · (k + 1)
k(k − 1) · · · 2 · 1 . (4)

Pascal was not the originator of the arithmetic triangle
but he developed much of its property and applied to
the problem of the points as we have seen above. Before
Pascal, the triangle appeared in many works [34], as
in the second volume of a mathematical textbook by
Hérigone [35] published in 1634 and cited by Pascal.

We remark that at the time that Pascal and Fermat
solved the problem of points, the problem was not new.
It had been considered by Pacioli, Tartaglia, Cardano,
Peverone, and Forestani [8, 11, 36]. However, they failed
to understand the problem as a probabilistic problem
and treated the problem as an exercise in proportion or
in geometric progression.

The ideas of Pascal concerning probability can be
found in the book known as Port Royal Logic, [6],
written by two of his friends. In this book we find the
two aspect aspect of probabilities, related to the degree
of belief and to frequency [3]. In fact the authors of the
book use the second aspect to justify and explain the
first aspect. According to the authors “to judge what one
should do to obtain a good or to avoid an evil, one must
not only consider the good and the evil in themselves,
but also the probability that it will or not happen”. To
explain the meaning of probability, they immediately
give the following example. In a certain game of chance,
each one of ten people bets a crown and only one of
them wins the total and the others lose. Individually,
the game seems to be advantageous as one bets one and
can win nine. However, each player has nine degrees of
probability of losing a crown and just one of winning
nine crowns.

4. Huygens

The findings of Pascal and Fermat become widely known
through a small treatise of Huygens on the calculations
in games of chance called Ratiociniis in Ludo Aleae,
published in 1657 [37, 38]. The Dutch version was
published three years later in 1660 [39]. The treatise won
recognition and became the standard text in probability
for the next five decades [11]. The treatise is divided in
fourteen propositions where Huygens treats the problem
of the division of a stake with two and three players, and
problems related to the throw of dice.

The first and the second propositions are particular
cases of the third proposition which reads [11]: If the
number of chances of getting a is p, and the number
of chances of getting b is q, assuming always that any
chance occurs equally easy, then this is worth (ap +
bq)/(p+ q) to me.
It is clear that (ap+bq)/(p+q) is the definition of what

we call expectation or average. However, for Huygens
this is not just a mathematical definition. It seems that
he is giving a real connotation to the expression in the
following sense. In the problems of division of a stake,
the division is made in accordance with the chances that
each player has to win the game if it proceeded. The
chance of a player in turn is understood as proportional
to the number of games won by this player if the
game would be repeated several times. Since in each
game there is a certain stake, this player would get the
stake a number of time equal to the number of games
won. The arithmetic mean of the stakes can be under-
stood as a real estimate of the mathematical expectation
defined by Huygens. However, the arithmetic meaning
has no meaning in the sense that if the game was actually
carried out, the player would not get the arithmetic
mean. The player would get either the whole stake or
nothing. However, if the game does not proceed, the
average can be used as a criterion to divide the stake.
In propositions from four to seven, he treats the

problem of the division of a stake involving two players.
He considers the following particular cases. The first
player needs 1 round and the second player needs 2 to
win the game; then 1 and 3; 1 and 4; 2 and 3; and 2 and
4. The method is similar to that of Pascal and Fermat.
If the stake is denoted by a, then the shares found by
Huygens for the first and the second players are 3a/4
and a/4, respectively; 7a/8 and a/8; 15a/16 and a/16;
11a/16 and 5a/16; 13a/16 and 3a/16. In propositions
eight ant nine, Huygens treats the case of three players.
He consider several particular cases, some of which are
shown in the table of Figure 4. Again the method of
solution is similar to that of Pascal and Fermat.
The propositions from ten to fourteen deal with the

chances in the throw of dice. For one die, there are
6 throws, each of which have equal chance. For two
dice, there are 36 = 6 × 6 throws with equal chance
each. For three dice, there are 216 = 36 × 6 throws,
and so on for other number of dice. Let us call these
throws, the elementary throws. To determine the chance
that in certain throw the sum of the top pips of the
dice is a certain given number, Huygens determines in
how many ways this number can be produced. That is,
he determined the number of elementary throws which
yields the given number.
Huygens determined the expectation of the occurrence

of a certain event at least once in a certain number of
successive throw of dice. From his numerical calculation
it follows that this number is

1− pn, (5)
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Figure 4: Table from the Huygens treatise [37] showing the
results for the problem of the division of a stake between three
players. The upper part of each rectangle shows the numbers of
rounds needed for winning the game. The lower part shows the
respective share corresponding to each player.

where p is the probability of not occurring the event in
one throw, and n is the number of successive throws. For
instance, the expectation of getting the number 6 at least
once in 3 successive throws is 1− (5/6)3 = 91/216. The
expectation of getting the number 12 at least once in the
2 successive throws of two dice is 1−(35/36)2 = 71/1296.
In the last proposition, number fourteen, two individ-

uals A and B play a game in several rounds. They play
the rounds alternatively starting with the player A. In
the rounds played by A, he has a chance p of winning
the round, and in the rounds played by B, he has a
chance q of winning the round. The winner of the game
is the player who win a round before his opponent. The
problem is to find the chances of each player of winning
the game. The solution given by Huygens is as follows.
Let x be the chance of B winning the game so that the
chance of A winning the game is 1− x.
When it is the turn of A to play the round, x will

express the chance of B. When it is the turn of B, the
chance of B will be different, a value we denote by y. If
A is about to play the round then the chance of B to
win the game will be ry since 1 − p = r is the chance
that A does not win the round. Therefore

x = ry. (6)

Now suppose that B is about to play. Then the chance
of B to win the game will be q + sx, where s = (1− q),
and

y = q + sx. (7)

Solving these two equations, we find

x = rq

1− rs . (8)

The example given by Huygens corresponds to the case
where the player A needs a six and B needs a seven in

the throw of two dice. This gives p = 5/36 and q = 6/36
from which follows x = 31/61.

At the end of the treatise Huygens proposed five
problems related to games chance. The fifth problem
is a gambler’s ruin problem and was stated as follows.
Two players A and B each have 12 tokens and play
with three dice. If 11 is thrown A gives a token to B,
and if 14 is thrown B gives a token to A. The games
continues until one of the players is in possession of all
tokens. This problem was originally proposed by Pascal
and Fermat. Huygens became aware of the problem by a
letter he received from Carcavy in 1656. He immediately
sent a letter to Carcavy with the solution. Latter in
1676, he elaborate a more satisfactory solution of the
problem [39].

The Huygens treatise continued to be the best account
on the subject until the beginning of the eighteen century
when there appeared the treatises of Montmort in 1708,
Jacob Bernoulli in 1713, and De Moivre in 1718 [7, 8].

5. Jacob Bernoulli

Jacob Bernoulli was one of the earliest supporter of
the differential calculus in the form introduced by
Leibniz, giving numerous contribution to this field, and
he was also one of the proponents of the calculus of
variations. His most original contribution was in the
field of probability. His treatise on this field called
Ars Conjectandi [40, 41] was published posthumously
in 1713, but he had been writing the book from 1685
until his death in 1705 [3]. In this treatise we find his
fundamental limit theorem which was later named by
Poisson the law of large numbers [4].

The treatise is divided in four parts. The first part
contained the reprint of the Huygens treatise on the
same subject along with extensive commentaries, other
proofs of the main propositions and solutions of prob-
lems proposed by Huygens. The demonstration of the
proposition fourteen of the Huygens treatise is as follows.
The expectations that the game finish at rounds 1, 2, 3,
and so on, is respectively p, rq, rsp, r2sq, r2s2p, r3s2q,
r3s3p, and so on, where p and q have the meaning given
above and r = 1 − p and s = 1 − q. The player A wins
the game when the game finishes at the odd rounds and
the player B, in the even games. Thus the expectation of
the players A and B are, respectively, the given by the
sums

p+ rsp+ r2s2p+ r3s3p+ . . . , (9)

rq + r2sq + r2s2q + . . . , (10)

which are infinite geometric series with ratio rs. The
sums of the series are p/(1 − rs) and rq/(1 − rs). The
former result is the expectation of player A and the later
result is the expectation of player B, which coincides
with (8).

The second part contains the theory of permu-
tations and combinations. Bernoulli starts with the
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Figure 5: Table of combinations or figurative numbers from the
Bernoullli treatise [40].

permutations of a sequence of letters. For three letter a,
b, and c, there are six permutations: abc, acb, bac, bca,
cab, and cba. For four letters the number of permutations
is 24. Generally, for n letters this number is 1·2·3·4 · · ·n.
If a certain a certain letter appears twice then the
number of permutation is 1 ·2 ·3 ·4 · · ·n/2. If in addition
another letter appears three times then, 1 · 2 · 3 · 4 · · ·
n/2 · 6.

The numbers in the table of combinations of Figure 5,
or figurative numbers, are constructed as follows. We
consider a certain number of rows and place in the first
row the letter a. Then we write the letter b and adhere
to this letter the previous letter a forming the second
row: b, ba. Next, we write the letter c and adhere it to
the terms of the two previous rows forming the third
row: c, ca, cb, cba. The fourth row is obtained by writing
the letter d and adhering it to the terms of all previous
rows: d, da, db, dba dc, dca, dcb, dcba. This procedure is
then repeated as many time as we wish. The figurative
numbers in the table is obtained by counting for each
row, the number of terms with one letter, two letters,
three letters and so one. For the fourth row, one has 1
term with one letter, 3 terms with two letters, 3 terms
with three letters, and just one term with four letters.
In the Table 5, the number of letters in each term is
denoted by a Roman numeral.
Next, Bernoulli demonstrates several properties of the

figurative numbers. One of them is the formula for these
number, given by

n(n− 1) · · · (n− c− 1)
1 · 2 · 3 · c , (11)

where n denotes the row and c the column. These
numbers are understood as the combinations of n objects
taken c at at time.

In the third part, consisting of 24 problems, Bernoulli
deals with the games of chances, which illustrate the
theory of combinations described in the second part.
Problem five is the third problem of the Huygens

treatise, which was solved in the first part but now
Bernoulli solves it by using the theory of combinations.
The problem is to pick up 4 cards from a deck of 40 cards
such that there is one card of each suit. The number of
choosing 4 objects out of 40 is (40·39·38·37)/(1·2·3·4) =
91390. Of these cases there are 10000 that meets the
condition of the problem. Thus there are 10000 favorable
cases and 81390 unfavorable cases.

Problems from 11 to 15 deal with throwing of dice.
The problems from 16 to 24 concern known games: cinq
et neuf, a kind of a roulette, trijaques capriludium or
Bockspiel, bassette, and blind Würffel.

5.1. Limit theorem

The fourth part is the most important part of the
book. In the last chapter of this last part, Bernoulli
demonstrates his fundamental limit theorem. But before
we analyze this theorem, it is useful to describe the
following example given by Bernoulli, which is closely
related to the theorem.

Suppose that a urn has 500 tokens, some of them are
white and some are black. To estimate the number of
tokens of each color, one takes out one token at a time,
putting back the token before another one is taken out.
This procedure is carried out as many times one wishes.
The ratio between the numbers of times a white and
a black token are chosen is equal to the ratio between
the white and black token inside the urn. It clear that
both ratios will not be exactly equal, but we expect
that they become equal as the number of observation
increases.

Next Bernoullli treats the problem that is called
Bernoulli trial. Let us suppose that a certain outcome
of an experiment occurs with probability p and fails
to happen with the complementary probability q =
1 − p. If this experiment is repeated m times, we
expect that the ratio k/m between the number of the
favorable cases k and the total number m of cases is
close to p. The Bernoulli fundamental theorem states
that this is indeed the case and that the ratio k/m
approaches the probability p as the number m increases
indefinitely.

The demonstration given by Bernoulli is as follows.
Let us write p = r/t and q = s/t where r and s
are integers and t = r + s, and consider the binomial
expansion

(r + s)m =
∑
k

Pks
krm−k, (12)

where m is equal to t times an integer n, that is, m = nt.
The summation extends from zero to m, and

Pk = m(m− 1) · · · (m− k + 1)
1 · 2 · 3 · · · k , (13)

with P0 = 1. If we compare the terms in the summation
we see that they increase as k increases until k reaches
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the value ns. From this value of k, they decrease as one
increases k. Thus the largest term in the summation is
the term corresponding to k = ns, namely the term

M = Pnss
nsrnr. (14)

Bernoulli then consider the terms L and Λ that are a
distance n from the left and to the right of the largest,
respectively, which are given by

L = Pns−ns
ns−nrnr+n, (15)

Λ = Pns+ns
ns+nrnr−n. (16)

For sufficient large n the ratio M/L and M/Λ becomes

M

L
=
(
rs+ s

rs− r

)n
, (17)

M

Λ =
(
rs+ r

rs− s

)n
. (18)

Therefore these ratios approaches infinity when n goes
to infinity. Based on these results, Bernoulli argues that
the sum A of the terms between L and Λ, including
these two terms, divided by the remaining terms also
approaches infinity.
If we denote by B the sum of all the terms, that is,

B = (r + s)m, the remaining terms equals B − A. Thus
we may say that A/(B −A) approaches infinity.
Each term appearing in the binomial expansion

divided by the sum B = (r + s)m is the probability
of the occurrence of k favorable cases in m cases. Let
us consider the sum of the probabilities such that k is
between ns−n and ns+n, which equals A/B. But from
the result shown above, the ratio A/(B−A) approaches
infinity which means that A/B approaches the unity.
Therefore, the ratio k/m approaches p as the number of
cases m increases indefinitely.
The fundamental theorem is to be understood as a

probability calculation similar to those related to the
throw of dice. The distinction here is that the number
of dice is very large and for this reason there are
some events whose chance of occurrence approaches the
certainty. But the relevance of the theorem is that it
gives an experimental method to find the probability or
better to measure the probability. Let us suppose one
wants to determine experimentally the probability p of
the ace in a certain die. We throw the die a certain
number m of times and count how many times the ace
appeared. If we denote by k this number, then the ratio
k/m will be an estimate of the probability p. Of course
there is an experimental error, which decreases as one
increases m.

5.2. Concept of probability

In the first four chapters of the fourth part of the
treatise, Bernoulli discusses the concept of probability

and proposes its use in practical problems such as the
applications to civil, moral and economic problems.

Bernoulli starts by establishing the meaning of cer-
tainty and probability, necessity and contingency. He
states that probability is degree of certainty, and differs
from the latter as a part differs from the whole. We
may represent certainty by the unity and probability
by a fraction, which argues for the future existence of
some outcome, and the complementary fraction against
it. Something is necessary if it cannot not exist. A
thing that may not exist is contingent. For Bernoulli,
the things that are certain are said to be understood,
but those that are not certain, we have to conjecture,
which is the measure of its probability. Thus the art
of conjecture, or stochastics, is the art of measuring
probability.

It is interesting to note that Bernoulli considered
the contingency as subjective. As an example he says
that the eclipses are necessary, but before the princi-
ples of astronomy were known, they were contingent
phenomena. On the other hand, the fall of dice or
the future weather, which are contingent, could be
considered necessary if we know all data which determine
the subsequent effects.

As probability is related to conjecture, which is sub-
jective, the probability for Bernoulli is subjective and
depend on our knowledge. In fact, this idea of probability
is reasonable if one wants, as Bernoulli did, to apply
the theory to events that depend on opinions as those
encountered in civil and moral contexts.

6. De Moivre

Jacob Bernoulli was not the only one that published
solutions of the problems posed by Huygens. Among
those who published solutions for some of these problems
we find Montmort and de Moivre. Montmort wrote an
essay where he analyzed the games of chance, which
was published in 1708 [42]. A second enlarged edition
appeared in 1713 [43]. The work contains the theory of
combinations, and calculations of chance in card games
and games of dice, in addition to the solution of various
problems proposed by Huygens.

In 1711, De Moivre published a paper on probabil-
ity [44] which was expanded and became a book called
Doctrine of Chances, published in 1718 [45]. A second
edition appeared in 1738 [46] and a third edition was
published in 1756 [47]. The work of De Moivre was
influenced by both Jacob Bernoulli and Montmort and
he generalized and extended much of their work [8].

In the introduction of the book, De Moivre gives the
meaning of the probability of an event as the number
of chances that the event may happen compared to
the number of all chances by which it may or not
may happen. The basic rule of the theory concerns
independent events. Let p be the number of chances
of the occurrence of a certain event and q the number
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of chances that it does not occur. Analogously, let r
and s the numbers of chances of the occurrence and
not occurrence of another event which is independent
of the previous one. The product of p+ q by r+ s which
is pr + ps + qr + qs contains the chances of all four
combinations of the two events. If two players A and
B play a game such that A wins if the two independent
events happen than the probability that A is the winner
is pr/(pr + ps+ qr + qs).
This rule results in the method which is based on the

expansion of the power of a binomial which in many
cases solves the problem more easily then the method of
combinations, says De Moivre. Suppose that the chance
of a certain event to happen is a and to fail is b. If this is
repeated n times then (a+ b)n will given the chances of
all possible cases. The chance that the event never occurs
is the last term of the expansion, bn, and the chance that
the event happens in at least once is (a+ b)n − bn. The
chance that it fail to happen at most once equals the
sum of the last two terms, nabn−1 − bn, and the chance
that it happens at least twice is (a+ b)n − nabn−1 − bn.
In all cases the corresponding probabilities are obtained
by dividing these results by (a+ b)n.
Let us consider one of the problems treated by De

Moivre, called duration of play. This problem is a
generalization of the fifth problem proposed by Huygens
in his treatise and is understood as a gambler’s ruin
problem. It was considered by Jacob Bernoulli in his
treatise of 1713, and by Montmort in the first and in
second edition of his book, where he stated that Nicolas
Bernoulli sent to him a letter in 1711 with the solution
of the problem. It was considered by De Moivre in his
paper of 1711 and in the three editions of his book.

De Moivre formulates the problem as follows. Two
players A and B have n tokens each and they play a game
in several rounds. When a player wins a round he gets
one token from the loser. The games ends when one of
the player gets all the tokens of the other. The chance
of A and B winning a round is a and b, respectively,
which means that the probabilities are p = a/(a + b)
and q = b/(a + b), respectively. The problem is to find
the probability that the games ends in a certain number
of rounds n+ d.
Let us consider the case n = 2 and d = 1. There are

8 possible outcomes of the game in three rounds, which
are represented by

AAA AAB ABA ABB
BAA BAB BBA BBB

where the letters from left to right indicate who is the
winner in the successive rounds. The probabilities of each
one of these outcomes are contained in the expansion

(p+ q)3 = p3 + 3p2q + 3pq2 + q3. (19)

The player A wins in AAA, AAB, the player A wins in
BBA, BBB, and neither player wins in ABA, ABB,
BAA, BAB. The probabilities of these three events

are, respectively p3 + p2q, pq2 + q3, and 2pq2 + 2p2q.
This last result can be obtained by calculating (a+ b)2,
rejecting the extremes a2 and b2, and dividing the
result by (a+ b)2.
Let us consider the case n = 2 and d = 2. Now there

16 possible outcomes which are represented by
AAAA AAAB AABA AABB
ABAA ABAB ABBA ABBB
BAAA BAAB BABA BABB
BBAA BBAB BBBA BBBB

The probabilities of these outcomes are contained in the
expression

(p+ q)4 = p4 + 4p3q + 6p2q2 + 3pq3 + q4. (20)

There is no winner in cases ABAB, ABBA, BAAB,
BABA, BBAA, which corresponds to the probability
4p2q2. This result can be obtained by using the rules.
Raise (a+b) to the second power and reject the extremes
a2 and b2. Multiply the result by (a + b)2, which gives
2a3b + 4a2b2 + 2ab3, and the extremes of this last
expression. Divide the result by (a + b)4 to obtain
4a2b2/(a+ b)4.
The rules used above are particular case of the general

rule put forward by De Moivre, which is stated as
follows [7]. Let consider first the case where d is even,
that is, d = 2`. Calculate (p + q)n an reject the two
terms pn and qn. Multiply the result by (p + q)2 and
reject the extreme terms. Repeat the last procedure
` − 1 times. Finally divide the result by (a + b)n+2`.
If d is odd, we first determine ` by d = 2` + 1 and use
the same rule, which amounts to say that the desired
probability corresponding to d = 2` + 1 is the same as
that corresponding to d = 2`.

6.1. Approximation to the binomial expansion

In the second and third editions of his Doctrine of
Chances, De Moivre added a section where he presented
an approximation for the terms of a binomial expansion
which leaded him to an expression which we recognize
as the normal curve. The added section was essentially a
translation from Latin of a note he had written earlier,
which had appeared as a printed pamphlet in 1733 [48–
50]. In this note, De Moivre considers the middle term of
the expansion of (1+1)n which is n!/[(n/2)!]2. He states
that this term divided by 2n is

2
B
√
n
, (21)

where

lnB = 1− 1
12 + 1

360 −
1

1260 + 1
1680 . . . (22)

To reach this expression, he used an asymptotic
expansion for the factorial that appeared as a sup-
plement of a book he published in 1730 [7]. In the
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supplement, De Moivre arrives at a result for ln(m−1)!,
which we write in the form(

m− 1
2

)
lnm−m+ a+ b, (23)

where

a = 1
12m −

1
360m3 + 1

1260m5 −
1

1680m7 + . . . , (24)

b = 1− 1
12 + 1

360 −
1

1260 + 1
1680 . . . . (25)

For large values of m, we may neglect a but not b. De
Moivre obtained a numerical value for b, but he became
aware of a similar asymptotic expansion by Stirling,
published in 1730 [51]. The Stirling series for ln(z −
1/2) is

z ln z − z + ln
√

2π − 1
2 · 12z + 7

8 · 360z3

− 31
32 · 1260z5 + . . . . (26)

Comparing the two expressions for the logarithm of the
factorials, De Moivre concludes that b = ln

√
2π and that

B =
√

2π. The expression (21) becomes

2√
2πn

. (27)

Next, De Moivre determines the term distant from the
middle term by an interval `, which is

n!
(n/2 + `)!(n/2− `)! . (28)

Using the above approximation for the factorial he
arrives at the following expression

e−2`2/n, (29)

for the ratio between the above term and the middle
term. Although De Moivre understood this result as an
expression of a geometrical curve, one cannot draw the
conclusion that he understood it as a probability density
function [10].
De Moivre added the general result valid for the case

of the expansion of (a + b)n. In this case the maximum
term divided by (a+ b)n is

a+ b√
2πabn

, (30)

and the term distant from from the maximum by an
interval `, divided by the maximum term, is

e−(a+b)2`2/2abn. (31)

They reduce to the results above when a = b = 1.

7. Daniel Bernoulli

The contribution of Daniel Bernoulli to the theory of
probability is contained in several papers where he dealt
with games of chance, astronomy, theory of errors, and
the urn models [52]. One of the problems he treated was
the so called Petersburg problem. He also was interested
in the economic and demographic statistics such as those
related to the smallpox and inoculation, duration of
marriages and relative frequency of male and female
births.
His investigations of the urn models be identified in

retrospect as a Markov process. However, his equations
involved only the evolution of the averages on the
number of ball in each urn and not the probability itself.
The evolution of the probability was later considered by
Laplace. It is worth mentioning in addition that a similar
urn model was used by Ehrenfest in 1907 to illustrate
the approach to equilibrium of a thermodynamic sys-
tem [53].
The urn model was introduced and discussed by

Bernoulli in paper published in 1770 [52]. There are
several urns each one with the same number n of balls
of different colors. An operation which Bernoulli calls a
permutation, in fact a cyclic permutation, is carried as
follows. A ball is taken out at random from each one of
the urns. After that, the ball taken from the first urn is
placed on the second urn, that taken from the second is
place on the third, and so on until the ball taken from
the last urn is placed on the first urn. This operation is
repeated several times. The number of balls of each color
is n and the number of different colors is equal to the
number of urns. Initially the balls in each urn have the
same color, the first urn with all balls of the white color.
One wishes to determine the average number of white
balls in each urn after a certain number of operations.
Bernoulli first solves the case of two urns by determin-

ing the average number x of white balls in the first urn.
He solves the problem for a small number of operations
and then generalizes the result for r operations, which is

x = n

2 (1 +mr), (32)

where m = 1−2/n. The average number y of white balls
in the second urn is

y = n

2 (1−mr) (33)

because x+ y = n.
For the case of three urns, the balls are of three

colors one of them being white. Bernoulli determines the
numbers x, y, and z of white balls in each urn by writing
the solution for small number of operations. He writes
down explicit solutions for x, y, and z up to r = 9.
He then perceives that the expressions of x, y, and z
contains terms that are similar to those of the expansion
of (a + b)r, where a = 1 − 1/n and b = 1/n. In modern

DOI: https://doi.org/10.1590/1806-9126-RBEF-2022-0087 Revista Brasileira de Ensino de Física, vol. 44, e20220087, 2022



e20220087-12 Structure of the theories of probability

notation the expansion is

(a+ b)r =
r∑
j=0

r!
(r − j)!j!a

r−jbj . (34)

The solution for x contains the terms of this expansion
corresponding to j equal to a multiple of 3, that is,

x = n
∑
j

r!
(r − j)!j!a

r−jbj , (35)

where the summation is over j equal to 0, 3, 6, . . .. The
same expressions is valid for y and z except that the
summation is over j = 1, 4, 7, . . . and j = 2, 5, 8, . . . ,
respectively.
For the case of two urns the solution for x is also given

by (35) except that the summation is over j even, that
is, j = 0, 2, 4, . . . The solution for y, the expression is the
same, except that the sum is over j = 1, 3, 5, . . . To see
that this general solution agrees with x and y given by
(32) and (33), we use the results a−b = m and a+b = 1
to write (32) and (33) in the form

x = n
1
2 [(a+ b)r + (a− b)r], (36)

y = n
1
2 [(a+ b)r − (a− b)r]. (37)

It is clear that these expressions agree with the general
solution.
After that, Bernoulli used a continuous approach,

which is appropriate for large values of n. For the case
of two urns, he writes the variation in x as

dx = −x
n
dr + n− x

n
dr, (38)

where the first term corresponds to the removing of
a white ball whereas the second corresponds to the
introducing of a white ball. The solution is obtained by
writing this equation in the form

dx

2x− n = −dr
n
, (39)

from which follows the solution

x = n

2 (1 + e−2r/n). (40)

The continuous solution for the case of three urns, the
equations for the variation in the average numbers of
white balls in the first and second urns are

dx = −x
n
dr + z

n
dr, (41)

dy = − y
n
dr + x

n
dr. (42)

The equation for z is not necessary because
z = n− x− y. Bernoulli solves this set of differential

equations and finds

x = n

3 + 2n
3 cos r

√
3

2n e−3r/2n, (43)

y = n

3 + n√
3

sin r
√

3
2n e−3r/2n − n

3 cos r
√

3
2n e−3r/2n.

(44)

After an infinite number r of operations, the average
number of white balls in each urn reaches the asymptotic
value n/3.
It is worth mentioning that Bernoulli makes an anal-

ogy of the urn model with the mixing of two fluids. If the
number of balls is large enough the urns may be under-
stood as vessels containing distinct fluids. The transfer
of a ball from one urn to the other corresponds to placing
a communication between one vessel to another.

8. Lagrange

Lagrange is most remembered for his fundamental
treatise on analytical mechanics and for his works on
mathematical analysis. He also published some papers
on the theory of probability. We examine here the one
related to the theory of errors and the multinomial
distribution published in 1776 [54]. The paper is written
in the form of ten problems.
Let us consider an experiment with three possible

outcomes occurring with chances a, b, and c. The exper-
iment is repeated n times and one wishes to determine
the probability that each one of the three outcomes occur
with a certain number of times which we denote by i, j,
and k, with i+j+k = n. Next we consider the expansion

(a+ b+ c)n =
∑
ijk

n!
i!j!k!a

ibjck, (45)

where the summation over i, j, and k is carried out with
the restriction i + j + k = n. The desired probability is
identified with each one of the terms in the expansion,
divided by (a+b+c)n. We are using the modern notation
n! for the factorial and a compact form in terms of the
capital sigma letter, which were not used by Lagrange.

Lagrange treats the case where the outcomes are the
errors of an observation. The errors are zero with chance
a and +1 with chance b and −1 with equal chance c = b.
After n repetition, the total error will be m = j−k. The
problem is to determine the probability of the occurrence
of the error m after n repetitions. To solve this problem
Lagrange starts by writing

(a+ bx+ bx−1)n =
∑
ijk

n!
i!j!k!a

ibj+kxm, (46)

where m = j − k. The desired probability is related to
the coefficient of xm which is given by

A =
∑
ijk

n!
i!j!k!a

ibj+k, (47)
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where the sum is restricted to i+j+k = n and j−k = m,
and can be written in the form

A =
∑
j

n!
(n+m− 2j)!j!(j −m)!a

n+m−2jb2j−m, (48)

where the summation in j is restricted to j ≥ m and
j ≤ (n+m)/2. Or

A =
∑
`

n!
(n−m− 2`)!(`+m)!`!a

n−m−2`b2`+m, (49)

where the summation in ` is restricted to ` ≥ 0 and
` ≤ (n −m)/2. When m = 0, which corresponds to no
errors,

A =
∑
j

n!
(n− 2j)!j!j!a

n−2jb2j , (50)

where the summation in j is restricted to j ≥ 0 and
j ≤ n/2. In a explicit form written by Lagrange

A = an + n(n− 1)an−2b2 + n(n− 1)(n− 2)(n− 3)
2 · 2 an−4b4

+ n(n− 1)(n− 2)(n− 3)(n− 4(n− 5)
2 · 3 · 2 · 3 an−6b6 + . . . .

(51)

Lagrange generalizes the problem as follows. The
errors are p, q, r, s, . . ., and the chances are a, b, c, d, . . .,
respectively. On this case we have to consider the
expansion of

(axp + bxq + cxr + dxs + · · · )n, (52)

in powers of x. The probability of the sum of the errors
m is the coefficient of xm in the expansion, divided
by (a + b + c + d + . . .)n. The seventh problem that
Lagrange proposes to solve corresponds to the case
where the errors are −α, . . . ,−2,−1, 0, 1, 2, . . . , β and
the probabilities are all equal. This problem was the
same as that proposed by de Moivre and continued by
Simpson [7].
In the eighth problem, the errors are
−α, . . . ,−2,−1, 0, 1, 2, . . . , α, which occurs with chances
1, 2, . . . , α, α + 1, α, . . . , 2, 1. In this case we have to
consider the expansion of the n power of

x−α + 2x−α+1 + . . .+ (α+ 1) + αx+ . . .+ 2xα−1 + xα,
(53)

in powers of x, and it is required to find the coefficient
of xm. This expression can be simplified and written in
the form

x−α(xα+1 − 1)2

(1− x)2 . (54)

Therefore, the desired coefficient is obtained from the
expansion of (xα+1 − 1)/(1− x) raised to the power 2n.

In the final part, Lagrange treats the case where the
errors are continuous in a certain interval. Denoting by
` the errors, then the summation above becomes the
integral ∫ α

−α
p(`)x`d`, (55)

and we seek for the z power of x in the integral above
raised to the n power. Lagrange show that the n power
of this integral can be written as∫ nα

−nα
fxzdz, (56)

where f is a function of z and is the desired coefficient
of xz.

9. Laplace

Laplace is well known for his superlative contributions
to physical sciences which are exposed in his treatise
on celestial mechanics. Laplace also gave a relevant
contribution to probability which was presented in his
treatise on analytical theory of probability published in
1812 [13]. A second edition was published in 1814 and a
third edition in 1820. Laplace also wrote a philosophical
essay on probability, published in 1814 [14, 15], where
he presented his concept of probability and causal
determinism. The essay became an introduction to the
second and third editions of the treatise.

The treatise on probability is divided in two books
and is largely based on his papers on the subject
which he published for about fifteen years starting from
1774. In the first book, Laplace is concerned with the
development of some mathematical techniques that he
used in book two. In the first part of the first book,
he develops the method of generating function. If fn
a function of n, then the generating function of fn is
defined by

u =
∞∑
n=0

fnt
n. (57)

A similar definition is made for the case of two variables.
In the second part of the first book he develops

approximative methods for the integration of functions
containing factors raised to higher powers. An example
is the integral ∫

ydx, (58)

where y = φun with φ and u some functions of x and n a
certain power. It is assumed that y has a maximum value
in the interval of integration. Assuming that y = Y e−t

2

where t is a function of x and Y is the maximum value
of y, then the integral becomes

Y

∫
e−t

2 dx

dt
dt. (59)
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We remark that throughout the treatise, Laplace uses
the letter c and not e as we are doing. Assuming that

x = B0 +B1t+B2t
2 +B3t

3 +B4t
4 +B5t

5 + . . . , (60)

then the integral becomes

Y

∫
e−t

2
(B1 + 2B2t+ 3B3t

2 + 4B4t
3 + 5B5t

4 + . . . )dt.
(61)

Supposing that this integral extends from minus infinity
to infinity, the terms corresponding to odd power of t
vanishes and the integration of the other terms gives

Y
√
π

(
B1 + 3

2B3 + 5 · 3
22 B5t

4 + . . .

)
. (62)

Laplace shows the following result∫
e−t

2
dt =

√
π

2 , (63)

where the integral extends from zero to infinity. The
demonstration of this result starts by considering the
double integral∫ ∫

e−s(1+x2)dsdx =
∫

dx

1 + x2 = π

2 , (64)

where both variable take values from zero to infinity,
and we have integrated first in s and then in x. Now one
defines t =

√
sx and change variable from x to t. The

double integral becomes∫ ∫
e−s−t

2 ds√
s
dt =

∫
e−s

ds√
s

∫
e−t

2
dt. (65)

The first integral on the right-hand side is equal to
two times the second integral. Therefore, the double
integral, which is equal to π/2, is equal to two times the
integral that we wish to determine, from which follows
the equality (63).
Next, Laplace shows the following result∫

cos rxe−a
2x2
dx =

√
π

2a e
−r2/4a2

, (66)

where the variable x extends from zero to infinity. The
integral is equal to

1
2

∫
e−a

2x2+irxdx+ 1
2

∫
e−ax

2−irxdx. (67)

We are using the modern notation i where Laplace uses√
−1. Making the change of variables t = ax− ir/2a in

the first and t = ax − ir/2a in the second, the integral
becomes

1
a
e−r

2/4a2
∫
e−t

2
dt =

√
π

2a e
−r2/4a2

, (68)

where we have used the result (63).

It should be noted that the last integral involves
values imaginaries of the variable t. To circumvent
this inconvenience, Laplace uses a distinct reasoning to
justify the correctness of the result (66). Denoting the
integral in (66) by y and deriving it with respect to r,
we find

dy

dr
= − ry

2a2 , (69)

where we have performed in integration by parts. The
integration of this equation gives

y = Be−r
2/4a2

. (70)

The constant of integration is found by considering that
when r = 0, the integral in (66) equals

√
π/2a by the

use of (63).
In the second book, Laplace considers several prob-

lems in probability. We start with the problems of the
division of a stake known as the problem of points,
treated in the chapter 2. Two players A and B need to
win n andm rounds, respectively, to win the game. Their
probabilities of winning a round is p and q, respectively,
with p + q = 1. Laplace solves the problem by means
of the generating function. Let us denote by Pnm the
probability that player A will reach first the number of
points n necessary for winning the game. In the next
round, if he wins the round the probability becomes
Pn−1,m, and if he loses, it becomes Pn,m−1. Since his
chance of winning the next round is p and of losing is q,
then

Pnm = pPn−1,m + qPn,m−1, (71)

where n,m = 0, 1, 2, . . .. The following conditions should
be taken into account: Pn0 = 0 because when m = 0,
the player B wins the game and A loses, and P0m = 1
because in this case A wins the game. The generating
function by

g =
∑
nm

Pnmx
nym. (72)

Multiplying (71) by xnym and summing in n and m we
find an equation such that the left hand side equals g
and the right hand side contain two summations. In one
of them we change the summation variable from n to
n + 1 and in the other we change from m to m + 1.
By this procedure, the right hand side becomes equal to
f + pxg + qyg from which we get

g = f

1− px− qy , (73)

where f is a function of y only. To determine f , we
observe that when x = 0 the generating function
becomes y/(1− y) because P0m = 1. Therefore,

f = y(1− qy)
1− y , (74)
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and

g = y(1− qy)
(1− y)(1− px− qy) . (75)

Expanding g in power of x,

g = y

1− y
∑
n

pnxn

(1− qy)n . (76)

Expanding again in powers of y, we find the coefficient
of xmym to be

Pnm =
m−1∑
j=0

n(n+ 1) · · · (n+ j − 1)
1 · 2 · 3 · · · j . (77)

In chapter 3 of the second book Laplace considers the
problem related to the Bernoulli fundamental theorem.
In a certain trial, an event occurs with a certain probabil-
ity p and fails with probability q = 1−p. The probability
that the events occur j times in n trials is

Pjk = n!
j!k!p

jqk, (78)

where k = n − j. The problem is to calculate the
probability that the number of events occurring in n
trials lie within a certain interval.
Laplace performed the calculation by considering that

the number of trial is large enough as to use the formula

n! = nn+1/2e−n
√

2π
(

1 + 1
12n + . . .

)
. (79)

Using this approximation one finds

Pjk = 1√
2π

nn+1/2pjqk

jj+1/2kk+1/2 . (80)

The largest value of the terms Pjk, is the one corre-
sponding to j equal to the integer as nearly as possible
equal to pn. Defining m as the deviation of j from this
number, and expanding Pjk around m = 0 one finds

Pjk = e−m
2/2pqn

√
2πpqn

. (81)

Now we determine the probability that j is within the
interval between pn − ` and pn + `, or the m is in the
interval between −` and `. Thus we have to sum the
expression from m = −` until m = `. Laplace replaces
the sum by an integral plus a correction term

2√
π

∫ τ

0
e−t

2
dt+ e−τ

2

√
2πpqn

, (82)

where τ = `/
√

2pqn. Thus the above expression gives
the probability that the fraction of successful events in
n trials is between

p− τ
√

2pq/n and p+ τ
√

2pq/n. (83)

Taking into account that the expression (82) approaches
the unity even for moderate values of τ , we may conclude
that the deviation of the fraction of successful events
from p is of the order 1/

√
n.

In the same chapter 3 of the second book, Laplace
treats the following problems of urns. Let us consider
two urns A and B each one with n balls of two colors,
white and black, with the same number of balls of each
color. A ball is drawn from each urn and placed in the
other urn. The operation is repeated a certain number
of times and one asks for the probability that the urn A
has ` white balls after r number of operations.
Let P`r be this probability. Laplace argues that this

probability fulfills the equation

P`,r+1 = a2
`+1P`+1,r + 2a`b`P`r + b2`−1P`−1,r, (84)

where a` = `/n, and b` = 1 − `/n. This equation
gives the probability at any value of r if it is known
at r = 0. Laplace transforms this equation into a
partial differential equation by considering that n is
large. To this end, he defines the variables x and t by
` = (n+x

√
n)/2 and r = nt. Performing the expansion of

in 1/n and neglecting terms of order 1/n2, the equation
for U(x, t) = P`r becomes(

dU

dt

)
= 2U + 2x

(
dU

dx

)
+
(
d2U

dx2

)
. (85)

To solve this equation, Laplace uses the transforma-
tion

U =
∫
e−xzφdz, (86)

which he had introduced in 1773, known today as the
Laplace transformation. After deriving an equation for
φ and solving it, he finds the following expression for U ,

U = 2√
nπ(1 + β)

e−x
2/(1+β), (87)

where β = β0e
−4t. That this is ideed a solution can

be verified by a direct substitution in the differential
equation for U . When t becomes infinity, U approaches
the value

U = 2√
nπ

e−x
2
. (88)

Chapter 4 of the second book is the most important
in the Laplace work [7]. It deals with the probability
of errors in the mean of the results obtaining from
a great number of observations. He shows that the
distribution of the mean is normal with a standard
deviation proportional to the inverse of the square root
of the number of ... n. He also deals with the method of
least squares.

Let us suppose that the possible errors of an observa-
tion are a1, a2, . . . occurring with probabilities pi. One
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wishes to determine the probability distribution of the
sum errors in n observations. The desired probability is
obtained by determining the n-th power of

X = p1e
ika1 + p2e

ika2 + . . . , (89)

and finding the coefficient of eik` of Xn, where ` denotes
the sum of the errors in n trails.
Laplace considers the errors to be −s,−s+ 1, . . . , s−

1, s occurring with the same probability equal to 1/b
where b = 2s+ 1. We have to consider

X = 1
b

(e−iks + . . .+ eik(s−1) + eiks), (90)

which is equal to

X = sin kb/2
b sin k/2 . (91)

To determine the coefficient of eik` in this expression
Laplace multiply X by e−ik`/π and integrate in k from
zero to π. By this procedure all terms will vanish except
the one we want. Denoting by P` this coefficient

P` = 1
π

∫
e−ik`Xndk = 1

π

∫
cos k`Xndk. (92)

Since X has a maximum at k = 0, then Xn is very
sharped at k = 0 which means that the integral comes
from its values around k = 0. The expansion ofX around
k = 0 gives

X = e−k
2s(s+1)/6, (93)

and the integral becomes

P` = 1
π

∫
cos k` e−nk

2s(s+1)/6dk. (94)

Using the result (66) one reaches the result

P` =
√

3e−3`2/2ns(s+1)√
2πns(s+ 1)

. (95)

The distribution of errors (95) became known as
normal distribution and sometimes as Gaussian distri-
bution since Gauss also considered it. Pearson proposed
to call it Laplace-Gaussian curve to avoid the word
normal, which would imply that the other curves are
abnormal [55].

The method used by Laplace to reach the distribution
(95) is explained in moder terminology as follows. First
one construct the characteristic function related to one
trial, which is the Fourier transform of the probability
distribution, given by (90). The distribution of the sum
of errors is the probability whose characteristic function
is Xn.

In the philosophical essay on probability, Laplace
stated that the theory of chance consists in reducing
all the events of the same kind to a certain number of

cases equally possible, and in determining the number of
cases favorable to the event whose probability is sought.
The ratio of this number to that of all cases possible is
the measure of probability. The first part corresponds
to the construction of a sample space whose elementary
events have equal probability. The second part gives
the rule to determine the probability of an event by
considering how many elementary events compose that
event. The word measure here is not used in the sense
of physical measurement but simply as numerical value.

10. Poisson

Poisson made contributions to several areas of the
physical sciences and also to the theory of probability.
His major work on this field was a book published in
1837 [4]. A large part of the book is a treatise on
probability with emphasis on events with a large number
of trials. The other part deals with the application of the
theory to the judgment in criminal and civil matters.
The definitions and rules of the theory are stated by

Poisson as follows. (1) Probability of an event is the
motif that we have to believe that it will take place
or takes place. (2) The measure of the probability of
an event is the ratio of the number of favorable cases
and the total number of cases. If an urn has four white
balls and six black balls and the other has ten white
balls and fifteen black balls, then the probability of
white balls is the same for both urns and equal 2/5.
(3) The sum of the probability p of an event E and
the probability q of the contrary event F is equal to
the unity, p + q = 1. (4) The certitude of an event is
represented by a probability equal to the unity. (5) If
the probabilities of two independent events are p and p′,
then the probability of their concurrence or of an event
composed by the two events is equal to the product pp′.
(7) The probability that an event E occurs m times in
a row is pm. (8) The probability that an event E occurs
at least once in m trials is 1− (1− p)n. (9) If two events
E and E’ are not independent, that is, the arrival of an
event influences the other, then the probability of the
compound events E and E’ is equal to the product pp′
where p′ is the probability that if E has arrived than E’
will come next. (10) If an event takes place in several
distinct and independent ways the total probability is
the sum of the probabilities of the ways of occurrence.
If E and F are contrary events, occurring with prob-

abilities p and q, with p + q = 1, then the probability
that the occurrence of m events E and n events F in any
order is

µ!
m!n!p

mqn, (96)

where µ = m + n and we are using the moder notation
for the factorial. They correspond to the terms of the
development of (p + q)µ in powers of p and q. The
generalization for three independent events E1, E2, and
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E3 occurring with probabilities p1, p2, and p3

µ

n1!n2!n3
pn1

1 pn2
2 pn3

3 , (97)

which is the probability of the occurrence of n1, n2,
and n3 times the events E1, E2, and E3, respectively,
independent of the order. A similar expression is valid
for more than three independent events, and we are using
the modern notation for the factorial.
If in an event E one gets a quantity g, in an event E’ a

quantity g′ and so on, the mathematical expectation is

gp+ g′p′ + g′′p′′ + . . . , (98)

where p, p′, and son on are the probabilities of the events.
To find the asymptotic expansion of the binomial

distribution

U = µ!
m!n!p

mqn. (99)

Poisson uses the expansion

n! = nne−n
√

2πn
(

1 + 1
12n + 1

288n2 + . . .

)
. (100)

Using this expansion, one finds the following approxima-
tion for U

U =
(pµ
m

)m (qµ
n

)n√ µ

2πmn, (101)

valid for large values of n, m, and µ. Poisson remarks
that the maximum value of the probability U occurs
when p = m/µ and q = n/µ.
Defining g such that

m = pµ+ g
√
pqµ, n = qµ− g√pqµ, (102)

we reach the following expression for U

U = e−g
2/2

√
2πpqµ

. (103)

In the derivation of of the asymptotic expansion for
the binomial distribution, it was assumed that p and q
are not small quantities. Poisson then consider the case
were one of them, say q, is very small so that ω = qµ
cannot be considered a large quantity. Accordingly, we
consider n finite and µ large so that n/µ is a small
fraction. Thus, writing

µ!
(µ− n)! = µ(µ− 1) · · · (µ− n+ 1), (104)

we see that it can be approximated by µn and the
binomial distribution (99) becomes

U = ωn

n! e
−ω, (105)

where, within the same approximation, we have replace
pm = (1 − q)m by e−ω. This is known as the Poisson

distribution. In fact, Poisson derives the distribution in
its cumulative form

P = (1 + ω + ω2

2! + ω3

3! + · · ·+ ωn

n! ) e−ω. (106)

Let us consider a series of trials each of which an event
succeeds with probability p and fails with probability q
and let

X = peix + qe−ix. (107)

Poisson writes
√
−1 for the imaginary unity. In a certain

number µ of trials, the probability U of the occurrence
m successful events and n falling events is the coefficient
of eix(m−n) in the expansion of Xµ. It is obtained by

U = 1
2π

∫ π

−π
Xµe−ix(m−n)dx. (108)

Expressing X in the form X = Y eiy, where

Y 2 = 1− 4pq sin2 x, (109)

and tan y = (p− q) tan x, then

U = 1
2π

∫ π

−π
Y µ cos[µy − x(m− n)]dx. (110)

When µ is large, Y is very small except for small values
of x. Thus we may use the approximation lnY = −2pqx2

and the integral above becomes

U = 1
2π

∫
e−2pqµx2

cos gxdx, (111)

where we have also approximated y in the argument of
the cosine by y = (p− q)x and we used the abbreviation
g = µ(p−q)− (m−n). The integration is extended from
minus infinity to plus infinity because the integrand is
negligible outside the interval where x is small. Carrying
out the integral we find

U = e−g
2/2(4pqµ)
√

2π4pqµ
. (112)

Defining k2 = 2pq

U = e−g
2/(4k2µ)√
π4k2µ

. (113)

11. Curve of Errors

The method of least squares is a well known and widely
used technique in statistical analysis. It consists in
minimizing the square of the difference between the
observed value and the value provided by a model.
The method was invented by Legendre and presented
in 1805 [56] as an appendix to his book concerning the
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determination of the orbits of comets. Legendre writes
the errors as

E = a+ bx+ cy + . . . , (114)

E′ = a′ + b′x+ c′y + . . . , (115)

where x, y, . . . are unknown quantities and their coeffi-
cients in all equations are known. To find the unknown
quantities, Legendre proposes to minimize the square of
the errors

E2 + E′2 + . . . , (116)

by varying the unknown quantities. This is obtained by
setting to zero the derivative of this expression with
respect to the unknown quantities, leading to a set of
linear equations to be solved.
A similar approach was used by Gauss to find the

approximate orbit of a planet from observed data.
His approach appeared in his book on the motion of
bodies around the sun, published in 1809 [57, 58]. The
distinction feature of the Gauss approach was an explicit
use of a probabilistic reasoning [10]. He regarded the
errors ∆,∆′, . . . as distributed according to the same
distribution ϕ(∆), ϕ(∆′), . . . and sought to maximize the
product

Ω = ϕ(∆)ϕ(∆′) . . . . (117)

Gauss then argued that distribution should be

h√
π
e−h

2∆2
, (118)

which as we have seen above had been considered by
Laplace. The derivation of the error distribution (118)
was also provided by Adrain in 1808 using a reasoning
similar to that of Gauss [11].
In a publication of 1823, [59–63] Gauss improved the

method of least squares and provided a new demonstra-
tion of the distribution of errors (118). The paper starts
by presenting some preliminary concepts concerning con-
tinuous distributions including that of the probability
density function. Let ϕ(x)dx denote the probability that
an error made on certain observation lies between x and
x+ dx. The integral ∫ b

a

ϕ(x)dx, (119)

represents the probability that the error lies between a
and b. The value of the integral taken from minus infinity
to plus infinity equals the unity.
The mean value of x is given by the integral

k =
∫
xϕ(x)dx. (120)

It vanishes when the negative and positive errors are
equally likely because in this case ϕ(−x) = ϕ(x). When

k is positive, there is some cause of error that produce
positive errors with greater likelihood then negative
errors. The mean value of x squared is

m2 =
∫
x2ϕ(x)dx, (121)

where m is called the mean error. This quantity is
more appropriate to quantify the uncertainty of the
observations.

As an example, let ϕ(x) = 1/2a, a constant between
−a and a, and zero otherwise. Then m = a/

√
3, and

µ = λ/
√

3. As a second example, ϕ(x) = (a − x)/a2

for x between zero and a, and ϕ(x) = (a + x)/a2 for
x between −a and zero. In this case m = a/

√
6 and

µ = λ
√

2/3− λ2/6. If

ϕ(x) = e−x
2/h2

h
√
π

, (122)

then m = h/
√

2. Defining

Θ(z) = 2√
π

∫ z

0
e−x

2
dx, (123)

then µ = Θ(λ/
√

2).
Given a function U of the quantities V1, V2, . . ., we

wish to find the mean error M in the estimative of U
when instead of the true values of these quantities we
use the observed values having mean errors m1,m2, . . .
Let us denote by e1, e2, . . . the errors in the observed
values of V1, V2, . . .. The resulting error is represented
by

E =
∑
i

λiei, (124)

where λi = dU/dVi, from which follows that the mean
value of E is zero. Now, M2 is the mean of∑

ij

λiλjeiej , (125)

so that M2 is the mean value of∑
λ2
i e

2
i , (126)

because the mean of the cross terms vanish.
To reach the distribution (118), Gauss assumed that

the best estimator of a certain quantity V is obtained
by maximization of the probability

ϕ(∆)ϕ(∆′)ϕ(∆′′) . . . , (127)

where ∆ = M − V,∆′ = M ′ − V,∆′′ = M ′′ − V, . . .,
and M,M ′,M ′′, . . . are the observed values of V . The
maximization of the above expression gives

ϕ′(∆)
ϕ(∆) + ϕ′(∆′)

ϕ(∆′) + ϕ′(∆′′)
ϕ(∆′′) + . . . = 0. (128)
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Comparing this expression with the arithmetic mean of
the errors,

∆ + ∆′ + ∆′′ + . . . = 0. (129)

Gauss concludes that ϕ′/ϕ should be proportional to
∆ from which follows, after integration, that ϕ is
proportional to e−h2∆2 , leading to the expression (118).
In 1850, Herschel sketched a derivation of (118)

by assuming that the error distribution should be a
function of the sum of the squares of the errors. This
derivation appeared in an account of the Quetelet book
on the application of the theory of probability to moral
and political sciences that he wrote for the Edinburgh
Review [64]. Herschel argues by considering the free fall
of a ball from a certain height from a point situated
vertically above a mark on the ground. The deviation
from the mark is the error and the probability of the
error should be a function of the sum of squares of
the deviations determined by a rectangular frame of
references.
Ellis provided in 1850 [65] a mathematical demonstra-

tion based on the Herschel reasoning as follows. Denoting
the error by r, then using a rectangular coordinate we
may write r2 = x2 + y2. Thus the error function is
expressed by f(r2) = f(x2 + y2). Assuming that the
errors are independent of the direction, the function f
has to satisfy the equation

f(x2)f(y2) = f(0)f(x2 + y2), (130)

the solution of which is f(x2) proportional to emx
2 ,

where m is a constant, from which follows

f = h√
π
e−h

2x2
. (131)

In 1860 [66], Maxwell introduced the distribution of
the velocity of the molecules of a gas. In his demonstra-
tion, he used a reasoning similar to that given above. He
assumes that the rectangular components x, y, and z of
the velocity of a particle are statistically independent so
that probability density function related to x, y, and z
is f(x)f(y)f(z). As the direction of the coordinates are
arbitrary the distribution must depends on the distance
from the origin, that is,

f(x)f(y)f(z) = φ(x2 + y2 + z2). (132)

The solution of this equation is f(x) proportional to
eAx

2 . Writing A = −1/α2 and after normalization,
Maxwell reaches the result

f(x) = 1
α
√
π
e−x

2/α2
. (133)

From this expression, Maxwell derives the probability
density function related to the velocity v, which is the
square root of x2 + y2 + z2,

4v2

α3√π
e−v

2/α2
. (134)

According to Hald [11], “There is nothing new in
Maxwell’s argument” but “it is the application to a new
field that is revolutionary”.
The work that exerted a great influence on Maxwell

on the development of the velocity distribution was the
reveiw of Quetelet book by Herschel that we mentioned
above [67]. The account of Quetelet book by Herschel
provided the analogy that Maxwell needed [68]. “What
had occurred to no-one before Maxwell was that statis-
tical laws could also apply to physical processes” [68].

12. Central Limit Theorem

Laplace showed that the probability distribution related
to a certain number n of independent trials approaches a
normal distribution when n is large. The demonstration
was presented in his treatise in probability, as shown
above, and before that in a publication of 1810 [69].
It was improved by Poisson in 1824 and 1829 and
appeared in his treatise of probability of 1837, as shown
above. After that, it was considered by Bessel in 1838, by
Ellis in 1844, and by Cauchy in 1853 [11]. The Cauchy
demonstration is based on the use of the characteristic
function as did Laplace and Poisson.

In the period that include the last decades of the
nineteenth century and the first decade of the twentieth
century the problem was considered by Chebychev and
by Markov by the method of moments and by Lya-
punov by means of characteristic function. After this
period, the theorem was discussed by von Mises, Pólya,
Lindeberg, Lévy, Cramér, Kolmogorov, Khinchin and
Feller [11]. Pólya called the theorem the central limit
theorem because it is of central importance.

Let us consider a random variable ξ with a probability
distribution ρ(ξ). The characteristic function is defined
by the integral

f(k) =
∫
eikξρ(ξ)dξ, (135)

or by a summation if the random variable is discrete.
The moments µ` and the cumulants κ` of the distri-

bution, if they exist, can be obtained from the expansion

f(k) =
∑
`

µ`
`! (ik)`, (136)

ln f(k) =
∑
`

κ`
`! (ik)`. (137)

Let us denote by ξ1, ξ2, . . . , ξn independent random
variables with the same probability distribution ρ(ξ).
The distribution is symmetric which means that the odd
moments and the odd cumulants vanish. We wish to
determine the probability distribution of the sum of the
random variables

x = ξ1 + ξ2 + . . .+ ξn. (138)
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Figure 6: Three ways of randomly drawing a chord on a circle. (a) Two points on the circumference are chosen at random. (b)
One radius is chose and random and one point of the radius is randomly chosen to place the middle point of the chord. (c) A point
inside the circle is chosen at random to be the middle point of the chord.

Since the random variables are independent, the charac-
teristic functions is

F (k) = [f(k)]n, (139)

and the desired distribution of the sum (138) is

1
2π

∫
F (k)e−ixkdk. (140)

From (139), we see that the cumulants of this distribu-
tion are n times the cumulants κ`.

Let us consider now the random variable z = x/
√
n.

The probability of this distribution is

P (z) =
√
n

2π

∫
F (k)e−izk

√
ndk. (141)

Changing the variable of integration k = w
√
n,

P (z) = 1
2π

∫
Φ(w)e−izwdw, (142)

where Φ(w) = F (w/
√
n) is the characteristic function

related to the distribution P (z).
Let us denote by σ` the cumulants associated to Φ(w).

Taking into account that Φ(w) = F (w/
√
n) and that the

cumulants associated to F (k) are nκ`, we conclude that
σ` = (nκ`)/n`/2. Therefore, σ2 = κ2, σ4 = κ4/n, and so
on, and in the limit where n increases without bounds, all
cumulants vanish except σ2. The characteristic function
becomes

Φ(w) = e−σ
2w2/2, (143)

where we wrote σ2 = σ2. Performing the integration in
(142) we find

P (z) = e−z
2/2σ2

2πσ2 , (144)

which is a normal distribution and an expression of the
central limit theorem.

13. Bertrand

Bertrand wrote a book on the calculus of probability
that was published in 1889 [70]. In this book he presented
a paradox in probability that became connected to his
name. It is presented as follows. Let us consider a circle
and a let us draw a chord at random. The problem is
to find the probability that the chord is longer than the
side of an equilateral inscribed in the circle. Bertrand
stated that there are three ways of reasoning that lead
to three different answers which are 1/3, 1/2, and 1/4.
(a) In the first reasoning, one choses at random two

points on the circumference of the circle and draw the
chord. One of them is A and the other will be in
any point of the circumference, and let us draw the
equilateral triangle with a vertex at the point A, as
shown in Figure 6a. From the figure, we see that the
second point of a chord that are longer than the side
of the triangle lies in the arc BC. Thus, the desired
probability equals the ratio of length of the arc BC and
the length of the circumference, which is 1/3.
(b) In the second reasoning, one choses a radius OD,

and then one point at the radius chosen at random.
Through this point one draws a chord perpendicular to
the radius. The chords that are longer than the side of
the triangles lie between O and E, as shown in Figure 6b.
Those that are shorter lie between E and D. As OE is
equal to ED, then the desired probability is the ratio
betwee OE and OD, which is 1/2.
(c) In the third reasoning, one choses at random a

point within the circle and draw a chord such that the
chosen point is the midpoint of the chord. Let us draw
a dashed circumference at the chosen point as shown
in the Figure 6c. After that, one draws the equilateral
triangle with one side parallel to the chord. The chords
that are longer than the side of the equilateral triangle
correspond to dashed circumferences with radius smaller
than the radius OA. In this case the probability is related
to the area of the dashed circle and thus the desired
probability is 1/4.
The three reasonings correspond two three dis-

tinct ways of assigning the probability distribution.
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To understand this, we determine for each one of
the three cases the probability ρ(θ)dθ that the angle
subtended by the chord is between θ and θ + dθ. The
probability p that the chord is longer that the inscribed
equilateral triangle is equal to the probability that θ is
between 120 and 180 degrees, that is,

p =
∫ π

2π/3
ρ(θ)dθ. (145)

In the first case, ρ is constant and given by

ρ = 1
π
, (146)

and we find p = 1/3. In the second case, the probability
that the middle point of the chord is located in any point
of a radius is constant. Denoting by x the distance of
this middle point to the center of the circle, then the
relation of x to the angle θ is given by x = cos θ/2,
where we are considering a circle of unit radius. Taking
into account that the probability density of x is constant
then ρdθ = dx which leads us to the result

ρ = 1
2 sin θ2 , (147)

from which follow that p = 1/2.
In the third case, the middle point of the chord can

be in any point of the circle. Denoting the rectangular
coordinates of the middle point by x and y then the
probability of finding the middle point finding the middle
point inside the area dxdy is dxdy/π as the area of the
circle of unit radius is π. From this result, it follows
that the probability that the middle point is a distance
between r and r+dr form the center of the circle is 2rdr.
Taking into account that θ is related to r by r = cos θ/2,
we find

ρ = 1
2 sin θ, (148)

from which we get p = 1/4.
These examples shows that the probability is to

be assigned according to the model that we wish to
construct which will describe a certain aleatory real
phenomenon.

14. Borel

In his book on the theory of probability published in
1909 [71], Borel gives a definition of probability as
follows. Probability is the ratio between the number of
favorable cases and the possible cases, regarding all cases
as equally probable. This definition contains an apparent
vicious circle, says Borel, as probability is being defined
by the use of the terms equally probable, which encloses
the very concept that is being defined. In fact, there is
no vicious circle because these terms are not being used
in the same cognitive level of the term being defined. In

fact, they are being used in the vulgar meaning whereas
the probability is being used in its mathematical sense.
To break the vicious circle, we see that Borel is appealing
to reasonings that are outside the scope of the theory.
However, we may remedy this by merely assuming that
equally probable is a primitive concept of the theory.
The postulates regarding probability are stated by

Borel as follows. (1) The probability of an event that
can occur in several different mutually exclusive ways
is the sum of the probabilities corresponding to these
various ways. (2) The probability of successive events is
the product of the probabilities of these events, on the
assumption that the preceding ones have occurred. In
the case of simultaneous events, the probability is also
the product if the events are independent of each other.
Let us consider a series of n trials where in each trial a

favorable alternative occurs with probability p and the
contrary alternative with probability q = 1 − p. The
probability of occurrence of k favorable alternatives in n
trials is

P = n!
k!(n− k)!p

kqn−k. (149)

Writing

k = np+ t
√
n, (150)

and using the Stirling formula in the approximation

n! = nne−n
√

2πn, (151)

one finds

P = 1
2πnpq e

−t2/2pq. (152)

From this expression, Borel derives the Jacob Bernoulli
theorem, or law of large numbers, in the following form.
Given a number ε as small as desired, the probability
that the difference between the observed ratio k/(n− k)
and the theoretical ratio p/q is greater in absolute value
than ε, tends towards zero when the number n of trials
increases indefinitely.
In the second part of the book, Borel considers the

case of continuous probability, or geometric probability.
If we consider a straight line segment A, the probability
that a point is found in the segment R contained in A is
equal to the ratio of the length of R and the lenght of A.
This definition is extended to the case of a plane. The
probability of finding a point inside the surface region R
enclosed in a surface region A is the ratio between the
area of R and the area of A. In three dimensions, the
probability is the ratio between the volume of A and the
volume of R.
Borel treats several problems on the geometric prob-

ability. Let A a given point on the surface or a sphere
and B another point chosen at random. The problem is
to determine the probability that the length of the arc
AB is smaller than α. It is understood that the arc AB

DOI: https://doi.org/10.1590/1806-9126-RBEF-2022-0087 Revista Brasileira de Ensino de Física, vol. 44, e20220087, 2022



e20220087-22 Structure of the theories of probability

refers to the small arc of the great circle passing through
A and B. The point B must be within the surface of
a spherical cap of area equal to 2πR2(1 − cosα). The
desired probability is the ratio between the area of the
cap and the area 4πR2 of the spherical surface, that is,
(1− cosα)/2 = sin2 α/2.

The needle problem is as follows. Suppose that in a
sheet of papers we draw several parallel lines separated
by the same distance. A needle is dropped on the sheet
and we ask for the probability that the needle will cross
one of the lines. This is a well known problem and was
given a correct answer by Buffon, says Borel. We denote
by 2a be the distance between the lines and by 2` the
length of the needle. We suppose that a < ` so that the
needle will cross at most one line.
Let M be the middle point of the needle. The proba-

bility that the distance of this point to one of the line is
between x and x+dx is equal to dx/a. Let us denote by θ
the angle that the needle makes with the perpendicular
to the lines. The probability that the angle is between θ
and θ + dθ is equal to 2dθ/π. The needle will cross the
line if x ≤ ` cos θ. The probability that this happens is∫ π/2

0

∫ ` cos θ

0

2dxdθ
aπ

= 2`
aπ

∫ π/2

0
cos θdθ = 2`

aπ
. (153)

Following Poincaré [72], Borel states that it is possible
to introduce an arbitrary function to represent the
probability. In this case one denotes by ϕ(x)dx the
probability that the a point in the straight line is found
between x and x + dx. The only condition imposed on
this function is that it is positive. But there is a second
condition represented by the integral∫ ∞

−∞
ϕ(x)dx = 1. (154)

The probability that the point lies between a and b is∫ b

a

ϕ(x)dx. (155)

The expressions above are generalized to two or more
dimensions. In two dimensions and the probability that
a point is found in a surface S is∫ ∫

S

ϕ(x, y)dxdy, (156)

where the integral of ϕ(x, y) over the whole plane equals
one. By changing variable from x and y to α = f(x, y)
and β = g(x, y) this probability can be expressed by the
integral ∫ ∫

Σ
Φ(α, β)dαdβ. (157)

Borel notes that it is always possible to find a trans-
formation such that Φ(α, β) = 1 in which case the
probability is proportional to the area of the surface Σ.

Therefore, given an arbitrary probability function there
is a convenient transformation of variables that leads to
a constant probability and thus justifying the apparent
arbitrariness of the Laplace equally probable principle.

15. Markov

Markov [73, 74] contributed to several branches of
mathematics particularly probability theory. In 1900
there appeared the first edition of his book on cal-
culus of probability which went through three more
editions [75, 76]. Markov was a political activist and
was involved in many political and social issues. In
1913, when officials celebrated the three-hundred years
of the House of Romanov, he organized a celebration of
the two-hundred years of the Jacob Bernoulli law of large
numbers.

Markov created a new field of research which was
later called Markov chains. The urn problems studied by
Daniel Bernoulli and by Laplace can be identified in ret-
rospect as Markov chains. However, these earlier studies
were not his motivation to the study of Markov chains.
The main motivation of Markov was the extension of the
central limit theorem to the case of dependent random
variables [74]. His results showed that the independence
of random variables is not a necessary condition for the
validity of this fundamental theorem.

The concept of chains appeared in a paper of 1906
where Markov extended the law of large numbers to
random variables depending on each other [77]. A second
paper on the same subject followed in 1907 [78, 79], and
in a third paper, published in 1908, he extended the limit
theorem to the sum of dependent random variables[80].
This paper appeared as an appendix of the German
translation of 1912 of his book on probability theory [76].
An English translation appeared in 1971 [81]. In the
following we examine this third paper.

Let us consider a sequence of random variables
x0, x1, x2, x3 . . ., each one taking the values of a set of
discrete values. The probability that xn+1 takes the
value i when xn takes the values j is denoted by pij
and it is assumed that none of them equals the unity
and ∑

j

pij = 1. (158)

Denoting by Pni the probability that the variable xn
takes the value i then

Pn+1
j =

∑
i

Pni pij , (159)

and we may determine these probability from the initial
values.

We also define the sum of the variables

sn = x1 + x2 + . . .+ xn. (160)
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Denoting by Qns,i the probabilities that the variable xn
takes the value i and that sn takes the value m, Markov
establishes the following equation

Qn+1
m,j =

∑
i

Qnm−j,ipij . (161)

To solve this equation, we define the generating
function

φni =
∑
m

Qnm,it
m. (162)

From equation (161), the following equation can be
derived

φn+1
j =

∑
i

φni pijt
j . (163)

Once φni is found, we determine the function

Φn =
∑
i

φni . (164)

From this quantity we may find the probability Rnm of
sn being equal to m, which is the coefficient of tm in the
expansion of Φn in powers of t.
The solution of equation (163) tell us that φni is a

linear combination of the n-th power of the eigenvalues
λk of the matrix A with elements pijtj . The same can
be said of the function Φn, that is,

Φn =
∑
k

akλ
n
k , (165)

where ak as well as λk depend on t. Defining

Ψ =
∑
n

Φnzn, (166)

we find

Ψ =
∑
nk

ak(λkz)n. (167)

Carrying out the summation in n,

Ψ(t, z) =
∑
k

ak
1− λkz

, (168)

and Rnm is the coefficient of tmzn in the expansion of Ψ.
Markov writes Ψ in the following form. Let δij−pijtjz

be the elements of the matrix B and F its determinant.
We see that the eigenvalues of B are 1− λkz so that

F (t, z) =
∏
k

(1− λkz), (169)

and we may write

Ψ(t, z) = f(t, z)
F (t, z) , (170)

Table 1: Frequency of vowels and consonants in the Eugene
Onegin according to Markov [82, 83]. The first table shows the
frequencies of vowel (A) and the frequency of consonant (B).
The second and third tables shows the frequencies of a vowel
(A) or a consonant (B) following the group of letter shown in
the firs row. We are indicating by A any vowel and by B any
consonant.

0.432 A
0.568 B

A B �

0.128 0.663 A
0.872 0.337 B

AA AB BA BB �

0.104 0.546 0.131 0.868 A
0.896 0.454 0.869 0.132 B

where

f =
∑
k

ak
∏

k′(6=k)

(1− λk′z), (171)

and it is clear that f is a polynomial in z, the largest
power of z being the number of possible values taken by
the random variable xi, minus one.
When t = 1, the equation (163) becomes equal to

(159) and we may identify φni with Pni . Since the sum of
Pni in i equals the unit so does the sum of φni which is
Φn. Therefore, Φn equals the unity when t = 1 in which
case we find

Ψ(1, z) = 1
1− z . (172)

The generating function gives the probability Rnm that
sn equals m. From this quantity one determines the
moments M` of y = (m − an)/

√
n. Markov, shows that

the

lim
n→∞

M` = C1/2 1√
π

∫ ∞
−∞

t`e−t
2
dt, (173)

where C is a constant. Therefore the probability that

t1
√
C < y < t2

√
C (174)

is given by

1√
π

∫ t2

t1

t`e−t
2
dt, (175)

which proves the central limit theorem.
In 1913, Markov published a paper where he showed

an interesting application of his theory to the analysis of
a literary text [82, 83]. Markov analyzed the sequence of
20,000 letters of the Pushkin’s poem Eugeny Onegin and
determined the frequency of vowels shown in Table 1.
One of these quantities is simply the frequency of vowels
in the text. Another quantity is the frequency of vowels
that are preceded by a group of letters. In one case the
preceding group is composed of just one letter. In the
second case the preceding group is composed by two
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letters. The former case is understood as a Markov chain
of range one whereas the second is of range two.

The Markov process is usually employed to describe
a random process that occurs in time, called stochastic
process or stochastic dynamics [84]. In this sense the
Markov equation (159) is understood as the evolution of
probability in discrete time and discrete space of states,
and the coefficients pij are the transition probabilities
from state i to state j. It is possible to consider the
time as a continuous variable in which case the equation
is called a master equation [84]. It is also possible to
consider an equation for a continuous space of states
as is the case of the Fokker-Planck equation and the
Kolmogorov equation [84]. All these equations, discrete
or continuous, are derived from the theory advanced by
Markov [84].
As we have said above, the problems of urn studied

by Daniel Bernoulli and Laplace can be understand
in retrospect as a Markov chain. In fact, the equation
(84) that was proposed by Laplace is an example of a
Markov equation, and the equation (85) also proposed
by Laplace is a Fokker-Planck equation. We also add
that the fundamental equation introduced by Boltzmann
within the kinetic theory can be understood in retro-
spect, although in an approximate form, as a Markov
equation in continuous time and continuous space [85].

16. Kolmogorov

In 1933, Kolmogorov published his book on the foun-
dation of the theory of probability, which is considered
as the foundation of modern probability theory [86].
The book appeared in German and was translated into
Russian in 1936 and into English in 1950 [87]. The theory
of probability presented in the book has the systematic
and analytic structure in which the theorems are derived
from the fundamental postulates or axioms. Kolmogorov
states that the theory of probability should be treated
as other theories such as geometry or algebra.

In some sense, the systematic and analytic structure
of the theory of probability is found in the theories
that we have examined above, although the fundamental
propositions are not explicit given in these theories.
But the main distinguishing feature of the Kolmogorov
theory is a clear identification of probability as ameasure
(not to be confused with physical measurement) defined
on the space of events or the sample space. Examples
of physical quantities that are understood as measures
defined on the real space is length, area, volume, and
mass. They are all non negative real quantities that
increases monotonically in the following sense. If A and
B are subsets of the measurable space such that A is a
subset B then the measure of A is smaller or equal to
the measure of B.
The Kolmogorov theory is based on the understanding

that the events that we wish to describe make up a space
of events, or the sample space. This space of events

Table 2: Correspondence between sets and events. We are using
the following notation: ∩ and ∪ for the union and intersection
of sets instead of + and juxtaposition used by Kolmogorov.
The empty set is denoted by V , and the complementary set of
A by Ā.

Events Sets
collection of all elementary events U
an elementary event e, e ∈ U
an event A, A ⊂ U
simultaneous occurrence of events A ∩B = X
impossible event V
incompatible events A ∩B = V
occurrence of at least one event A ∪B = Y
non-occurrence of event A Ā
event A follows inevitably from B B ⊂ A

is identified as a set in the mathematical sense of the
set theory whose elements are the elementary events.
This set is called U and any event is a subset of U .
Kolmogorov gives the correspondence of propositions
involving the events and those involving sets, as shown
in Table 2.
If two events A and B are incompatible it means these

subsets do not intersect, or that that their intersection
A ∩ B equals the empty set. If C is an event defined
as the simultaneous occurrence of A and B, then the
subset C is the intersection of the subsets A and B, that
is, C = A ∩ B. If C is the defined as the occurrence of
at least one of the two events A and B, then the subset
C is the union of A and B, that is, by C = A ∪ B. The
event corresponding to the non-occurrence of an event
A is the complementary subset Ā.
The postulates are as follows. (1) To each subset A

of U one assigns a non-negative real number P (A), the
probability of A. (2) The probability of U is equal to one,
P (U) = 1. (3) If A and B have no element in common,
that is, if A∩B = V then P (A∪B) = P (A)+P (B). Some
elementary consequences follows immediately. From U =
U ∪ V , it follows that P (V ) = 0, which means that the
probability of an impossible event is zero. Since U =
A + Ā, then P (Ā) = 1 − P (A). If B is included in A,
then P (B) ≤ P (A).
An event which consists of the occurrence of an event

A but not the occurrence of an event B corresponds to
the set C whose elements belongs to set A but not to set
B. These last elements compose the intersection A ∩B.
Since C and A∩B are mutually exclusive sets and A =
C+A∩B then P (A) = P (C) +P (A∩B). But C and B
are mutually exclusive sets and they compose the union
of the sets A and B. Therefore P (A∪B) = P (C)+P (B),
and

P (A ∪B) = P (A) + P (B)− P (A ∩B). (176)

These axioms are not sufficient to specify completely
the actual values of the probability of each event. The
establishment of these values will depend on the model
one construct to describe a specific aleatory phenomena,
which is the assignment of probability. For instance,
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in the case of a dice, the sample space U is the set
{1, 2, 3, 4, 5, 6}. But the postulates say nothing about the
probability that we may assign to each element.
The conditional probability is defined by

PA(B) = P (A ∩B)
P (A) , (177)

provided P (A) > 0, from which follows P (A ∩ B) =
P (A)PA(B). In an analogous manner PB(A) = P (A ∩
B)/P (B) from which follows the Bayes theorem

PB(A) = P (A)PA(B)
P (B) . (178)

The concept of independence is a central concept of
the theory of probability. Independent events are defined
as events such that P (A∩B) = P (A)P (B). In this case
the probability of the occurrence of either events is the
sum of the probabilities P (A ∪B) = P (A) + P (B).
The concept of random variables is a relevant concept

in the theory of probability as it allows an easier
analytical approach to the probabilistic problem. The
basic idea is to associate a real number to the elementary
events of the set U of all events. A random variable ξ
is defined as a function of the elementary events e of
U , ξ = f(e). It maps the set U into the set of the real
numbers.
Let Ax be the subset of U such that ξ = f(e) < x for

all elements e belonging to Ax. Then the probability of
Ax, which we denote by F (x) is the probability that ξ <
x, and is called the distribution function of the random
variable ξ. The probability that x1 ≤ ξ < x2 is F (x2)−
F (x1) and since this must be a non-negative quantity it
follows that F (x) is nondecreasing function of x. If the
random variables takes values in the interval between a
and b, then F (x) equals zero and one, when x approaches
a and b, respectively. For continuous random variables
we define the probability density function ρ(x) by ρ =
dF/dx so that

F (x) =
∫ x

a

ρ(z)dz. (179)

The concepts introduced above can be generalized to
the case where one associates a random vector to an
elementary event.
Several books were written in accordance with the

theory of probability developed by Kolmogorov. We
mention the book of Gnedenko which was published
in Russian in 1950 [88]. A German translation was
published in 1957 [89] and an English translation in
1962 [90]. The book went through several editions in
several languages. A general treatise on the theory of
probability was published by Feller in 1950 [91]. It
contains a clear exposition of the basic theory and a
number of applications. It was followed by a second
volume published in 1966 [92].

Table 3: The author together with the abbreviated name of the
main work where it is found, the year of its public presentation
or publication, and references. Roman numerals indicate the
century when the work appeared. Numbers between square
brackets indicate the approximate date when the work was
written.
Author Work Year Ref.

De Vetula xiii [17]
commentary on Divine Comedy xiv [20]

Cardano Book on Games of Chance [1550] [26]
Galileo Findings on the game of dice [1620] [27]
Pascal and
Fermat correspondence 1654 [30]

Huygens Calculation in Games of Chance 1657 [37]
J. Bernoulli Art of Conjecturing 1713 [40]
Montmort Essay on the Games of Chance 1708 [42]
De Moivre Doctrine of Chances 1718 [45]
D. Bernoulli conjectural problem 1770 [52]
Lagrange calculation of probability 1776 [54]
Laplace Theory of Probability 1812 [13]
Poisson Research on Probability 1837 [4]
Bertrand Calculus of Probability 1889 [70]
Borel Theory of Probability 1909 [71]
Markov dependent variables 1906 [77]
Kolmogorov Theory of Probability 1933 [86]

17. Conclusion

In Table 3 we show the works that we have analyzed here
concerning the development of the concept of probability
and the theory of probability. The development of the
theory of probability shows that it can be understood
as the science of aleatory events. The quantity called
probability obeys certain fundamental postulates, such
as those advanced by Kolmogorov, which are stated in
terms of the concept of space of events or sample space.
It is usual to say that these postulates define the concept
of probability, but we deem it more convenient to assume
it as primitive concept such as time, space, or mass.
A second essential point of the science of probability
is that probability is measured by interpreting it as the
ratio of the favorable observable outcomes and the total
observed outcomes, or in short the frequency of favorable
observed outcomes.
The fundamental postulates alone are not sufficient to

determine the probability related to a specific aleatory
phenomena. We have to assign a probability to each
one of the elementary events of the sample space and
this will depend on the model we construct. Thus, to
describe a set of aleatory event by a probabilistic theory,
we have to set up a sample space and assign a probability
distribution to this sample. The failure to clearly carry
out these procedures may result in paradoxes such as the
Bertrand paradox explained above.
From the development of the concept of probability

described above, we may say that the calculation of
probability was usually carried out by setting up a
sample space such that the elementary events of this
space have equal probability. This equiprobability rule
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was not always explicitly stated but eventually it was
transformed into the basis of the Laplace theory of
probability. According to this principle the probability
is the ratio between the possible favorable outcomes and
the total outcomes. This ratio should not be confused
with the frequency of observed favorable outcomes in
certain number of observed trials.
There are some reasonings used in the calculation of

probabilities that are considered errors or fallacies [93].
An example is the Leibniz reasoning in the calculation
of probability in a throw of two dice, that we have
mentioned above. He argues that the number 12 has the
same probability as the number 11. One interpretation
of this result is to say that the equiprobable sample
space used by Leibniz consists of partitions and not
permutations. The numbers 12 and 11 have each one
just one partition which are (66) and (56), respectively.
Although, there is one permutation for the number 12,
there are two permutations for the number 11 which
are (5, 6) and (6, 5). The problem here is that the
appropriate model for the throw of two dice is not the
partition model used by Leibniz but the permutation
model. But this can only be verified by an experiment
and cannot be decided by theoretical reasoning.
The theories of probability that we have examined

above were and are applied to the analysis of statistical
data coming from various areas of research and to
the analysis of statistical errors in experimental mea-
surements. But we wish to remark that the theory of
probability is an essential part of probabilistic physical
theories, better known as statistical physical theories.
That was the case of the kinetic theory developed by
Clausius, Maxwell and Boltzmann and of the statistical
mechanics developed by Gibbs. If we interpret the
Markov chains as evolution of probability in time, then
the theory of Markov can be understood as an essential
part of the stochastic theory of Brownian motion and
more generically of stochastic dynamics. More recently
is was essential part of the stochastic mechanics, also
known as stochastic thermodynamics.
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