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Structure of the analytical theories of heat
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We examine the analytical theories of heat developed by Laplace, Poisson and Carnot, and the thermodynamic
theories based on the energy conservation and the principle of the increase of entropy formulated by Clausius.
We present an analysis of the approaches developed by Maxwell, Gibbs, Planck, Duhem, Nernst, and De Donder
as well as the irreversible thermodynamics of Prigogine, and the theory of liquid gas transition of van der Waals.
We show that the thermodynamic potentials dominated the development of the theory of thermodynamics since
Gibbs. They were introduced by Massieu under the name of characteristic functions and were demonstrated by
Gibbs to have the suitable properties to characterize equilibrium of systems with variable composition, and to
hold the convexity properties. We also show that the thermodynamic potentials were the relevant quantity in the
Duhem approach to thermodynamics and to thermochemistry.
Keywords: Analytical theories, theories of heat, thermodynamics, thermochemistry.

1. Introduction

In 1850, Clausius published a paper where he introduced
the fundamental principles of the mechanical theory of
heat which a few years later was called thermodynamics.
This accomplishment was carried out by Clausius by
the reconciliation between the principle of Carnot and
the principle of equivalence between heat and work
established by Mayer and Joule. The principle of Carnot
contains two parts one of which concerns the efficiency
of the Carnot cycle. This part was retained by Clausius
whereas the second part, which was based on the
conservation of heat, was dismissed by Clausius. In
another paper, Clausius introduced the second law of
thermodynamics in the form of the increase of a quantity
that he introduced and called entropy.

The Carnot theory preceded that of Clausius and
was based on the caloric, a concept that emerged in
the second half of the eighteenth century, and was
employed by Laplace and Lavoisier in the explanation
of their experiment on the specific heat of substances.
Other theories of heat that appeared after Clausius, the
thermodynamic theories, were based on the two funda-
mental laws laid down by Clausius. All these theories
of heat, which we call analytical theories, are examined
here, starting from the caloric theories of Lavoisier and
Poisson, going through theories the of Gibbs and Duhem
founded on the thermodynamic potentials, and ending
with the irreversible thermodynamics of Prigogine.

Our analysis is based on the idea that a scientific
theory consists of laws and concepts which are derived
by means of a deductive reasoning from other laws
and concepts [1, 2]. The derivation starts from one or
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more laws that are the fundamental laws or postulates
of the theory, and from some concepts that are the
primitive concepts understood as undefinable concepts.
In addition to this abstract framework, a scientific theory
is supplied with a real interpretation which include the
measurements of the physical quantities.

The analytical theories of heat analyzed here are
understood as having the temperature and heat as
primitive concepts, that is, these two concepts are
understood as theoretically undefinable, although this
is not explicitly stated by the authors of the theories.
Some authors seem to give definitions of these concepts
but in fact they are referring to the way the concepts
are measured or to the units of measurement. This
happens when it is said that temperature is the quantity
measured by a thermometer or that heat is the quantity
measured by the calorimeter. These are not theoretical
definitions but real interpretation of the concepts.

Within thermodynamics, we might think at first
sight that heat could be considered to be a derived
concept because heat is understood as work, and work
is a derived concept. However a distinction must be
made between heat, sometimes called internal work,
and the external work, usually called simply work. The
distinction between the two types of works is attained
by the use of adiabatic walls. But an adiabatic wall is
understood as a wall that prevents the passage of heat
and we fall in a circular reasoning. To circumvent this
problem we could reconsider heat as a primitive concept
or consider the adiabatic wall as a primitive concept, as
solution that we find more appropriate [3].

The concepts of thermal equilibrium and reversible
process are key concepts in the analytical theories of
heat analyzed here. A reversible process is defined as
a change of states that connects equilibrium states.
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However, this statement seems to be a contradiction in
terms as once in equilibrium, the system never changes
its state. A reversible process should thus be understood
as a sufficiently slow process such that any state along
the process is an equilibrium state. An equilibrium
state should not be confused with stationary states
where fluxes of various types maintain the system in an
invariant state. An equilibrium state is characterized by
the absence any type of fluxes, particularly heat flux.

Although it is usual in thermodynamic reasonings to
refer to processes, and thus to the time evolution of the
state of a system, a characteristic of the exposition of
thermodynamics is the lack of an explicit reference to
time. This is particularly true in the case of reversible
processes that are the central subject of equilibrium
thermodynamics. For instance, it is usual to write the
thermodynamic equations in terms of differentials such
as the fundamental equation dU = TdS − pdV instead
of

dU

dt
= T

dS

dt
− pdV

dt
(1)

To avoid misunderstanding, it suffices to keep in mind
that usually the differentials correspond to or are a
consequence of a positive increment in time, dt > 0.
With this proviso, if the differential dS refers to a
variation with time, then dS > 0 means that S increases
with time.

For a better understanding of the second law of
thermodynamics when stated in terms of the entropy,
it is necessary to keep in mind that in fact it encloses
two parts [3]. One of them is related to the definition
of entropy, written as dQ/T = dS, and the other is the
increase of entropy proper. Sometimes, the second law
of thermodynamics is regarded as the first part only.
However, the essential of the second law is contained in
the second part.

In addition to the fundamental laws, the theories of
heat include other specific laws that are not derived from
the fundamental laws, but are consistent with them.
Examples are the equation of state of an ideal gas and
the Avogadro law, which also refers to an ideal gas. Other
examples include the van der Waals equation and the
Gibbs phase rule.

The development of the subject whose theoretical
aspect concern us here can be found in papers and books
related to thermodynamics [3–11] and to thermochem-
istry [12–16].

2. Laplace and Poisson

The measurement of the heat capacity of several sub-
stance was the subject of a memoir on heat jointly
written by Lavoisier and Laplace, and presented to the
Academy of Sciences in 1783 [17]. The measurements
were accomplished by the use of an ice calorimeter that
they invented for that purpose. Concerning the nature

of heat, they stated that the physicists were divided
in this matter. Some regard it as a fluid that expands
over all the bodies, penetrating them as a result of their
temperature, and may combine with them, in which case
it ceases to affect a thermometer. Others regard heat as
the result of the insensible movement of the molecules
of matter. Under this hypothesis, heat is understood as
the sum of the living forces of the molecules, which are
the product of the mass of each molecule by its speed
squared.

Lavoisier and Laplace did not make a decision on
which hypothesis to choose. They simply adopted the
principles that are common to both, one of them being
the principle of conservation of free heat, which is the
heat that is communicated from one body to another
when in contact. When bodies are placed in contact
among themselves the free heat remains the same. If in
a combination or in a change of states of substances,
the free heat decreases, then it will appear when the
original state is reestablished. For example, when ice
is transformed into water, a certain quantity of heat is
consumed but it reappears when water becomes ice.

In his Elements of Chemistry [18, 19], published in
1789, Lavoisier presented a table of simple substances
which included caloric along with light, oxygen, azote,
hydrogen, and others. In accordance with the reformu-
lation of chemical terminology, the term caloric replaced
the old terms heat, principle or element of heat, fire,
igneous fluid, and matter of fire. The new term caloric
also reflected the new explanation of chemical reactions
involving heat given by the chemistry of Lavoisier.
Another reason for the introduction of the new term
is the desire of Lavoisier to denominate cause and
effect by distinct terms. Thus, caloric is the cause of
heat. Lavoisier admits the cause of heat, the caloric, to
be a real and material substance, or very subtle fluid,
which insinuates itself between the molecules of all bodies
[18, 19]. We see that caloric corresponds to the first of
the two hypothesis mentioned above which were raised
by Lavoisier and Laplace in their memoir on heat [17].

A theory of heat based on the concept of caloric
emerged in the last quarter of the eighteenth century,
which Maxwell in 1871 referred to as the caloric theory
of heat [20]. A theory of gases based on the caloric
was developed by Laplace and also by Poisson. The
papers that they published on this subjected, published
in 1822 [21] and in 1823 [22], respectively, will be now
examined.

The basis of the theory of Poisson on the heat of gases
and vapors is the assumption that the heat contained in
a body such as a gas or a vapor is a function of the
state of the body. This assumption is understood as a
direct consequence of the conservation of the free heat.
In accordance with this assumption, the heat per unit
mass q is taken as being a function of the pressure p and
the density ρ,

q = f(p, ρ). (2)
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A second equation is the one involving the pressure, the
density and the temperature θ. Poisson assumes that
they are related by

p = aρ(1 + αθ), (3)

where α is equal 0.00375 and the coefficient a is a
characteristic of each gas.

The specific heat is defined by dq/dθ, but one should
consider which quantity, the pressure or the volume,
should be kept constant. Denoting by c the specific heat
at constant pressure, then

c = dq

dρ

dρ

dθ
= −dq

dρ

αρ

1 + αθ
, (4)

and denoting by c′ the specific heat at constant volume,
then

c′ = dq

dp

dp

dθ
= dq

dp

αp

1 + αθ
. (5)

If we denote by γ the ratio of the two specific heats,
γ = c/c′, we find

ρ
dq

dρ
+ γp

dq

dp
= 0. (6)

If γ is assumed to be a constant, that is, independent of
p and ρ, then the equation (6) can be integrated with
the result

q = f(p
1/γ

ρ
), (7)

where f is a function to be found.
Poisson writes the solution (7) in the form

p = ρ γφ(q), (8)

where φ is another function. If p and ρ are transformed
into p′ and ρ′ while q is remains invariant then

p′ = p

(
ρ′

ρ

)γ
. (9)

These equations give the change of pressure when the
gas is compressed or dilated without variation of heat.

To find the function f , Poisson adopts the Laplace
hypothesis contained in the book 12 of Mécanique
Céleste that the increase in heat is proportional to the
increase in temperature. Replacing (3) in (7) we find that
f is a linear function of its argument and the equation (7)
is written as

q = A+B(θ0 + θ)ρ−γ+1, (10)

where θ0 = 266.67, and A and B are two constants, and
the specific heats are given by

c′ = Bρ−γ+1, c = γBρ−γ+1, (11)

which do not depend on temperature.

The equation (6) and its solution in the form (7) were
also found by Laplace by a distinct procedure contained
in a publication of 1822 [21]. His point of departure is
the equation

dp

(
dq

dp

)
+ dρ

(
dq

dρ

)
= 0, (12)

which follows from (2) by considering a process without
variation of heat, which can be written as(

dp

dρ

)
= − (dq/dρ)

(dq/dp) , (13)

where the differentiation at the left-hand side is carried
out at q constant.

Next, Laplace relates the right-hand of this equation
to the ratio of the specific heats, arguing as follows.
Let us increase the temperature of a unit of mass by
one degree at constant pressure. In this process, the
density will decrease by a quantity which is (dρ/dθ). The
increase in heat per unit mass (dq/dρ) will be the specific
heat at constant pressure c′ divided by this quantity,(

dq

dρ

)
= − c′

(dρ/dθ) . (14)

Using a similar reasoning,(
dq

dp

)
= c

(dp/dθ) , (15)

where c is the specific heat at constant volume. Replac-
ing these results in equation (13), we find(

dp

dρ

)
= − (dp/dθ)

(dρ/dθ)
c′

c
. (16)

Laplace uses the equation of gases (3) to conclude
that the ratio between dp/dθ and (dρ/dθ) is −p/ρ, which
replaced in equation (16) gives(

dp

dρ

)
= p

ρ

c′

c
. (17)

We remark that Laplace identifies the left-hand as the
square of the velocity of sound so that the velocity of
sound is proportional to the square root of the ratio of
the specific heats.

It is worth mentioning that the first fraction on the
right hand side of equation (16) equals minus (dp/dρ)
where the derivative is taken at constant temperature,
which we denote by k. Then we may write (16) in the
form

k′

k
= c′

c
, (18)

where k′ is the derivative (dp/dρ) taken at constant heat.
Replacing the result (17) into equation (13) and using

the abbreviation c′/c = γ, we get

− ρ
(
dq

dρ

)
= γp

(
dq

dp

)
, (19)
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which is identical to the equation (6) found by Poisson.
Laplace states that by analyzing the experimental data
of Gay-Lussac and Welter concerning their experiments
on the expansion of gases he could reach the value
1.37244 for γ [21]. Assuming that the ratio of the specific
heats γ is constant, Laplace integrates equation (19)
obtaining the result given by equation (7).

3. Carnot

Sadi Carnot [23–25] was born in 1796 in Paris at the
Petit Luxembourg, and until the age of 16 he was
educated at home by his father. He was admitted to
the École Polytechnique in 1812 and just after finishing
his studies in 1814 he was sent to the School of Artillery
at Metz. At the end of two years of study he began to
serve as a second lieutenant in the engineering regiment,
and in 1819 he was commissioned in the engineer corps
in Paris but immediately obtained a permanent leave of
absence. In 1821 he became interested on the problem
of steam engine and in 1824 he published a book on the
subject entitled Réflexions sur la Puissance Motrice du
Feu [26]. He returned to active service in 1827 but after
less than a year he resigned permanently and returned
to Paris. He died in 1832 at the age of 36.

In his book, Carnot pursued the laws that govern the
production of work by means of heat. The book is not a
technical exposition on operation of heat machines but
a theoretical treatise on heat and its relationship with
mechanical work. In it, Carnot introduced the closed
cycle that bears his name, and proposed the fundamental
law concerning how much work can be obtained from a
certain quantity of heat. In spite of containing new ideas
that explained the functioning of thermal machines, the
book received little attention [24]. An exception was
Clapeyron, who published in 1834 a paper [27] based on
the ideas of Carnot, where he reached the same results
obtained by Carnot.

Émile Clapeyron [28, 29] was born in 1799 in Paris.
He entered the École Polytechnique in the beginning
of 1817 and after graduation in the end of 1818 he
attended the École de Mines. In 1820 he moved to
Saint Petersburg where he remained for eleven years.
He returned to Paris at the end of 1831. As the École
de Mines did not have the Carnot book, he was still
unaware of the publication. In 1832 he was appointed
professor at the mine school in Saint-Étiene where did
he find a copy of the book. From 1844 he was a professor
at the École de Ponts et Chaussés teaching courses on
steam engine. He died in Paris in 1864.

The Clapeyron paper also went unnoticed until when
it was translated into German in 1843 [30]. The German
translation appeared with a preface stating that the
essay, until now only notice by a few, was included in the
Journal due to its importance. Through this publication,
Clapeyron and Carnot reached the physicists [24]. The
paper by Clapeyron was cited by Holtzmann in the

preface of his book on heat and pressure of gases, pub-
lished in 1845, where he [31] stated that the paper was
based on the work of Carnot which he could not provide.

In 1848, Thomson published a paper on the absolute
scale of temperature based on Carnot theory [32]. How-
ever, he stated that he had not met with the original
book of Carnot and that he had become acquainted
with it through the paper of Clapeyron, which he found
in 1845 while he was at the Regnault laboratory [29].
Clausius also refers to Carnot in his paper on theory
of heat of 1850 saying that he was not able to find a
copy of the book and that he was acquainted with the
ideas of Carnot through the works of Clapeyron and
Thomson [33].

Next we give an account of the heat theory of Carnot
contained in his book. We also follow the paper of
Clapeyron, which presents the content of the book of
Carnot in an entirely analytical form. In the book,
the analytical passages are usually reserved for foot-
notes because he intended the book to be read for all
audiences [24]. A distinguish feature of the Clapeyron
exposition was the use of the pressure-volume indicator
diagram borrowed from Watt [29], which allowed him to
describe more clearly the Carnot cycle. He also proposed
new results such as the so called Clausius-Clapeyron
relation.

The theory of Carnot is based on the caloric con-
ception of heat which means to say that heat obeys
the conservation principle. This principle is expressed
by stating that the heat of a gas is as state function.
Clapeyron choses the state as the volume v and the
pressure p. The principle reduces to say that the heat
of a gas q(v, p) is a function of v and p.

The relation between heat and work is given by the
principle introduced by Carnot which he formulates by
considering a cyclic process that bears his name. The gas
undergoing the cycle receives a certain quantity of heat
q from a hotter body and delivers the same quantity of
heat to a colder body, while performing a work w. Notice
that the heat received and that delivered are equal by
the principle of conservation of heat. The principle of
Carnot states that the ratio w/q depends only on the
two temperatures and is independent of the substance
undergoing the cycle.

From now on we follow Clapeyron [27]. He considers a
small cycle in the pv diagram, as shown in Figure 1,
and denote by θ the temperature of the colder body
which differ from that of the hotter body by dθ. The
ratio between the infinitesimal work dpdv and the
infinitesimal heat dq is equal to a quantity that depends
only on the two temperatures. As the temperature are
close to each other, this quantity is proportional to
the difference in temperature dθ and the coefficient of
proportionality depends only on θ. The Carnot principle
is then expressed by Clapeyron in the form

dpdv = 1
C
dqdθ, (20)
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Figure 1: A small Carnot cycle in the pressure-volume diagram.
The lines ab and dc represent isothermal processes whereas the
lines ad and bc represent process without the intervention of
heat. The figure is based on figure 3 of the Clapeyron paper of
1834 [27] and on the similar figure 2 of the Clausius paper of
1850 [33].

where C depends only on θ and is universal. The next
step of the theory is to find C.

From the relation (20), and considering that q and θ
are functions of v and p, the following relation is obtained
by Clapeyron

dq

dv

dθ

dp
− dq

dp

dθ

dv
= C, (21)

which is valid no only for gases but also for liquids
and solids. In modern terms, C is the Jacobian of the
transformation from (v, p) to (q, θ).

The equation of gas used by Carnot and Clapeyron is
pv = R(θ0 + θ) where θ0 = 267 degrees centigrade and
R is a constant that is different for each gas. It should
be remarked that, as v in this equation is understood
as the volume of the gas, the quantity R is a quantity
that, for the same gas, varies with the amount of the
gas. However, Clapeyron states that if we consider two
gases with the same volume, then the constant R will be
the same, in spite of the amount gas being different.

From this equation one finds dθ/dp = v/R and
dθ/dv = p/R which replaced in (21) gives

v
dq

dv
− pdq

dp
= RC. (22)

Taking into account that C depends only on θ we may
understand C as a function of the product pv and (22)
may be written as

v
dq

dv
− pdq

dp
= f(pv). (23)

This equation can be integrated and the result is

q = g(pv)− f(pv) ln p. (24)

As the function g(pv) can be understood as a function
of θ, we reach the equation

q = R(B − C ln p), (25)

where B(θ) depends only on θ. Thus in addition to the
equation pv = R(θ0 + θ), a gas obeys a second equation
which is (25).

The differentiations of (25) with respect to the tem-
perature at constant pressure and at constant volume
gives the two heat capacities. The difference in the heat
capacities is RC/(θ0 + θ). As R is the same for gases
with the same volume we conclude that the difference
in the heat capacities is the same if the gases are at the
same temperature.

Clapeyron applies the equation (21) to the case of a
liquid being transformed into its vapor. In this process
the temperature remains invariant if the pressure is kept
constant, while the volume increases. Therefore, dθ/dv
vanishes and equation (21) becomes k(dθ/dp) = C, or

dp

dθ
= k

C
, (26)

where we have replaced k = dq/dv is the heat absorbed
per unit volume, which is understood as the latent
heat because it does not modify the temperature. This
equation relates dp/dθ with the latent heat and after
a modification by Clausius, it became known as the
Clausius-Clapeyron equation.

4. Clausius

Rudolf Clausius [34, 35] was born in 1822 at Köslin,
Prussia, now Koszalin, Poland. He studied at the Stettin
Gimnasium until he entered the University of Berlin in
1840. After graduation in 1844 he taught for six years
at the Friedrich-Werdersches Gymnasium in Berlin.
He received his doctorate in 1848 and completed his
habilitation at the University of Berlin in 1850, and in
the same year he got a teaching position at the Royal
Artillery and Engineering School in Berlin. His papers
on the theory of heat, published from 1850, led him to
be invited to a position of mathematical physics at the
newly founded Federal Polytechnic School, Zurich, in
1855. During the stay in Zurich he developed his kinetic
theory of gases. In 1867 he returned to Germany, first as
a professor at the University of Würzburg and less than
two years later as a professor at the University of Bonn.
He died in Bonn in 1888.

Clausius published several papers on the theory of
heat which were collected in a book which appeared in
1864 [36]. A translation with the title of The Mechanical
Theory of Heat was published in 1867 [37]. The use of
the term mechanical emphasized the concept of heat as
related to the motion of particles. However, the discipline
became known as thermodynamics a term coined by
Rankine in 1859 [9].

The Clausius theory of heat is based on two principles.
The first principle is stated as follows [33, 38]. When
heat is created by the expenditure of work or when
work is produced by the consumption of heat, then the
amount of heat q in both cases is proportional to the
work W . This principle is written as q = aW where a is
a constant independent of the substance. This principle
is the statement of the equivalence of heat and work and
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was established by Mayer and Joule. Here we use the
quantity Q = q/a in which case the principle is written
as Q = W .

The second principle is stated in terms of a Carnot
cycle. If Q is the heat absorbed by the body at the
higher temperature and W is the work performed by
the body, the ratio W/Q depends only on the higher and
lower temperatures and is independent of the substance
of the body undergoing the cycle [38]. This is the Carnot
principle but here Q is not equal to the heat delivered
because heat is not conserved as happens to the Carnot
theory. In fact if we denote by Q′ the heat delivered,
then in a cycle the quantity of heat Q−Q′ is transformed
into the work W performed by the body, and by the first
principle

Q−Q′ = W. (27)

We examine in the following the consequences of
the first principle, contained in the first paper on the
theory of heat published n 1850 [33]. Let us consider
a gas undergoing a certain process which is understood
as a path in diagram such as the pressure-volume or
temperature-diagram. Along this path, the infinitesimal
work is

dW = pdV, (28)

where p is the pressure of the gas and dV is the
differential of the volume V of the gas. The infinitesimal
heat, Clausius writes as

dQ = MdV +NdT, (29)

where dT is is the differential of the temperature T of
the gas, and M and N are functions of V and T to be
found.

Next, following Clapeyron, Clausius applies the princi-
ple to a small Carnot cycle, as the one shown in Figure 1.
The work performed by the gas undergoing the cycle,
which is the area of the parallelogram abcd, is equal
to the heat absorbed by the gas along the isotherm ab
minus the heat delivered by the gas along the isotherm
cd. Using the small Carnot cycle Clausius shows that
the heat developed along the cycle is[(

dM

dT

)
−
(
dN

dV

)]
dV dT, (30)

and the net work along the cycle is(
dp

dT

)
dV dT. (31)

The demonstration of (30) from (29) following the
Clausius reasonings can be found in reference [11]. By
the same reasonings one obtains (31) from (28).

By the first principle these two expressions are equal
from which follows(

dM

dT

)
−
(
dN

dV

)
=
(
dp

dT

)
. (32)

Writing c = M − p, it follows from (32) that (dc/dT ) =
(dN/dV ), which is the condition for cdV + NdT being
an exact differential. Writing

dU = (M − p)dV +NdT, (33)

then dU is the differential of a function U of V and T .
Recalling that dQ = MdV + NdT and dW = pdV , we
may write

dU = dQ− dW. (34)

Clausius adopts the Kelvin terminology and calls U the
energy of the body. Thus the equation (34) is understood
as the conservation of energy in the differential form, as
long as we keep in mind that dU is an exact differential
even though dQ and dW are not.

Let us apply the result above to an ideal gas, that
obeys the equation pV = RT , where we are using the
abbreviation T = θ0 + θ where θ is the temperature of
the gas and θ0 = 273 degrees of the centesimal scale,
and R is a constant. Equation (34) becomes

dQ = dU + RT

V
dV. (35)

Another result valid for an ideal gas that Clausius uses
is that along an isotherm, the heat absorbed is entirely
transformed into work. Thus along an isotherm, dQ =
dw and dU = 0, The equation (33) gives M = p, or
dU/dV = 0 which means that U depends only on T .
Writing dU = CdT equation (35) becomes

dQ = CdT + RT

V
dV. (36)

and we recall that dQ is not an exact differential.
From (35), one obtains the heat capacity at constant

volume, which is the ratio dQ/dT at constant V ,

Cv = C, (37)

and the heat capacity at constant pressure, which is the
ratio dQ/dT at constant p,

Cp = C +R, (38)

and the difference in the heat capacity of an ideal gas
is a constant. As R is the same for two gases having
the same volume it follows that the difference in the
heat capacities per unit volume is the same for all gases.
This result is the same as that obtained from the Carnot
theory except that Clausius determines the difference
and states that it is a constant.

If we consider a process where there is no exchange of
heat then in equation (36) we may set dQ = 0 and

CdT + RT

V
dV = 0. (39)

If in addition, the heat capacity is constant then this
equation can be integrated with the result

T = kV −γ+1, (40)
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where γ = (C +R)/C is the ratio of the heat capacities,
from which we find

p = k′V −γ , (41)

results that are valid when an ideal gas undergoes
a process without the intervention of heat, and also
obtained by Poisson.

Next, we examine the consequences of the second
principle, contained in his forth paper on the theory of
heat published in 1854 [38]. From this principle Clausius
demonstrated that dQ/T is an exact differential. In a
Carnot cycle, let Q1 and Q2 be the heats exchanged at
the temperatures T1 and T2, and W the work performed.
According to the second principle, the ratio W/Q1
depends only on the two temperatures. As W = Q1 +Q2
we may say equivalently thatQ2/Q1 depends only on the
two temperature. Writing this dependence in the form
|Q2|/Q1 = T2/T1 we obtain

Q1

T1
+ Q2

T2
= 0. (42)

Applying this result to a cycle approximated by a series
of Carnot cycle one obtains∑

n

Qn
Tn

= 0. (43)

In the limit of an infinite number of cycles, one finds∫
dQ

T
= 0, (44)

where the integral is performed along a closed path.
From relation (44) it follows immediately that dQ/T is
an exact differential.

If we divide equation (29) by T , it becomes an
exact differential and we conclude that d(M/T )/dT =
d(N/T )/dV from which we get with the help of (32) the
result

M = T
dp

dT
. (45)

Let us apply this equation to coexistence of a liquid
with its vapor. In this case as a certain quantity of heat
is introduced at a constant pressure, the temperature
remains constant and the whole volume V increases.
The mass of the vapor is denoted by m and the mass
of the liquid is denoted by m0−m where m0 is the total
mass of the liquid and vapor. If we represent by ` the
heat required to vaporize a unit of mass of the liquid
then the infinitesimal heat introduced to increase the
volume by dV is dQ = `(dm/dV )dV . If we compare with
equation (29), we see that M = `(dm/dV ). Denoting by
v1 and v2, the volumes of the unit mass of the vapor
and liquid, respectively, then V = mv1 + (m0 − m)v2
and dm/dV = 1/(v1 − v2), where it is understood that
v1 and v2 depend only on the temperature. From these

results we find M = `/(v1 − v2) which replaced in (45),
gives

dp

dT
= `

T (v1 − v2) , (46)

which is known as the Clausius-Clapeyron equation.
Clausius says this equation represents one of the princi-
pal theorems of the mechanical theory of heat.

In his ninth paper on the theory of heat published in
1865 [39], Clausius writes

dS = dQ

T
, (47)

and calls S, which is a state function, the entropy of the
body. The difference in entropy ∆S between two states
is determined by

∆S =
∫
dQ

T
, (48)

and the integral is performed along any path connecting
the two states as the integral is the same for any path.
Replacing dQ = TdS in the equation (34), we get the
expression

dU = TdS − pdV. (49)

The result dQ = TdS connecting heat and entropy
was derived directly from the second principle, which
is a modification of the Carnot principle. Clausius says
that this second principle can be derived from a more
fundamental principle which he stated as follows: Heat
can never pass from a colder to a warmer body, if no
other related change occurs at the same time [38], which
we call Clausius principle. We deem that it is more
appropriate to keep the second principle independent
of the Clausius principle [3]. In deriving the relation
dQ = TdS from the second principle, it is implicit in
this principle that the body undergoing the cycle is in
equilibrium with the source of heat, which means that its
temperature is the same or very near the temperature of
the source. This situation is distinct from the situation
where the Clausius principle applies, which are to be
used in systems out of equilibrium.

Let us consider the main consequence of the Clausius
principle by considering a body being led from an
equilibrium state to another equilibrium state by a
process such the intermediary states are not equilibrium
states. As the body is in equilibrium in the initial and
final state, its entropy in these two states are well
defined, and we denote by ∆S their difference. Under
these circumstances, Clausius shows that

∆S ≥
∫
dQ

T ′
, (50)

where T ′ is to be understood as the temperature of the
environment, and not the temperature of the body.
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The equation (34), with the understanding that dU is
an exact differential, is understood as the conservation
of the energy, usually called the first law of thermo-
dynamics. The equation (50 is usually referred to as
the expression of the second law of thermodynamics.
We remark that the express of this law needs first the
definition of entropy, given by (47), which is valid only
if the system is in equilibrium. At the end of his paper
of 1865, Clausius summarizes the fundamental laws of
thermodynamics in the following brief statements [39]:
Die Energie of der Welt ist constant.
Die Entropie der Welt strebt einem Maximum zu.

5. Massieu

François Massieu [40] was born in 1832 at Vatteville,
France. At the age of fourteen he entered the Guernet
institution in Rouen. In 1851 he was admitted to the
École Polytechnique and then at the École de Mines
where he spent the three regulatory years. In 1861 he
defended at the Sorbonne two theses, one in analytical
mechanics, the other in mathematical physics. He was
appointed full professor of the Rennes Faculty of Sci-
ences in 1864. He lived in Rennes until 1886 when he
was called to Paris and in the following year he became
Director of the east railways control. He died in 1896.

In 1869 Massieu published his memoir on the char-
acteristic functions [41]. These functions were later used
by Gibbs who called them fundamental equations and by
Duhem who called them thermodynamic potentials, and
played a central role in the theory of thermodynamics
developed by these two physicists. The idea advanced
by Massieu is that a single function, the characteristic
function of a body, contains all the thermodynamic
properties of a body. More precisely, the characteristic
function by itself or by partial derivatives express the
properties of a body.

Massieu wished the characteristic function to be writ-
ten in terms of the temperature and volume or the
temperature and pressure, which are quantities that are
measured directly. This function is not the energy or
the entropy but another quantity which is obtained from
them. In the following we show how Massieu managed to
find this function by the analysis of his paper of 1869 [41]
and another longer paper on the same subject published
in 1876 [42].

An infinitesimal quantity of heat dQ absorbed by a
body is employed to produce an external work and to
increase the energy U of the body. Denoting by p the
pressure and V the volume, the work is pdV and we
may write

dQ = dU + pdV. (51)

We are omitting in this equation a constant A that
multiplies the last term, and which is the mechanical
equivalent of work. Following Clausius, dQ/T = dS is
an exact differential of a function S called entropy, and

the above equation becomes

dS = 1
T
dU + p

T
dV, (52)

where T is the absolute temperature.
If we choose V and the temperature T as independent

variable, then

dU = dU

dV
dV + dU

dT
dT, (53)

and

dS = 1
T

dU

dT
dT + 1

T

(
dU

dV
+ p

T

)
dV. (54)

Since dS is an exact differential, the derivative of the
term multiplying dT with respect to V equals the
derivative of the term multiplying dV with respect to
T . From this relation we obtain

d

dT

p

T
= d

dV

U

T 2 . (55)

If we define the differential dΨ by

dψ = U

T 2 dT + p

T
dV, (56)

it follows from the equality (55) that it is an exact
differential of a function ψ, which Massieu calls the
characteristic function of the body. Since dψ is an exact
differential, it follows from (56) that

dψ

dT
= U

T 2 ,
dψ

dV
= p

T
. (57)

Replacing U obtained from the first of the equations (57)
in the relation

dS

dT
= 1
T

dU

dT
, (58)

and integrating the resulting equation we find

S = ψ + T
dψ

dT
= d

dT
(Tψ). (59)

If the characteristic ψ is known as a function of T and
V , then we may obtain S as well as U and p.

Taking into account the first of the equations (57), we
may write (59) as

ψ = S − U

T
. (60)

In an analogous manner a characteristic function is
obtained by considering T and p as independent function
which is

ψ′ = S − U ′

T
, (61)

where U ′ = U + pV .
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In the second publication on the same subject, [42],
Massieu simplifies his approach. He adds a term SdT to
both sides of the equation TdS = dU + pdV from which
follows d(TS) = dU + pdV +SdT which is equivalent to

dH = SdT + pdV, (62)

where

H = TS − U. (63)

Since dH is a exact differential so is the right-hand side
of this equation and H is understood as a function of T
and V and

S = dH

dT
, p = dH

dV
. (64)

Taking into account the first of these equations, then the
equation (63) is written in the form

U = T
dH

dT
−H, (65)

and S, p and U are expressed in terms of the char-
acteristic function H. The use of H instead of ψ =
H/T , employed in the publication of 1869, followed a
suggestion made by Bertrand [42].

In an analogous manner, Massieu defines a charac-
teristic associated to the temperature and pressure as
independent variables. Adding a term V dp to both sides
of the equation TdS = dU + pdV , we find

dU ′ = TdS + V dp, (66)

where

U ′ = U + pV. (67)

Adding a term SdT to (66) we find

dH ′ = SdT − V dp, (68)

where

H ′ = TS − U ′, (69)

which is the desired characteristic function. From (68),

S = dH ′

dT
, V = −dH

′

dp
. (70)

6. Maxwell

The major subject of the Maxwell investigations was
electromagnetism. However, he gave relevant contribu-
tions to the area of the kinetic theory of gases and
to the theory of heat. In 1871, he published a book
called Theory of Heat [20] that went through several
editions. In the fourth edition of 1875 [43], he removed
several paragraphs related to entropy that he found to be
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Figure 2: Isotherms of carbon dioxide according to experiments
carried by Andrews [45] for various temperatures indicated in
degrees Celsius, and pressure in atmospheres. The figure is
adapted from the figure 15 of Maxwell book on Theory of
Heat [20]. The dashed line is an addition of Maxwell and
represents the boundart of the region where the liquid and its
vapor coexist.

inappropriate and introduced new ones. The book was
written in a language appropriate for a broader audience
and contains few analytical expressions [44].

In the first five chapters of the book, Maxwell dis-
cusses the concepts of temperature, heat and work. The
temperature of a body is a quantity which indicates how
hot of how cold the body is. If two bodies at different
temperatures are in contact, heat passes from the hot
body to the cold one. The temperature is measured by a
thermometer such as the mercurial thermometer or the
air thermometer. The heat is measured by a calorimeter
such as the ice calorimeter.

The chapter six deals with the isotherms of gases
and liquids when represented in the indicator diagram
which is the pressure volume diagram. Maxwell analyzes
particularly the isotherms of carbon dioxide obtained
experimentally by Andrews [45] and shown in Figure 2.
The isotherm of 13.1◦C has a straight segment at the
pressure of 47 atmospheres which is the pressure at
which condensation occurs. A point on this line segment
represents the state of the fluid as two phases, liquid
and vapor, in coexistence. The left and right ends of the
segment represent the liquid and vapor, respectively. If
we examine the isotherm at 21.5◦C, the condensation
occurs at about 69 atmospheres and length of the line
segment is smaller. When one approaches the temper-
ature of 30.92◦C there is no separation between liquid
and vapor. At this temperature and pressure between 73
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Figure 3: According to James Thomson, the isotherm of a fluid
below the critical temperature may have an S shape given by
the line ABCDEFGHK, which means that the liquid transforms
continuously into vapor. The straight line CG connecting the
liquid and vapor states is proposed by Maxwell and describes
the coexistence of liquid and vapor. Adapted from figure 16 of
Maxwell book on Theory of Heat [20].

and 75 atmospheres the carbon dioxide is in the critical
state.

James Thomson, says Maxwell, made the suggestion
[46] that the flat portion of the isotherm, that describes
the coexistence of liquid and vapor, is apparent and that
in fact the isotherms below the critical temperature have
a form similar to the curve ABCDEFGHK of Figure 3.
This means that the vapor transforms continuously into
liquid without coexistence. However, remarks Maxwell,
no substance could exist at any state along the points
of DEF because they represent unstable states. He
proposes to replace the S shaped portion by a straight
line CG parallel to the axis of volumes, in accordance
with the Andrews experiments. The position of the line
CG which represents the vapor pressure is such that
the evaporation exactly balances the condensation. The
whole isotherm will then consist of the curve ABC, the
straight line CG, and the curve GH.

In chapter nine, Maxwell derives geometrically various
thermodynamic relations involving the entropy, some of
which are the four relations that bear his name. To
this end he uses a Carnot cycle, as shown in Figure 4,
represented in the indicator diagram by two adiabatic
lines and two isotherms, whose area is the net work W ,
which equals, by the conservation of energy, to the total
heat exchanged Q. The entropy is defined in accordance
with Clausius. Along an isothermal, the variation of
the entropy is the ratio between the heat and the
temperature. Since along an adiabatic line the entropy
is invariant, then the variation of entropy along the
two isotherms of the Carnot cycle are the same and
one concludes that the heat exchanged is equal to the
variation of entropy multiplied by the difference in the

A

D P

K

k

l Q

L m

M

N

n

B
R

S

C

Figure 4: A small Carnot cycle ABCD in the pressure-volume
diagram. BC and DA are isothermal and AB and CD are
adiabatic. The areas of the rectangles AKPk, ALQl, AMRm, and
ANSn are equal to each other and equal to the parallelogram
ABDC. The figure is based on figure 24 of the Maxwell
book [20].

temperatures of the isotherms, Q = (T2 − T1)(S2 − S1).
Referring to the small Carnot cycle on the pressure-
volume diagram of Figure 4, the area ABCD of the cycle,
which is the net work, is equal to the heat exchanged,
which is equal to ∆T∆S, where ∆T and ∆S are the
increments in temperature and entropy, respectively.

From the Figure 4 we find that:

1) AK is equal to the increase in volume at con-
stant pressure, (∆V )p, and that Ak is equal to
the decrease in pressure at constant temperature,
−(∆p)T . As ABCD is equal to AKPk we find
∆T∆S = −(∆V )p(∆p)T which gives(

dS

dp

)
T

= −
(
dV

dT

)
p

. (71)

2) AL= (∆V )p, Al= (∆p)S , and as ABCD is equal to
ALQl, then ∆T∆S = (∆V )p(∆p)S which gives(

dT

dp

)
S

=
(
dV

dS

)
p

. (72)

3) AM=(∆p)V , Am=(∆V )T , and as ABCD is equal
to AMRm, then ∆T∆S = (∆V )T (∆p)V which
gives (

dS

dV

)
T

=
(
dp

dT

)
V

. (73)

4) AN=(∆p)V , An=−(∆V )S , and as ABCD is equal
to ANSn, then ∆T∆S = (∆V )S(∆p)V which gives(

dT

dV

)
S

= −
(
dp

dS

)
V

. (74)

The equations (71), (72), (73), and (74) are the
four Maxwell relations of thermodynamics.

Using the illustration of Figure 4, Maxwell also shows
the relation between the two types of heat capacities and
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the two types of elasticities. The line AM represents the
increase in pressure at constant volume when the entropy
increases by dS and the line AN represents the increase
in pressure at constant volume when the temperature
increases by dT . Therefore, the heat capacity at constant
volume is

CV = T
AM
AN , (75)

where T is the temperature of state A. In an analogous
manner, the line AL represents the increase in volume
at constant pressure when the entropy increases by dS
and the line AK represents the increase in volume at
constant pressure when the temperature increases by dT .
Therefore, the heat capacity at constant pressure is

Cp = T
AK
AL . (76)

Let us consider now the two elasticities. One of them
is the ratio of the decrease in pressure and the increase
in volume at constant temperature multiplied by the
volume, which is denoted by ET . From Figure 4, the
decrease in pressure is Ak and the increase in volume is
Am, and

ET = V
Ak
Am = V

AM
AK , (77)

where we used the equality between the areas of AKPk
and AMRm. In an analogous manner, the elasticity ES
at constant entropy is ES = V (Al/An)= V (AN/AL).

ES = V
Al
An = V

AN
AL . (78)

From the above relations we see that the ratio Cp/CV
equals the ratio ES/ET , that is

Cp
CV

= ES
ET

. (79)

From the geometrical properties of the Figure 4, we see
that the area of the parallelogram ABCD is (Am·Al −
Ak·An) or (∆V )T (∆p)S − (∆p)T (∆V )S . But the area
of ABCD, which is the net work, is equal to the heat
∆T∆S and we reach the relation(

dp

dV

)
S

−
(
dp

dV

)
T

=
(
dS

dV

)
T

(
dT

dV

)
S

, (80)

which gives

ES(Cp − CV ) = CV (ES − ET ) = TV

(
dp

dT

)2

V

, (81)

where the relation (79) was used.
In chapter twelve, Maxwell discusses the available

energy or the maximum work one can obtain from a
body undergoing a thermodynamic transformation. The
conservation of energy along a process connecting two
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Figure 5: The curve AB represents a process connecting the
states A and B, and the lines Aα and Bβ are two adiabatics.
The area of ABba represents the work performed and the area
ABβα represents the heat absorbed by the body undergoing the
process AB. The line CBD is an isotherm. The figure is based
on figure 26 of the Maxwell book [20].

states AB can be understood by representing the process
in a pressure volume diagram as shown in Figure 5.
In this diagram, the work W performed by the body
undergoing the process is the area ABba. As to the
heat absorbed by the body, it is represented by the
area ABβα, where Aα and Bβ are isentropic lines.
Indeed, if we consider a closed path ABβα, the heat
along this closed path equals the work which is the area
of this closed path. But the heat developed along this
closed path occurs only along AB as Aα and Bβ are
isentropics. The variation of the energy of the body is
the difference between the area ABba and ABβα. If we
consider another path connecting the states A and B,
we see that the increase in the work in relation to the
previous path equals the decrease in the heat and the
variation of energy remains invariant.

Let us consider all paths connecting the state A
to B and ask for the path which gives the maximum
work supposing that the surrounding medium is at the
temperature T the same as the body at the final state B.
To find this path we draw the isotherm CBD through the
state B which corresponds to a temperature T smaller
than that of A. Suppose that the body has a temperature
higher than T which corresponds to the point of the path
is above CBD. In this case it cannot receive heat from
the medium and its entropy cannot be higher than that
of A which means that the point of the path must be
below the isentropic Aα. Analogously, if the point of the
path is below CBD it must be above the isentropic Aα.
Within these restrictions, the maximum work occurs for
the path AEB, where E is the point where the isentropic
passing through A meets the isotherm passing through
B. This maximum work is equal to the heat received
by the body along EB, which is T (S0 − S), minus the
increase in energy E0 − E, that is,

E − E0 − T (S − S0). (82)

We are denoting by E and S the energy and entropy of
the initial state A and by E0 and S0 those of the final
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state B. This quantity is the part of the energy which
is available to be transformed into work, which for that
reason Maxwell called (82) the available energy. If W
denotes the work of any process connecting A to B then

E − E0 − T (S − S0) ≥W. (83)

In the first edition of the book of 1871, Maxwell
incorrectly identified entropy with the available energy.
The error was pointed out by Gibbs in his paper on the
geometric representation of thermodynamics, published
in 1873. This was corrected by Maxwell in the fourth
edition of 1875, who also added a whole section in the
chapter twelve to discuss the Gibbs geometric represen-
tation [44].

7. van der Waals

Joahnnes Diderik van der Waals [47, 48] was born in 1837
at Leiden, Netherlands. He started a teaching career
as an assistant school teacher around 1853. In 1862 he
obtained a qualification that allowed him to hold the
position of a director of a primary school. He attend
the University of Leiden from 1862 but not as a regular
student because of his lack of knowledge in the classical
languages. He was appointed physics teacher at the
advanced schools in Deventer, in 1865, and after in The
Hague, in 1867. In 1871, the requirement of classical
language was removed and van der Waals could enroll
in the doctoral studies at the University of Leiden. He
defended his doctoral thesis concerning the equation of
state describing the liquid and gas transition in 1873.
In 1877, he was nominated professor of physics at the
University of Amsterdam. He retired from the university
in 1908. He died in Amsterdam in 1923.

The van der Waals thesis [49, 50] concerns the equa-
tion of state of a fluid that describes both the liquid
and the gas phases as well as its critical point. The
equation of state is the expression of the pressure as
a function of the temperature and the volume. Van der
Waals assumes the molecular structure of fluid and that
the molecules moves under the action attractive forces
which vanish when the distance between particles is
large. The molecules have a finite size which means that
they have a strong repulsion when the distance between
their centers is of the order their sizes.

The point of departure is the Clausius virial theo-
rem [51]

1
2
∑
i

mv2
i = −1

2
∑

(Xixi + Yiyi + Zizi), (84)

where m is the mass, vi is the velocity, xi, yi, and zi are
the coordinates and Xi, Yi, and Zi are the components
of the force acting on a particle. The left hand side is the
total kinetic energy and the term at the right was called
the virial by Clausius. The virial can be written as the
sum of two parts. One of them is related to the internal

forces, considered to be central forces, and reads

V = 1
2
∑
ij

rijf(rij), (85)

where rij denotes the distance between two particles and
f(rij) the force between them. The second part is related
to the external forces which are the reactions of the wall
of the vessel due to the impact of the molecules. It equals
to (3/2)pV where p is the pressure of the fluid and V the
volume of the vessel. The equation (84) becomes

1
2
∑
i

mv2
i = V + 3

2pV, (86)

which is written in the form
1
2
∑
i

mv2
i = 3

2(p+ p′)V, (87)

where p′ represents the molecular pressure.
Van der Waals argues that on account of the extension

of the molecule, the volume V should be replaced by
V − Nb where N is the number of molecules and b
is four times the volume of a molecule, considered to
be a sphere. He also argues that the internal molecular
pressure p′ is proportional to the square of the density,
that is proportional to (N/V )2. Defining v = V/N , we
get

1
2
∑
i

mv2
i = 3

2N
(
p+ a

v2

)
(v − b), (88)

where the constant a is related to the molecular attrac-
tion. Van der Waals assumes that the kinetic energy is
proportional to 1 + αt where t is the temperature in
degrees centigrade, and this equation becomes(

p+ a

v2

)
(v − b) = RT (89)

where R is a constant and T is an abbreviation for 1+αt.
The calculations carried out by van der Waals in

the first seven chapters of the thesis is not properly
a derivation of his equation from the virial theorem
applied to a system of interacting particles, as we would
expected. Nonetheless one may consider the calculations
to be a justification of the equation that he may already
had in mind [48]. But the relevant point here is that his
equation contains terms that describe the attraction of
the molecules and the repulsion at short distances, which
are the basic assumptions of van der Waals concerning
the interaction of particles and that are crucial to
describe the two states of aggregation of the molecules,
the liquid and vapor. In the words of Maxwell, his attack
of this difficult question is so able and so brave, that
it cannot fail to give a notable impulse to molecular
science [52].

We write the van der Waals equation in the form

p = RT

v − b
− a

v2 . (90)
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Figure 6: An isotherm at a temperature below the critical tem-
perature according to the van der Waals equation (90). Along
the S shaped line CDEFG, the liquid transforms continuously
into vapor. But this cannot be realized experimentally because
along DEF the body is unstable. Based on the figure 6 of the
van der Waals thesis [49].

For high temperatures, the pressures decreases mono-
tonically with the volume. Below a certain temperature
the isotherms are of the form given by the Figure 6. For
a given pressure there are three possible volumes for a
given isotherm, which correspond to the points C, E,
and G. Van der Waals recognizes that the volumes of
C and G, the smaller and the greater volumes, are the
volumes the body acquires in the liquid and gas states,
respectively.

To determined the critical point, it suffices to observe
that at the critical isotherm the three points C, E, and
G coalesce in one point. As the volume of these points
are the roots of the cubic equation

pv3 − (RT + bp)v2 + av − ab = 0, (91)

the occurrence of the critical isotherm is obtained when
this equation has three equal roots. From this condition
van der Waals finds the critical values for the volume
vc = 3b, for the pressure pc = a/27b2, and for the
temperature RTc = 8a/27b.

Along any isothermal curve described by the analyt-
ical expression (90), the body changes states without
ceasing to being homogeneous. In particular, this hap-
pens to the line CDEFG which leads us to conclude that
along CDEFG the liquid transforms continuously into
vapor, that is, without being split into coexisting phases.
Van der Waals points out that the continuous change of
states predicted by his equation is in agreement with the
suggestion made by James Thomson [46] of a continuous
change from liquid to vapor along an isotherm. However,
he remarks that at the intermediate point E and at
any point between D and F, dp/dv is positive which
means that a homogeneous body is unstable and cannot
remain homogeneous. In other terms, a homogeneous
body cannot be observed in these conditions.

The comparison of his isotherms to those of the
carbon dioxide obtained experimentally by Andrews
shows an agreement with the line ABCGH containing
the straight line segment CG. The line segments FG
and CD, which are not contained in the Andrews
isotherms, represent superheated liquid and supercooled
vapor observed experimentally. Van der Waals rejected
the solution given by Maxwell in his book on the Theory
of Heat of joining the C and G by a straight line, and
left open this problem.

In the first edition of 1871 of his book on the Theory
of Heat, Maxwell proposed the straight line to represent
the coexistence of liquid and vapor but did not specify
the position of the line. In a publication of 1875 [52],
Maxwell proposed to place the straight line in such a
way that the areas of the region CDE and EFG be
equal. The reasonings given by Maxwell are as follows.
Suppose that the body, starting from the state G, follows
the hypothetical S shaped line GFEDC and then return
to G by the straight line CG. Since the temperature
remains the same, no heat is exchanged and, taking into
account that the final state is the same as the initial
state, the net work vanishes. This means that the area
under the curve CDEFG must be equal to the area
under the straight line CG, which leads to the equality of
the areas CDE and EFG. The equal-areas rule was also
proposed independently by Clausius in a publication of
1880, which he obtained by using a reasoning similar to
that just presented [53, 54].

8. Gibbs

Josiah Willard Gibbs [56, 57] was born in 1839 at New
Haven, United States. In 1849 he entered the Hopkins
Grammar School and from 1854 he attended the Yale
College from which he graduated in 1858. In the same
year he entered the Department of Philosophy and the
Arts of Yale as a student of engineering. He received
the PhD degree in this area in 1863 and in this year
he was appointed as tutor in Yale College for three
years. In the period from 1866 to 1869 he traveled
to Europe where he attended lectures in Paris and
Berlin. After returning to New Haven he was appointed
professor of mathematical physics at Yale in 1871 In
1873 he published two papers on the use of geometric
surfaces to represent the thermodynamics properties of
substances [58, 59]. These papers were followed by his
major work on thermodynamics, dealing with the equi-
librium of heterogeneous substances, published in two
parts, the first in 1876 [60] and the second in 1878 [61].
He also worked on vector calculus and electromagnetic
theory of light. In 1902 he published a book on statistical
mechanics where he used the theory of probability
and Newtonian mechanics to give a rational founda-
tion of thermodynamics. He died in the following year
in 1903.
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Figure 7: The thermodynamic surface ABCD, which gives the
energy U as a function of the entropy S and the volume V .
The straight lines FEG and HEK belong to the plane tangent
to the thermodynamics surface at the point E. The inclinations
of the lines FEG and HEK are related to the temperature T
and to the pressure p, respectively. The thermodynamic surface
remains above the plane tangent to any point of the surface,
which is equivalent to say that it has the convexity property.

8.1. Graphical representation
of thermodynamics

We analyze here the two papers of 1873 [58, 59] which
deal with the graphical representation of the thermody-
namics properties of substances. The first paper starts
with the conservation of energy in the differential form

dU = dQ− dW, (92)

where U is the energy of a given body, Q is the heat
received by the body, and W the work done by the body
when passing from one state to another. The heat and
work are related to entropy S and volume V of the
body by dQ = TdS and dW = pdV where T is the
absolute temperature and p the pressure of the body.
The elimination of dQ and dW gives

dU = TdS − pdV. (93)

Gibbs remarks that V , p, T , U , and S are state functions
and that only two are capable of independent variations.
He also remarks that W and Q are not state functions
but are determined by the sequence of states by which
the body passes along a process.

The main idea of Gibbs contained in the two papers
of 1873 lies on the understanding of U as a function of
S and V and thus as a surface on the space defined
by the rectangular axes U , S, and V , as shown in
Figure 7, which he calls the thermodynamics surface.
In accordance with the equation (93),

T = dU

dS
, p = −dU

dV
, (94)

and the temperature and pressure are the tangents of
the angles of inclination of the lines FEG and HEK,
respectively. Gibbs remarks that the points at the
surface represents states of thermodynamic equilibrium.

U

S

V

L

V

S

C

Figure 8: Thermodynamic surface displaying the coexistence
of three phases, solid, liquid, and vapor, represented by the
plane triangle SLV. Any point of the triangle correspond to the
same temperature and the same pressure. It also displays the
coexistence of two phases, represented by the dashed straight
line segments. Any point of a certain line correspond to the same
temperature and pressure. The point C is the critical point where
two phases become identical.

The fundamental property of the thermodynamic
surface advanced by Gibbs is its convexity. He states
this property by stating that the surface falls above the
tangent plane except at the single point of contact, as
can be seen in Figure 7. This property is expressed
by considering a body being placed in a medium with
temperature T and pressure p. The medium is large
enough so that the exchange of heat and work with
the body does not alter its temperature and pressure. If
the initial and and final energy, entropy, and volume of
the body are, respectively, (U ′, S′, V ′) and (U ′′, S′′, V ′′)
Gibbs argues by using stability reasoning that [59]

U ′′ − TS′′ + pV ′′ ≤ U ′ − TS′ + pV ′. (95)

We transform this expression as follows.
For a better understanding of this expression, we

denote the temperature and pressure of the medium
by T0 and p0 and we suppose that the body reaches
equilibrium and thus attains the temperature T0 and
pressure p0. As initial state of the body we choose a point
(U, S, V ) on the thermodynamic surface and denote
the final state by (U0, S0, V0). The stability equation
becomes

U ≥ U0 + T0(S − S0)− p0(V − V0). (96)

The right hand side describes a plane tangent to the
thermodynamic surface at the point (U0, S0, V0). There-
fore another point of the thermodynamic surface given
by U(S, V ) lies above the tangent plane.

The Figure 7 shows the thermodynamic surface of a
homogeneous body. If the body becomes heterogeneous
then there are distinct points of the surface with the
same temperature and the same pressure, as the plane
triangle and the straight line segments shown in Figure 8.
These points correspond to different states of coexistence
of two or more thermodynamic phases. As the entropy
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and volume of the body changes, the size of each
phase changes, but the temperature and the pressure
remain invariant. Thus the change of states should
describe geometric figures with all points with the same
inclinations, such as a straight line segment or a plane
triangle. The form is related to the coexistence of two
phases such as solid and liquid, solid and vapor, and
liquid and vapor, and the later with three phases, such
solid, liquid, and vapor.

In the case of the liquid-vapor coexistence, the length
of the straight line segment eventually vanish at a
point C, as shown in Figure 8, when one varies the
temperature. This point is called the critical point and
is a point where the two phases become identical. Gibbs
gives as an example of this point the liquid-vapor critical
point of the carbon dioxide obtained experimentally by
Andrews in 1869 [45].

8.2. Thermodynamics of heterogeneous
substances

We analyze now the Gibbs paper on equilibrium thermo-
dynamics published in two parts, in 1876 and 1878 [60,
61]. A translation of the paper into German appeared
in 1892 [62] and into French in 1899 [63]. It is a large
paper containing 323 pages dealing with heterogeneous
substances which are systems having two or more ther-
modynamic phases in coexistence. A homogeneous sub-
stance contains a single phase. The thermodynamics of
Gibbs is founded on the principles upon which Clausius
based his own theory of heat. Gibbs acknowledges this
at the very beginning of the paper by quoting the last
two sentences of the Clausius paper of 1865 [39], which
are brief statements of the first and second laws of
thermodynamics: Energie of der Welt ist constant. Die
Entropy der Welt strebt einem Maximum zu.

The point of departure of the Gibbs theory is the
two criteria of equilibrium for an isolated system. Let us
denote by U and S the energy and entropy of the system
and let us suppose that the system is in equilibrium.

I. If we consider all variations of its state which do not
alter its energy, then the variation of the entropy
is negative or vanishes, (δS)U ≤ 0.

II. If we consider all variations of its state which do not
alter its entropy, then the variation of the energy
is positive or vanishes, (δU)S ≥ 0.

The criteria are direct consequences of the second law
of thermodynamics as expressed by Clausius inequality,
although Gibbs did not present an explicit derivation of
them from the inequality.

Gibbs considers a homogeneous system composed of
various substances and assumes that the energy U is a
function of the entropy S, the volume V , and the masses
m1,m2, . . . ,mn, where n is the number of substances.
The differential of the energy is

dU = TdS−pdV +µ1dm1 +µ2dm2 + . . .+µndmn, (97)

where T is the temperature, p the pressure. The coeffi-
cient µi is the chemical potential, which Gibbs called
the potential for the substance. He did not use the
term chemical potential in his major paper on ther-
modynamics. This term was introduced by Bancroft
in a letter to Gibbs of 1899 [64]. It was defined by
Gibbs as follows. If to any homogeneous mass we suppose
an infinitesimal quantity of any substance to be added,
the mass remaining homogeneous and the entropy and
volume remaining unchanged, the increase in energy of
the mass divided by the quantity of the substance added is
the potential for that substance in the mass considered.
That is, µi = (dU/dmi) where S, V , m1, m2, . . . ,mn

remain constant except mi.
The fundamental consequence of the principle I above

is the condition for the equilibrium of a heterogeneous
substances, that is, a body composed by two or more
thermodynamic phases in coexistence. From this prin-
ciple it follows that all phases must have the same
temperature, the same pressure, the same chemical
potential related to the first component substance, the
same chemical potential related to the second component
substance, and so on. This condition is written as

T ′ = T ′′ = T ′′′ = . . . (98)

p′ = p′′ = p′′′ = . . . (99)

µ′i = µ′′i = µ′′′i = . . . (100)

where the superscripts denote the thermodynamic
phases. The last equation is the condition for chemical
equilibrium. Notice that Gibbs calls component sub-
stance what we call a chemical component.

Looking at the equation (97), we see that U can
be considered a function of the n + 2 variables S, V ,
µ1, . . . , µn. Gibbs calls this function a fundamental equa-
tion because from it we may obtain the temperature, the
pressure, and the chemical potentials by differentiation.
Gibbs considered other fundamental equations obtained
by using the approached introduced by Massieu [41], who
called them characteristic functions. Gibbs defines

F = U − TS. (101)

The differential of F is

dF = −SdT − pdV + µ1dm1 + µ2dm2 + . . .+ µndmn,
(102)

which allows us to consider F as a function of T , V ,
and m1,m2, . . . ,mn. Gibbs also defines H = U + pV
which is a function of S, p, and m1,m2, . . . ,mn and
G = U − TS + pV , which is a function of T , p, and
m1,m2, . . . ,mn. Gibbs remarks that Massieu introduced
two kinds of characteristic functions. One of them is
identified with −F/T and the other with −G/T . These
functions were introduce by Massieu in a paper of 1869
[41]. We remark that in another paper [42], published
in 1876, Massieu considers the characteristic functions
which are identified with −F , H, and −G.

DOI: https://doi.org/10.1590/1806-9126-RBEF-2022-0008 Revista Brasileira de Ensino de F́ısica, vol. 44, e20220008, 2022



e20220008-16 Structure of the analytical theories of heat

Gibbs argues that U can be written in the form

U = TS − pV + µ1m1 + µ2m2 + . . .+ µnmn, (103)

by assuming that the quantities U , S, V , and
m1,m2, . . . ,mn varies in the same proportion. From this
relation, one finds

F = −pV + µ1m1 + µ2m2 + . . .+ µnmn, (104)

G = µ1m1 + µ2m2 + . . .+ µnmn, (105)

and the relation

SdT −V dp+m1dµ1 +m2dµ2 + . . .+mndµn = 0, (106)

which is known today as the Gibbs-Duhem relation.
If one considers two states at the same temperature,

then F ′ − F ′′ = U ′ − U ′′ − T (S′ − S′′) = U ′ − U ′′ −
Q = −W , and the decrease in F is the work done by
the system at constant temperature. In an analogous
manner, if we consider two states at the same pressure,
then H ′ − H ′′ = U ′ − U ′′ + p(V ′ − V ′′) = U ′ − U ′′ +
W = Q, and the increase in H is the heat absorbed
by the system at constant pressure. The condition of
equilibrium for system that perturbed in such a way
that the temperature remains constant is expressed by
(δF )T ≥ 0. If in addition the pressure also remains
constant then the condition is (δG)T,p ≥ 0.

As the work is equal to the variation of the internal
energy U at constant S, Gibbs asserts that U is the
force function for constant entropy. Analogously, as the
work is equal to −F at constant T , then −F is the force
function for constant temperature. A force function is
the negative of what we call potential energy function.

Gibbs introduces the rule concerning the number of
phase in coexistence, known as the Gibbs phase rule. Let
us consider a system consisting of r phase in coexistence.
The number of independent of variables capable of being
varied is n + 2 − r. This is so because the variables are
T , p and the n chemical potentials, which sum up to
n + 2. However, we have r conditions of equilibrium
expressed by equations (98), (99), and (100), reducing
the number of independent variables by r. The phase
rule is expressed by n+2−r ≥ 0. In the case of a simple
substance, n = 1, the rule implies that we may have at
most three phases in coexistence. We should remark that
the Gibbs rule is based on the implicit assumption that
the r conditions of equilibrium consist of r independent
equations. If only r∗ ≤ r are independent then the rule
should read n+2−r∗ ≥ 0. This might occur if the system
may hold some symmetries which will be reflected in the
equation for the conditions of equilibrium. However, this
does not seem to be the case of fluid systems that are
the main concern of Gibbs.

Let us consider two phase in coexistence in a system
one just one component. The condition of equilibrium is
µ′ = µ′′ or dµ′ = dµ′′. Using equation (106), m′dµ′ =
−S′dT +V ′dp and m′′dµ′′ = −S′′dT +V ′′dp from which

follows
dp

dT
= s′ − s′′

v′ − v′′
= `

T (v′ − v′′) , (107)

where s′ and s′′ are the entropy per unit mass of each
phase, and v′ and v′′ are the volume per unit mass of
each phase, and ` is the heat absorbed by a unit of mass
of the substance in passing from one phase to another.
The equation (107) is known as the Clausius-Clapeyron
equation.

Let us consider two equilibrium states and let us
denote by ∆U = U ′ − U the difference in energy of the
second and first states. In a similar manner we define
∆S = S′−S, ∆V = V ′−V , and ∆mi = m′i−mi. Gibbs
writes the general condition of stability for a system with
several chemical components as

∆U > T∆S − p∆V + µ1∆m1 + . . .+ µn∆mn, (108)

where T , p, and µi refer to the temperature, the pressure,
and the chemical potential of the first state. If V is kept
constant then a consequence of the stability condition
(108) involve the second derivatives of U with respect to
the variables S, m1, . . . ,mn. If a matrix is set up with
these second derivatives, the determinant of any minor
is positive.

Gibbs analyzes the properties of a mixture of ideal
gases by first considering the fundamental equation of a
single ideal gas. To this end he uses the equation that
relates the pressure p, the volume V and the temperature
T for a ideal gas

pV = amT, (109)

where m is the mass of the gas and a is a constant.
He also uses the equation that related the energy and
temperature

U = m(cT + ε), (110)

where c and ε denote constants. Using these equations
to eliminate T and p in equation (93), one finds

mcdU

U −mε
= dS − am

V
dV, (111)

The integration of this equation gives

c ln U −mε
cm

= S

m
+ a ln m

V
− h, (112)

where h is a constant. This is a fundamental equation
because U is an implicit function of S, V , and m.

Replacing U , given by (110), into (112) one finds

S = m

(
c+ h+ c lnT + a ln V

m

)
. (113)

From the definition of F , one obtains the fundamental
equation

F = mε+mT
(
c− h− c lnT + a ln m

V

)
. (114)
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To reach the fundamental equation for a mixture of
ideal gases, Gibbs assumes the following rule. The pres-
sure of a mixture of different gases is equal to the sum of
the pressures of each gas at the same temperature and at
the same value of the chemical potential. From this rule,
Gibbs finds that the function F of the mixture is equal
to the sum of these functions by considering each gas
separately at the same temperature and with the same
volume. Taking into account the expression (104), it is
given by

F =
∑
i

mi

[
εi + T

(
ci − hi − ci lnT + ai ln mi

V

)]
.

(115)
From the fundamental equation (115), we determine the
chemical potential of the substance i by µi = dF/dmi,

µi = εi + T
(
ai + ci − hi − ci lnT + ai ln mi

V

)
, (116)

the pressure by p = −dF/dV , or

p =
∑
i

aimiT

V
, (117)

and the entropy by S = −dF/dT or

S =
∑
i

mi

(
hi + ci lnT + ai ln V

mi

)
. (118)

Using equation (118),we may determine the increase
of entropy when two different gases are mixed at the
same temperature and pressure. To meet this condition
we suppose that initially each gas occupies one half of
the final volume V . The result is

(m1a1 +m2a2) ln 2 = pV

T
ln 2. (119)

Gibbs remarks that this expression does not depend on
the nature of the gases. In addition, he points out that
pV/T is determined by the number of molecules which
are mixed. That is, Gibbs is using the Avogadro law of
gases.

In the second part of the paper on heterogeneous
substances, Gibbs deals with the surface thermody-
namics and capillarity. This includes the study of the
thermodynamic properties of the interface between two
coexistence fluid phases. The Gibbs approach uses the
concept of dividing surface, which is a geometrical
surface parallel to the interface defined as follows. Let us
consider a closed surface within the fluid that contains
the interface, and denote by V ′ and V ′′ the volume
above and below the dividing interface to be found. The
densities of each one of the two phases are denoted by ρ′
and ρ′′. The dividing surface is placed at a point where
the mass m of the fluid inside the closed surface equal
the sum V ′ρ′ + V ′′ρ′′.

Having defined the dividing surface we may determine
the excess of mass ms

i of the substance i by

ms
i = mi −m′i −m′′i , (120)

where mi is the mass of the substance i inside the closed
surface and m′i = V ′ρ′i and m′′i = V ′′ρ′′i , where ρ′i and
ρ′′i are its densities in each one of the phases.

In an analogous manner, we define the excess energy
U s bu

U s = U − U ′ − U ′′, (121)

where U is the energy of the fluid inside the close surface,
and U ′ = V ′u′ and U ′′ = V ′′u′′, where u′ and u′′ are the
densities of energy in each phase, and the excess entropy
Ss by

Ss = S − S′ − S′′, (122)

where S is the entropy of the fluid inside the close
surface, and S′ = V ′s′ and V ′′s′′, where s′ and s′′ are
the densities of entropy in each phase.

A quantity related to the whole closed surface such as
U growths with the volume V if V is large. However its
difference to the quantity U ′ + U ′′, which also growths
with V , does not. In fact the difference, which is the
excess energy is much smaller than U or U ′ + U ′′ and
growths with the area A of the dividing surface inside
the closed surface. This is so because the difference
vanish except in the region very near the interface.
Therefore, all the excess quantities are considered to be
proportional to A.

The next step is to use the equation (97), with the
volume constant, to write

dU = TdS +
∑
i

µidmi, (123)

dU ′ = TdS′ +
∑
i

µidm
′
i, (124)

dU ′′ = TdS′′ +
∑
i

µidm
′′
i , (125)

where the temperature and the chemical potentials are
the same in the three equations. From these equations
we find

dU s = TdSs +
∑
i

µidm
s
i . (126)

As U s depends on the area A, this equation is in fact
valid for constant A. If we allow the area to vary, then

dU s = TdSs + σdA+
∑
i

µidm
s
i , (127)

where sigma is the surface tension. Considering that all
excess quantities are proportional to A, we may write

U s = TSs + σA+
∑
i

µim
s
i . (128)

Combining (127) and (128), we reach the equation

dσ = −ssdT −
∑
i

Γidµi, (129)
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where Γi = ms
i/A is the surface density of the substance

i and ss = Ss/A surface entropy. The equation (129)
relates the surface tension with temperature and the
chemical potentials.

9. Thermochemistry

We present here the main laws of thermochemistry,
or chemical thermodynamics, understood as the study
of systems consisting of many chemical species, and
particularly the study of the heat associated to chemical
reactions and phase changes [12–16]. These laws were
proposed by Lavoisier, by Hess, and by other chemists
of the second half of the nineteenth century. In the two
sections that follows the present section, we analyze
the thermodynamic theories developed by Planck and
by Duhem, which include a systematic and analytical
approach to the laws of thermochemistry that we present
here. It should be remarked that the Gibbs thermody-
namics, analyzed above, is a thermochemical theory as
the main subject of his theory was the equilibrium of
heterogeneous substances.

The conservation of mass in chemical reactions was
advocated by Lavoisier as a fundamental principle. He
stated this principle in his treatise on Chemistry of 1789
in the following terms [18, 19]: in all the operations of
art and nature, nothing is created; an equal quantity of
matter exists both before and after the experiment; the
quality and quantity of the elements remain precisely
the same; and nothing takes place beyond changes and
modifications in the combination of these elements.

In their memoir on heat of 1784 [17], Lavoisier and
Laplace reported experiments on the heat developed in
combustion, understood as a chemical reaction involving
oxygen as proposed by Lavoisier. They measured the
heat of combustion of some substances including coal,
and the heat associated to animal respiration, under-
stood as a very slow combustion. In one of these experi-
ments, a guinea pig was placed inside a bell jar with air
enriched with oxygen for one hour and one quarter, and
the heat developed measured by an ice calorimeter.

Within the caloric theory employed by Laplace and
Lavoisier, heat was understood as a conserved quantity,
which is equivalent to say that the heat involved along
any process depends only on the initial and final states.
This principle when applied to chemical reactions was
established and verified experimentally by Hess in 1840
[65, 66]. Hess proposed that the heat released by a
chemical combination is the same no matter whether the
combination is direct or carried out indirectly through
an intermediate step. He stated the principle in the fol-
lowing terms [65, 66]: When a combination takes place,
the quantity of heat released is always constant, whether
the combination takes place directly or indirectly, and
repeated differently.

In a paper on the bases of thermochemistry of
1854 [67], Thomsen proposed that the force that holds

a compound united, which he called affinity, can be
measured by the amount of heat developed in its
decomposition. This heat is equal to the amount of heat
developed in the opposite process, the formation of the
compound. He proposed the following general rule [67]:
every simple or compound action of a purely chemical
nature is accompanied by the development of heat.

A similar rule was proposed independently by Berth-
elot in 1869 [68], and in 1873 [69] he stated it as
fundamental principle of thermochemistry in the follow-
ing terms: Any chemical change, accomplished without
the intervention of energy from the outside, tends to
that which produces the most heat. In a publication of
1875 [70], he called it the principle of maximum work.
In the same publication he stated another principle:
if a system undergoes a chemical transformation from
one state to another, without any external mechanical
work, the amount of heat developed depends solely on
the initial and final state. Berthelot differentiated clearly
reactions accompanied with absorption of heat from
those with release of heat, which he termed endothermic
and exothermic reactions, respectively [68].

In 1884 van ’t Hoff published a book [71] which dealt
with chemical equilibrium and its relation with the rates
of reactions. He pointed out the distinction between two
types of chemical reactions. In the first, the reactants
transform completely into the products of the reaction.
In the second, the reactants transform only partially into
the products, and eventually a chemical equilibrium is
reached. To denote the equilibrium, van ’t Hoff proposed
the notation −→← as in the chemical equation N2O4

−→←
2NO2. This equation comprises two opposite reactions,
denoted by N2O4 = 2NO2 and by 2NO2 = N2O4.

In this book, he proposed the following equation that
relates the equilibrium constant K to the change in the
temperature, for homogeneous systems. Denoting by q
the heat developed, at constant volume, in the chemical
reaction, the relation reads

d lnK
dT

= Q

RT 2 , (130)

where Q is measured in calories, and van ’t Hoff wrote
the number 2 in the place of R. We recall that 2 is
the approximate value of R when heat is measured
in calories. If k1 is the rate constant for the reaction
N2O4 = 2NO2 and k2 for the opposite reaction 2NO2
= N2O4, then the equilibrium constant is K = k1/k2.
Denoting by x and y the concentrations of N2O4 and
2NO2, then the rate of the first reaction is k1x whereas
the rate of the second reaction is k2y

2. In equilibrium
both rates are equal and k1x = k2y

2, which is similar
to a relation obtained by Guldberg and Waage, by
Pfaunder, and by Horstmann, says van ’t Hoff. Thus
the equilibrium constant can be written in terms of
concentration as K = y2/x. We remark that van ’t Hoff
defines the concentration as the number of molecules per
unit volume.
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If the variation in K is positive and the temperature
decreases, then according to equation (130), Q is neg-
ative and heat is released. Based on this results, van
’t Hoff proposed the following general principle, which
he calls principle of mobile equilibrium: Any equilibrium
between two different states of matter shifts, by lowering
the temperature, towards that whose formation develops
heat. It is valid not only for chemical equilibrium but
also for physical equilibrium such as the equilibrium of
thermodynamic phases.

In a paper of 1884 [72], Le Chatelier extended the
principle by allowing the variation of variables other
than temperature such as pressure and concentration,
which he called condensation. He stated the principle in
the form: Any system in stable chemical equilibrium sub-
jected to the influence of an external cause which tends to
vary either its temperature or its condensation can only
undergo internal modifications, which, if they occurred
alone, would bring about a change in temperature or of
condensation of opposite sign to that resulting from the
external cause.

In a paper of 1886 [73], van ’t Hoff proposed a formula
for the osmotic pressure of dilute solutions, which is
analogous to the combined laws of Boyle and Gay-Lussac
for ideal gases,

pv = RT, (131)

where p is the pressure, v the volume of the solution
containing a molecular mass of the solute, T the temper-
ature, and R is the ideal gas constant. When dissociation
occurs, the equation is modified to pv = iRT where i
depends on the case considered.

10. Planck

Max Planck [74] was born in 1858 at Kiel, Germany. In
1867, his family moved to Munich, where he attend the
Maximilian Gymnasium until 1874. In this same year, he
entered the University of Munich from which he got his
doctorate degree in 1879 with a thesis on the second
law of thermodynamics. One year later, he obtained
the habilitation at the University of Munich. In 1885,
Planck was appointed professor of theoretical physics
at the University of Kiel. In 1888, he was appointed
assistant professor at the University of Berlin becoming
a full professor in 1892. He retired in 1926 but it did not
reduce his teaching and lecturing. For the last two and
half years of his life he lived in Göttingen where he died
in 1947.

Planck is most remembered for his researches on
thermal radiation which led him to the law of black
body radiation at the end of 1900 [75, 76]. He also did
researches on thermodynamic and thermochemistry, the
subject of his doctoral and habilitation theses. These
researches are the bases of his book on thermochemistry
of 1893 [77] and his book on thermodynamics of 1897
[78–82], which we analyze here. The book went through

nine editions during Planck’s lifetime, the last one being
published in 1930. In the third edition of 1911 [79], he
included a new section about the new heat theorem
introduced by Nernst in 1906, known as the third law
of thermodynamics.

10.1. Fundamental principles

The first law of thermodynamics is expressed by consid-
ering the increase in energy of a system that undergoes
any process passing from a state 1 to a state 2,

U2 − U1 = Q+W, (132)

where U1 and U2 are the energy corresponding to states
1 and 2, Q is the mechanical equivalent of the heat
absorbed by the system and W is the work expended by
the system. The sum Q+W is independent of the type
of the transition from state 1 to state 2. For infinitely
small changes, the work done by the the system is
−pdV , where p is the pressure and V is the volume,
and equation (132) becomes

dU = dQ− pdV. (133)

Planck did not write dQ for an infinitesimal quantity
of heat as we have just written, but wrote simply Q.
He explained in a footnote that the notation dQ might
lead to the understanding that it is the differential of a
function, which is not the case of heat. He says that
some authors use the notation d′Q. We stick to the
notation dQ.

The conservation of energy in the forms given by (132)
and (133) are valid not only for mechanical systems
but also for systems that in addition undergo internal
chemical reactions. If we consider a process such that
at the final state both the temperature and the volume
are the same as those of the initial state, then for a
pure mechanical system U2 = U1. This happens because
a pure mechanical system the state can defined by
temperature and volume and if they are the same, then
the states are the same and so are the internal energies.
However, in a system undergoing chemical reactions,
in addition to the temperature and volume there are
other variables that describe the chemical states. The
values of these variables may change due to the reaction
and the final state might be distinct from the initial
states, and U2 might not be equal to U1 In this case
U2−U1 = Q, andQ is the heat of reaction. We might also
consider the case where the temperature and pressure
are kept constant. In this case the heat of reaction is
Q = (U2 + pV2) − (U1 + pV1) where V2 and V1 is the
initial and final volumes. Planck states that the quantity
U +pV was called heat function at constant pressure by
Gibbs.

The above considerations lead to the conclusion that
the heat of reaction depends only on the initial and final
states if T and V are kept constant or if T and p are kept
constant. If a compound B is obtained from a compound
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A through an intermediate compound C, the heat of the
reaction does not depend on C. This is a brief statement
of the law established by Hess in 1840 concerning the
heat released in chemical reactions [65, 66].

Planck defined entropy using a reasoning similar to
that used by Clausius a concluded that the change of
entropy by the absorption of heat is dS = dQ/T . He then
states the second principle as follows. Every physical or
chemical process in nature takes place in such a way as
to increase the sum of the entropies of all the bodies
taking any part in the process. According to Planck,
this is the most general statement of the second law of
thermodynamics.

If a system is in contact with a body which performs
work dW but exchanges no heat then the increase of
energy is dU = dW and the increase in entropy is
dS ≥ 0. Let us suppose that in addition the system
in contact with a body at temperature T while it
exchanges a quantity of heat dQ with the system. Then
the variation of the entropy of the system plus the body
is dS− dQ/T ≥ 0 or TdS− dQ ≥ 0. As dQ = dU − dW ,
we find dU − TdS ≤ dW If the temperature is kept
constant and defining

F = U − TS, (134)

then dF = dU − TdS and dF ≤ dW , or F2 − F1 ≤ W .
Planck states that the function F was called free energy
by Helmholtz.

If the work along the isothermal process vanish, as
may occur in most chemical reactions, then F2 − F1 ≤
0. A reaction that spontaneous occurs within a vessel
maintained at a constant temperature is thus that
which lowers the free energy. In chemical processes, says
Planck, the first term in F2−F1 = (U2−U1)−T (S2−S1)
is usually much greater then the second in which case
U2 − U1 ≤ 0. Since there is no work, the difference
in energy is the heat released by the system, and the
inequality becomes Q ≤ 0. Planck states that this leads
to the Berthelot principle that in the absence of external
work, chemical reactions occurs as to give the greatest
heat. However, for high temperatures the second term
cannot be neglected and chemical reactions may take
place even with the absorption of heat.

If the temperature and the pressure are kept constant,
one defines the function

Φ = S − 1
T

(U + pV ). (135)

Considering that dΦ = dS − (dU + pdV )/T for T and p
constant, it follows from the inequality dU−TdS ≤ dW ,
that dΦ ≥ 0.

10.2. Systems with several components

In the fourth part of the book, Planck considers a
system consisting of α components and β phases, and
derives the Gibbs rule using a reasoning similar to that

used by Gibbs. He also states that the rule was amply
verified experimentally by Roozeboom. The Gibbs rule
states that the number of phases that may coexist
cannot exceed the number of components plus two,
β ≤ α + 2. The demonstration starts by considering
the characteristic function Φ, defined by (135), which is
written as a sum of the characteristic functions of each
phase,

Φ =
∑
k

Φk, (136)

and Φk is a homogeneous function of the masses Mk
1 ,

Mk
2 , . . . , Mk

α of the α components. As one varies the
masses keeping the temperature and pressure constant
then δΦ = 0 subject to the invariance of the masses of
each component, ∑

k

Mk
i = Mi. (137)

This condition of equilibrium gives the equations

∂Φ1

∂M1
i

= ∂Φ2

∂M2
i

= . . . = ∂Φβ

∂Mβ
i

. (138)

We remark that these equations are equivalent to the
Gibbs condition (100). From these equations Planck
derives the Gibbs rule.

From ∂Φ/∂T = (U + pV )/T 2 and ∂Φ/∂p = −V/T ,
Planck derives the dependence of the equilibrium on the
temperature and pressure.

10.3. Gas mixture

To determine the properties of a mixture, of ideal gases,
Planck seeks to find the characteristic function Φ = S−
(U + pV )/T . The volume and the energy are related to
the numbers of molecules n1, n2, . . . of each type of idea
gas by

V = RT

p

∑
i

ni, (139)

U =
∑
i

ni(ciT + hi), (140)

where ci and hi are constants.
Now it is necessary to determine the entropy S.

Considering that dS = (dU +pdV )/T and using the two
equations above, we find after integration on T and p,

S =
∑
i

ni(c′i lnT −R ln p+ ki) + C, (141)

where c′i = ci + R, ki is a constant and C does not
depend on T and p but may depend on ni. To determine
C, Planck uses the following proposition first established
by Gibbs: The entropy of a mixture of gases is the sum
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of the entropies which the individual gases would have, if
each at the same temperature occupied a volume equal to
the total volume of the mixture. This proposition leads
to the following value of C,

C = −
∑
i

ni ln xi, (142)

where ki is a constant, and xi = ni/(n1 + n2 . . .).
Collecting the results for S, U , and V , we reach the

result

Φ =
∑
i

ni(φi −R ln xi), (143)

where

φi = c′i lnT −R ln p+ ki − c′i −
hi
T
. (144)

In equilibrium the characteristic function Φ is a
maximum when we vary the numbers of molecules ni,
that is, δΦ = 0, which gives∑

i

(φi −R ln xi)δni = 0. (145)

We suppose that the variations in the number of
molecules are proportional to integer ν1, ν2, . . ., which
leads to ∑

i

(φi −R ln xi)νi = 0. (146)

The quantities ν1, ν2, . . . are understood as the number
of molecules that simultaneously pass to the mass of
each constituent and may be positive or negative. The
equation (146) is written as∏

i

xνi
i = K, (147)

where K depends only on the temperature and pressure,
and given by

lnK = 1
R

∑
i

νiφi. (148)

The equation (147) determines the concentration of the
various gases that react among themselves in the state
of equilibrium.

10.4. Diluted solutions

Let us consider a system with several components and
denote by n0 the number of molecules of the solvent and
by n1, n2, . . . the number of molecules of dissolved sub-
stances. The energy U of the system is a homogeneous
function of the number of particles from which we may
conclude that u = U/n0 may considered as a function
of the concentrations yi = ni/n0. In a diluted solution
n0 is much large compared to n1, n2, . . . which means

that yi is very small in this case we may expand u up to
linear term in yi to reach the expression

u = u0 + y1u1 + y2u2 + . . . (149)

where u0, u1, . . . do not depend on the number of
molecules but only on the temperature and the pressure.
The energy is written as

U = n0u0 + n1u1 + n2u2 + . . . (150)

Planck states that u0 corresponds to the interactions
between the molecules of the solvent and thus depend
only on the nature of the solvent, and ui corresponds
to the interactions between the molecules of dissolved
substance i and the molecules of the solvent. In an
analogous reasoning, the volume V is written as

V = n0v0 + n1v1 + n2v2 + . . . (151)

To determine the entropy one uses the relation dU =
TdS − pdV and the definition of the characteristic
function Φ to get

Φ = n0φ0 + n1φ1 + n2φ2 + . . .+ C, (152)

where φi depends only on T and p, and C does not
depend on T and p, but may depend on ni. To find
C, it suffices to consider the system at high temperature
and small pressure since C does not depend on these
two variables. In this regime we suppose that the system
behaves as an ideal gas. Comparing (152) with (143), we
find

C = −R
∑
i

ni ln xi, (153)

where xi = ni/(n0 + n1 + . . .). The equation (152)
together with (153) determine the thermodynamic prop-
erties of a diluted solution.

To find the equilibrium conditions, we determine δΦ in
terms of the variations δni in the number of molecules.
Using the condition of equilibrium δΦ = 0, valid at
constant temperature and pressure, and that δni is
proportional to νi, we find∑

i

(φi −R ln xi)νi = 0. (154)

Defining

lnK = 1
R

∑
i

νiφi, (155)

which depends on T and p, but is independent of ni, we
find ∑

i

νi ln xi = lnK. (156)
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To find the influence of the temperature and pressure
we perform the following calculations

∂ lnK
∂T

= 1
R

∑
i

νi
∂φi
∂T

, (157)

∂ lnK
∂p

= 1
R

∑
i

νi
∂φi
∂p

. (158)

Using the relations ∂φi/∂T = hi/T
2, hi = ui + pvi, and

∂φi/∂p = −vi/T , we get

∂ lnK
∂T

= L

RT 2 ,
∂ lnK
∂p

= − v

RT
, (159)

where L is the heat absorbed at constant temperature
and pressure, and v is the change in volume, and are
give by

L =
∑
i

νihi, v =
∑
i

νivi. (160)

The equations (159) say that the influence of the tem-
perature on K is controlled by the heat effect, that is,
by the heat evolved L, whereas that of the pressure is
controlled by the change of volume v. If the reaction does
not absorb or release heat, L = 0 and the temperature
has no influence on the equilibrium. If no change of
volume occurs, v = 0 and the pressure has no influence
on the equilibrium.

11. Duhem

Pierre Duhem [83–86] was born in 1862 at Paris.
At eleven years of age he was sent to the Collège
Stanislas where he studied for ten years. In 1882 he
was enrolled at the École Normale, and in 1884, before
his graduation which occurred in 1885, he presented a
doctoral thesis in physics concerning the concept of the
thermodynamic potential. The thesis was rejected by the
committee of examiners but Duhem managed to get the
thesis published as a book in 1886 [87]. Another thesis
was presented by Duhem, now in the area of magnetism,
for which he received his doctorate degree in 1888. He
taught at the Lille Catholic University in the period
1887–1893, at the University of Rennes in 1893–1894
and at University of Bordeaux in 1894–1916. He died
at Cabrespine in 1916.

Duhem worked on thermodynamics, thermochemistry,
hydrodynamics, elasticity, electricity, magnetism, and
made contributions to the history of science, particularly
to the science of the Middle Ages, and to the philosophy
of science. He hold the opinion that physical theories
are descriptions organized in a systematic manner by
the use of a deductive reasoning from which the laws
are derived from the fundamental principles of the
theory [84, 88]. In his book on energetics [89], he
attempt to built a generalized thermodynamics which
would include the other physical theories in addition to

thermodynamics [84]. His writings include about four
hundred papers and about twenty books. Le Système
du Monde about the cosmological doctrines from Plato
to Copernicus comprises ten volumes, some of which
published posthumously.

The Duhem approach to thermodynamics, like that of
Gibbs, is founded on the principle of the conservation of
energy and on the principle of the increase of entropy in
the analytical form put forward by Clausius. In both
approaches, a central role is played by the functions
which were introduced by Massieu, who called them
characteristic functions. Gibbs showed that the state
of equilibrium is represented by a minimum of these
functions. For this reason, Duhem called a function of
this type a thermodynamic potential and Gibbs a force
function, a term that has the same meaning of potential
function, except for a minus sign.

In the following we analyze his treatise on thermody-
namics and thermochemistry published in four volumes
in the period 1897–1899 [90]. In it we found the deriva-
tion of the laws of thermochemistry that were proposed
by physicists and chemists during the second half of
the nineteenth century. The treatise contains nine books
and an introductory chapter where Duhem summarizes
the main concepts of mathematical analysis, that is,
differential and integral calculus, and the analytical
mechanics, pointing out the role of the exact differential
and the potential function.

11.1. Thermochemical principle

The state of a system is defined by the temperature
θ and some other variables α, β, and γ such that the
elementary work of the external forces is

dW = Adα+Bdβ + Cdγ, (161)

where the actions A, B, and C are functions of θ, α, β,
and γ. The internal energy U is also a function of these
variables. The principle of the conservation of energy is
expressed by U ′ − U = Q + W where W is the work
of the external forces and Q is the heat absorbed by
the system along a modification, and U and U ′ are the
initial and final internal energy. We are using here the
term modification employed by Duhem for a sequence of
changes of the state of the system, that is, a process.

We remark that Duhem writes Q multiplied by a
constant that represents the mechanical equivalent of
heat. In differential form the conservation of energy
reads

dU = dQ+ dW. (162)

If a fluid is under the action of a pressure p, the
elementary work is dW = −pdV where dV is the
increment of the volume V of the fluid.

As we have mentioned above, Hess established exper-
imentally in 1840 that the heat released by a chemical
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combination is the same no matter whether the com-
bination is direct or carried out indirectly through an
intermediate step [65, 66]. Within the caloric theory this
rules is an immediate consequence of the conservation
of the caloric. As in thermodynamics this laws in no
longer valid, one may ask whether the Hess rule remains
valid. Duhem assumes that this rule remains valid within
thermodynamics provided either the pressure or the
volume is kept constant, and calls it the thermochemical
principle. Duhem says that the principle was admitted
by Lavoisier and Laplace, and was verified by Hess.

The following remark is necessary here. In addition to
the temperature T and the volume V , the state of the
system is represented by other variables that describe
the chemical state. As the chemical state changes, these
variables change and the forces related to these changes
would perform a work, which we may call call chemical
work. The thermochemical principle is equivalent to say
that the chemical work of the type (161) is zero, which
allows us to write dQ = dU + pdV since the only work
involved is the mechanical work. If the pressure is kept
constant, then dQ = d(U + pV ). If the volume is kept
constant, then dQ = dU . In both cases dQ is an exact
differential and Q becomes a state function, which is
a statement of the thermochemical principle. We also
remark that the principle can be extended to processes in
which the work is independent of the path, which occurs
when the volume or the pressure are kept constant. In
this case dW is an exact differential and so is dQ =
dU − dW .

From the thermochemical principle, Duhem derives
the Kirchhoff formula as follows. Let us consider four
states A, B, A′, and B′ that are connected by pro-
cesses occurring at constant volume. The process AB
is isothermal at a temperature T and releases a quantity
of heat Q. The process A′B′ is also isothermal at a
temperature T ′ and releases a quantity of heat Q′. The
processes AA′ and BB′ involve, respectively, the heats

q =
∫ T ′

T

CdT q′ =
∫ T ′

T

C ′dT, (163)

where C and C ′ are the heat capacities at constant
volume. Since Q + q′ = Q′ + q by the thermochemical
principle, we find

Q′ −Q =
∫ T ′

T

(C ′ − C)dT, (164)

which is the formula proposed by Kirchhoff in 1858 [91].
A similar expression can be obtained by any process
occurring at a constant pressure. In this case the C ′ and
C represent the heat capacity at constant pressure.

11.2. Thermodynamic potentials

To introduce the second law of thermodynamics, Duhem
defines a reversible process as a sequence of equilibrium

states. In accordance with Clausius, the integral∫
dQ

T
, (165)

along a reversible cycle vanishes. It should be noted that
the integral is carried out along a path on the space
consisting not only by the variables T and V but also
by the chemical variables. The vanishing of the integral
above is equivalent to say that there exists a function S
of these variables, called entropy by Clausius, such that
dQ/T = dS. An immediate consequence of the vanishing
of the integral (165) is that the heat exchanged along an
isothermal cycle vanishes.

Duhem adopts the Clausius principle of the increase
of entropy which he writes in the form

S1 − S0 =
∫
dQ

T
+ P, (166)

where S0 and S1 denote the initial and final entropies,
P is a positive quantity and dQ is the heat absorbed
by the system. For an isolated system the first term on
the right-hand side vanishes and S1 − S0 = P . That is,
for any modification of an isolated system, the entropy
of the system increases. Considering that the internal
energy remains constant, we also have U1 − U0 = 0. In
a short form, dS > 0 for dU = 0. If the system is in
equilibrium then any virtual modification will decrease
the entropy, that is, for virtual modifications such that
dU = 0 then dS ≤ 0. According to Duhem, this
condition of equilibrium was proposed by Horstmann in
1873 [92].

If the modification is isothermal, then the equation
(166) becomes

T (S1 − S0) = Q+ TP, (167)

and since Q = U1 − U0 − W we find T (S1 − S0) =
U1 − U0 −W + TP which can be written in the form

F1 − F0 = W − TP, (168)

where F = U − TS is a function which Duhem called
internal thermodynamic potential. As P ≥ 0, this
equation can be written as the inequality, F1−F0 ≤W ,
valid for an isothermal modification. If the system is in
equilibrium, then for an isothermal virtual modification,
dF ≥ dW , which is the equilibrium condition for
isothermal modification.

Duhem also defines the thermodynamic potential Φ at
constant actions, or the total thermodynamic potential,
by

Φ = F + Ω, (169)

where Ω = −(Aα+Bβ+Cγ). For a modification carried
out maintaining the actions A, B, and C invariant, and
at constant temperature

Φ1 − Φ0 = −TP, (170)
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which can be written as the inequality Φ1 − Φ0 ≤ 0. In
equilibrium any virtual modification at constant actions
and at constant temperature, dΦ ≥ 0.

For a system under the action of a pressure, dW =
−pdV . In this case one defines the thermodynamic
potential at constant pressure G = F + pV and one
reaches the result G1 − G0 ≤ 0, valid for modification
carried at constant temperature and constant pressure.
The condition for equilibrium is dG ≥ 0, valid for virtual
modifications at constant temperature and constant
pressure.

The conditions of equilibrium involving F and G were
obtained by Gibbs, says Duhem, in his capital memoire
in 1876 [60]. Duhem adds that Gibbs demonstrated these
conditions from the condition of equilibrium proposed by
Horstmann, mentioned above. A few years later, in 1882,
continues Duhem, Helmholtz [93] considered again the
potential F , which he called free energy. If we consider a
reversible isothermal modification, the relation F1−F0 =
W tells us that the variation in F is the work performed
on the system by the external forces or that F is the
part of U that is free to be converted into useful work,
justifying the term free energy. If the modification is
irreversible the variation in F is smaller than the work
performed on the system.

The idea that only a part of the energy can be
converted into useful work, says Duhem, seems to be
perceived by Maxwell in the first edition of his Theory
of Heat of 1871, who called it available energy. We add
that in the fourth edition of the book of 1875, Maxwell
showed that the available energy, which is the maximum
work that one can extract along an isothermal process
is (U0 − TS0)− (U1 − TS1) as shown by equation (82),
but he did not attributed a symbol for U − TS.

Let us write the equation (167) in the following form

Q′ + T (S1 − S0) ≥ 0, (171)

where Q′ = −Q is the heat released by the system. This
relation means that a spontaneous isothermal process
occurs whenever this inequality is fulfilled. If the first
term is positive and large compared to the second,
which means that a great amount of heat is released,
the inequality becomes Q′ > 0, which means that a
spontaneous process is exothermic. This was the rule
proposed by Thomsen in 1854 [67] and independently
by Berthelot in 1873 [69] in the following terms: ”Any
chemical change, accomplished without the intervention
of energy from the outside, tends to that which produces
the most heat.” However, it is possible to have Q′

negative provided the second term in (171) is positive
and large enough. In this case we are faced to an spon-
taneous process which is endothermic, and the Thomsen-
Berthelot principle cannot be considered generally valid.

11.3. Law of equilibrium displacement

The stability of a system was analyzed by Duhem by
considering the total thermodynamic potential Φ given

by (169), that is,

Φ = F −Aα−Bβ, (172)

where F is a function of α and β. If A and B are
maintained constant, Φ is a minimum for modifications
on α and β. The condition for a minimum is

A = ∂F

∂α
, B = ∂F

∂β
, (173)

and

∂2F

∂α2 a
2 + 2 ∂2F

∂α∂β
ab+ ∂2F

∂β2 b
2 > 0, (174)

for arbitrary values of a and b.
Let us submit the system to variation on A and B.

We find,

dA = ∂2F

∂α2 dα+ ∂2F

∂α∂β
dβ, (175)

dB = ∂2F

∂β∂α
dα+ ∂2F

∂β2 dβ. (176)

If we sum the first equation multiplied by dα with the
second mutiplied by dβ and comparing the result with
(174), we conclude that

dAdα+ dBdβ > 0, (177)

which is valid for constant temperature and called law
of equilibrium for isothermal displacement.

Duhem calls dA and dB disturbing actions and dα
and dβ the corresponding disturbances. The left hand
side of (177) he calls the disturbing work. Using this
terminology, he states the law in the following terms.
If a system in equilibrium at a certain temperature
is perturbed by disturbing actions, it changes to a
new equilibrium which is accompanied by a positive
disturbing work. Applying this result to the case of
mechanical work we find −dpdV ≥ 0. That is, a decrease
in the volume results in an increase in the pressure.

The law of equilibrium displacement just presented
was proposed by Le Chatelier in 1884 [72] but, according
to Duhem, in a summary manner and without proof.

Let us make the replacements a = dα/dT and b =
dβ/dT in the inequality (174). We find the following
inequality

Rα
dα

dT
+Rβ

dβ

dT
> 0, (178)

where Rα and Rβ are the thermal coefficients given by

Rα = −T ∂2F

∂α∂T
= T

∂S

∂α
, (179)

Rβ = −T ∂2F

∂β∂T
= T

∂S

∂β
. (180)
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The coefficient Rα is the heat absorbed by the sys-
tem when the variable α increases by dα at constant
temperature and β. The coefficient Rβ has a similar
interpretation. If we suppose an isothermal modification
from the state of equilibrium, the heat absorbed by the
system is

dQ =
(
Rα

dα

dT
+Rβ

dβ

dT

)
dT. (181)

Since the expression between parentheses is positive
by (178), then an increase in the temperature will
result in an absorption of heat, and a decrease in the
temperature will result in a release of heat by the system.
In other terms, if the temperature is increased, the
equilibrium will dislocated in the direction where the
heat is absorbed, and if the temperature is decreased,
the equilibrium will dislocated in the direction where
the heat is released. This important law was proposed
by van ’t Hoff in his book on chemical dynamics [71]
and received from him, says Duhem, the name law of
equilibrium displacement by variation of temperature.

11.4. Mixture of ideal gases

The equation that relates the pressure p and the specific
volume v of an ideal gas is

p = rT

v
, (182)

where r is a constant. The equation (182) encloses the
laws of gases of Boyle-Mariotte and of Gay-Lussac.
Considering that p = −∂f/∂v, then the thermodynamic
potential f per unit mass is obtained by integration. The
result is

f = −rT ln v + f∗, (183)

where f∗ depends only on T . The thermodynamic
potential g = f + pv is

g = rT ln p+ g∗, (184)

where g∗ depends only on T and is given by

g∗ = −rT ln rT + rT + f∗. (185)

Duhem states the law of Avogadro and Ampére in
the following terms. Consider several gases at the same
temperature and pressure. If the mass of each gas is equal
to its molecular mass then the volumes occupied by the
gases are equal. If we denote by V0 the volume of a mass
of the hydrogen gas equal to its molecular mass at the
atmospheric pressure p0 and at the temperature of the
melting ice T0, then the ratio p0V0/T0 = R is the same
for all gases. From (182) it follows that r = R/$ where
$ is the molecular mass of the gas.

To determine the internal potential F of a mixtures of
gases, Duhem follows Gibbs [60] and assumes that F is

equal to the sum of the internal potential of each gas as
if they occupy separately the vessel. According to this
assumption,

F =
∑
i

Mifi, (186)

where

fi = −riT ln V

Mi
+ f∗i (187)

is the thermodynamic potential per unit mass of gas i.
The pressure p = −∂F/∂V is

p =
∑
i

Mi
riT

V
. (188)

From F we may determine the potential G = F + pV ,
which is

G =
∑
i

Migi, (189)

gi = riT ln pi + g∗i , (190)

where

g∗i = riT (1− riT ) + f∗i , (191)

and pi is related to p by

pi = Miri∑
iMiri

p. (192)

Duhem states that this definition leads to a contradic-
tion that he calls the Gibbs paradox. Let us determine
the difference in the thermodynamic potential G that
results from the mixing of ideal gases at the same
temperature T and pressure p. After the mixing, G is
given by (189) and (190). Before the mixing we may
use the same formulas provided we replace pi by p in
(190). The resulting difference in the the thermodynamic
potential can be put in the form

− T
∑
i

Miri ln p

pi
. (193)

The term that multiplies (−T ) is positive and is the
variation in entropy. In this formula, says Duhem, there
is nothing that identifies the nature of the gases and
could as well be valid for gases of the same type. But
this is incorrect because in the mixture of gases of the
same type, at the same temperature and pressure, the
entropy remains invariant, which constitutes the Gibbs
paradox. It should be remarked, however, that at the
beginning of the derivation of the free energy for distinct
gases, the Gibbs hypothesis presupposes that the gases
are distinct, otherwise the phrase ”occupy separately the
vessel” makes no sense.
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11.5. Diluted solutions

We consider a system consisting of a solvent of mass
M0 and n solutes of masses M1, M2, . . . ,Mn. The
thermodynamic potential under constant pressure G is
a function of Mi, T , and p. Since G is a homogeneous
function of the first order, it can be written in the form

G = M0g0 +M1g1 + . . .+Mng2, (194)

where gi depends on the masses only through the
concentrations si = Mi/M0 of the solutes. The question
posed by Duhem is the determination of gi for diluted
solutions, which means that si is very small.

If the solution was a mixture of ideal gas then gi for a
solute is given by the expression (190), which we write as

gi = riT ln risi p
r0

+ g∗i , (195)

where we have kept only the leading terms in si. Since
si is small, we expand g0 up to linear terms in si. From
(190), we find

g0 = −T (r1s1 + . . .+ rnsn) + g∗0 + r0T ln p. (196)

To determine gi for the general case, Duhem makes
the following assumptions. The solutes behaves as ideal
gases which means that gi are given by (195). As to the
the function g0, it is taken to be similar to (196), that is,

g0 = g∗ − T (r1s1 + . . .+ rnsn), (197)

where g∗ is the thermodynamic potential per unit mass
of the pure solvent and depends on p and T only.

Duhem states that the various considerations about
the infinitely diluted solutions are intimately linked to
the ideas expressed about them by van ’t Hoff [73].

11.6. Osmotic pressure

We consider a vessel with two compartment separated
by a membrane and maintained at a constant tempera-
ture T . The first compartment contains a dilute solution
with just one solute, and is subject to a pressure p.
The mass of the solvent is M0 and of the solute is M1.
The second compartment contains only the solvent of
mass M ′0 and is under the pressure p′. The membrane is
permeable only to the solvent. The total thermodynamic
potential is

Φ = G+G′, (198)

where G and G′ are the thermodynamic potentials of the
two parts.

Using the results of the previous section we write

G = M0g0 +M1g1, (199)

g0 = g∗(T, p)− Tr1s, (200)

g1 = r1T ln r1s p

,
r0 + g∗i (201)

where s = M1/M0 and g∗(T, p) is the thermodynamic
potential per unit mass of the pure solvent, and

G′ = M ′0g
∗(T, p′). (202)

As the membrane is permeable only to the solvent, the
mass M1 is invariant. The masses M0 and M1 may vary
but their sum is constant. The equilibrium is determined
by the minimum of Φ as one varies the masses, or by
∂G/∂M0 = ∂G′/∂M ′0, which gives

g∗(T, p)− r1Ts = g∗(T, p′). (203)

As s is small the osmotic pressure p = p − p′ is also
small. Taking into account that the specific volume v is
∂g0/∂p we may write g∗(T, p)− g∗(T, p′) = pv and

pv = sr1T. (204)

Recalling that s = M2/M1, this equation is equivalent to

pV = RM1T

$1
, (205)

where V is the volume of the compartment containing
the solute and $1 is the molecular mass of the solute.
The result (205) is due to van ’t Hoff who called it law
of Mariotte and Gay-Lussac for dilute solutions [73].

11.7. Law of Guldberg and Waage

We consider a system composed by five chemical species
which react among themselves. The reaction is such that
n1 molecules of the first type react with n2 molecules of
the second to form n3 molecules of third and n4 of the
fourth. The components 1 and 2 are the reactants and 3
and 4 the products of the reaction. Denoting by $1, $2,
$3 and $4 the molecular masses of the chemical species,
the variation of their masses M1, M2, M3, and M4 are
given by

dM1

n1$1
= dM2

n2$2
= − dM3

n3$3
= − dM4

n4$4
. (206)

At constant pressure p and constant temperature T ,
the variation of the thermodynamic potential Φ, which
is a function of T , p, M1, M2, M3, M4 is

dΦ = g1dM1 + g2dM2 + g3dM3 + g4dM4. (207)

Using the condition (206), we may write

dΦ = A
dM1

n1$1
, (208)

where

A = g1n1$1 + g2n2$2 − g3n3$3 − g4n4$4, (209)

and we remark that A is a function of M1, M2, M3, and
M4. In equilibrium dΦ = 0 and we reach the following
condition for equilibrium

A = 0, (210)
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which determines the relation between M1, M2, M3, and
M4 at equilibrium.

Considering that dΦ < 0, then if A > 0 then dM1 < 0
and the reaction will be shifted towards the decrease of
the first component, that is, towards the products of the
reaction. If A < 0 then dM1 > 0 and the reaction will be
shifted towards the the increase of the first component,
that is, towards the reactants.

We suppose now that the chemical system includes
another component with mass M0 that does not take
part in the reaction. In addition we suppose that the
system is dilute which means that the masses M1, M2,
M3, and M4 are very small compared to M0. Under these
conditions we may use the thermodynamic potentials
given by (195), which replaced in (209) and setting
the result to zero, we reach the following condition for
equilibrium involving the concentrations si = Mi/M0,

sn1
1 sn2

2
sn3

3 sn4
4

= K, (211)

where we have used the relation ri = R/$i. The
quantity K depends only on p and T . The equation (211)
expresses the law proposed by Guldberg and Waage in
1864 for the chemical equilibrium [94–96]. Duhem states
that similar laws were then proposed by Lemoines [97]
and by van ’t Hoff [98].

12. Nernst

Walther Nernst [99, 100] was born in 1864 at Briesen,
Prussia, now Wa̧brzeźno, Poland. The family moved to
Graudenz, now Grudzia̧dz, where he went to school at
the Gymnasium in 1874, graduating in 1883. Nernst
pursued his studies in various universities. He went to
Zürich, Berlin, Graz and Würzburg, where he received
his doctorate in 1887. He then moved to Leipzig where
an assistantship was offered to him. After two years, he
obtained his habilitation at the University of Leipzig in
1889. In the following year he moved to Göttingen to
take up a position of professor of physical chemistry
at the University of Göttingen. In 1905 he moved to
Berlin and started his position as the chair of physical
chemistry at the University of Berlin. In 1924 he was
appointed to the chair of experimental physics, holding
this position until 1933, when he retired. He died in 1941
at Zibelle, now Niwica.

The main contribution of Nernst was to the devel-
opment of physical chemistry. His views concerning
this field of research are contained in his book on
theoretical chemistry based on the Avogadro law and on
thermodynamics [101, 102]. The book appeared in 1893
and went through fifteen editions until 1926. In 1905,
Nernst proposed a new law of thermodynamics, which he
called the new heat theorem. In fact it is not properly
a theorem but a fundamental law, independent of the
first and second laws, as insisted Nernst himself. The
Nernst law was reported in a publication the following

year [103], and included in the later editions of his
theoretical chemistry, and was also the subject of a book
published in 1918 [104, 105].

In his book on theoretical chemistry, after introduc-
tion the law of conservation of energy, Nernst expresses
the second law of thermodynamics in the following
terms [101, 102]. 1) Every process that takes places in
any system by itself, that is, without the supply of energy
in any form, can provide a finite amount of work when
properly used. 2) A process yields the maximum amount
of work when it is reversible. By a self-acting process,
Nernst means a spontaneous process such as the mixing
of two liquids or gases, and all chemical processes that
take place on their own.

The variation of energy along a process is dU =
dQ− dW where dQ is the heat absorbed by the system
and dW the work performed by the system. If the
process is reversible dQ = TdS where T is the absolute
temperature and S the entropy. Defining the free energy
by F = U −TS, and taking into account that ∂U/∂T =
T (∂S/∂T ), then

∂F

∂T
= −S. (212)

Replacing (212) in F = U − TS, this equation becomes

F = U + T
∂F

∂T
. (213)

A criterion for the occurrence of a spontaneous
isothermal process is the decrease in the free energy,
called the principle of maximum work by Nernst, which
is a consequence of the second law. It is worth pointing
out that Nernst states that the change of the free
energy is the measure of affinity. A similar principle was
advanced by Thomsen in 1854 and independently by
Berthelot in 1867, which Nernst writes in the following
form. Every chemical reaction gives rise to the formation
of those substances which generate the greatest amount
of heat. This principle received recognition but it was
proven to be untenable, says Nernst.

The principle of maximum work is written in the form
W ≤ −∆F or in the equivalent formQ−T∆S ≤ 0. If it is
possible to neglect the last term, we see that it becomes
Q ≤ 0, which is the expression of the Thomsen-Berthelot
principle. Nernst observes that the Thomsen-Berthelot
principle holds remarkably well for condensed system at
low temperatures. Writing equation (213) as

∆F = ∆U + T
∂∆F
∂T

, (214)

then at low temperatures the last term of this equation
vanishes, and ∆F becomes equal to ∆U . In addition not
only do ∆F and ∆U become equal but they approach
each other asymptotically at low temperatures, which
meanst that, when T → 0,

∂∆F
∂T

= ∂∆U
∂T

, (215)

which is the first expression of the Nernst law [103].
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Assuming that the energy at low temperatures can
written as a power series in the temperature, and after
integration equation (214), Nernst concludes that each
term in equation (215) vanishes, that is, when T → 0,

∂∆F
∂T

→ 0, (216)

which is the second expression of the Nernst law [103],
and

∂∆U
∂T

→ 0. (217)

Taking into account (212), then (216) takes the form
∆S → 0 when T → 0, that is, in the neighborhood of
absolute zero all process proceed without the alteration
of entropy [104, 105]. The second consequence (217)
means that the specific heat vanishes at abolute zero
of temperature [104, 105].

The quantities ∆U , ∆F , and ∆S are understood as
the variation of the energy, the free energy, and the
entropy at constant temperature such as that occurring
in chemical reactions or in change of states. When
applied to distinct allotropic forms of a substance,
∆S = 0 means that the entropy is the same for both
forms.

The Nernst law was included by Planck in the third
edition of his book on thermodynamics of 1911 [79],
which he expressed in the following terms. As the zero
point of the absolute temperature, the entropy of a
chemical homogeneous solid or liquid body attains a
value that is independent of the state of aggregation and
the specific chemical modification. Planck states that
this conception of the Nernst law is more comprehensive
than that given by Nernst himself.

Planck proceeds saying that as the entropy contains
an additive arbitrary constant, then without loss of
generality it can be chosen equal to zero. The Nernst law
becomes: at the zero point of the absolute temperature,
the entropy of every chemical, homogeneous solid or
liquid body has a zero value [79].

In their book on thermodynamics of 1923 [106], Lewis
and Randall emphasized the use of free energy in
chemical thermodynamics. They also pointed out that
some authors used the energy U when they meant H =
U+pV , and F = U−TS when they meant G = H−TS.
We remark that Lewis and Randal used the term free
energy to G and not to F . Thus an equation analogous
to (213), which we write as

∆F = ∆U − T∆S, (218)

is the equation

∆G = ∆H − T∆S, (219)

and by the Nernst law, ∆G approaches ∆H asymptoti-
cally at low temperatures. Let us suppose that we have
measured the heat Q developed in a chemical process.

If the process is carried out at constant volume, then we
have to use equation (218) because in this case Q = ∆U ,
but if the process is carried out at constant pressure,
Q = ∆H, and we have to use (219), which can be written
in the form analogous to (214),

∆G = ∆H + T
∂∆G
∂T

. (220)

An important example where the pressure is constant is
the change of phases of a pure substance, in which case
∆H is the latent heat.

It is worth mentioning the statement of the third
law by Lewis and Randall [106]. If the entropy of each
element in some crystalline state be taken as zero at
the absolute zero of temperature, every substance has
a finite positive entropy, but at the absolute zero of
temperature the entropy may become zero, and does so
become in the case of perfect crystalline substances.

13. De Donder

Théophile De Donder [107–109] was born in 1872 at
Schaerbeek, Belgium. He pursued his studies at the École
Normale in Brussels and graduated in 1891. He entered
the University of Brussels where he got this doctorate in
physical and mathematical sciences in 1899. In 1904, he
was nominated professor at the Communal Atheneum at
Saint-Gilles, where he remained until 1918. In 1914, he
was appointed professor at the University of Brussels but
his duties only began in 1918. He reached the age limit
in 1942 but was promoted to honorary only in 1944. He
died in Brussels in 1957.

De Donder gave contributions to the fields of relativ-
ity, integral invariants, and chemical thermodynamics by
the introduction of his own concept of chemical affinity
and that of extension of reaction. He wrote several books
in these fields. Here we analyze his treatises on the theory
of affinity contained in a book published in 1927 [110].
A second and a third part of this treatise was published
in 1931 and 1934 [111, 112]. A new edition of the first
part was published in 1936 [113].

Let us consider a chemical system consisting of c
constituents under the action of a chemical reaction,
which transform a set of molecules of the constituents
into another set of molecules. We denote by νi the
variation in the number of moles ni of the constituent
i due to the reaction. These quantities can be positive,
in which case ni increases, or negative, in which case ni
decreases. We assume that the backward reaction is also
present which makes ni to vary by an amount −νi. In
equilibrium, ni remains constant, what means that the
backward reaction occurs as many times as the forward
reaction, or that they are balanced.

Due to the reaction, the variations in the number
of molecules of each type cannot be arbitrary. The
connection between them is written in the parametric
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form as

dni = νidξ, (221)

where ξ is the extension of reaction, which De Donder
calls the degree of the advancement of the reaction. The
differentials are to be interpreted as variations occurring
during an interval of time dt > 0. Therefore, if dξ is
positive the reaction is shifted to the right, that is,
toward the products of the reaction. If it is negative,
the reaction is shifted to the left, that is, toward the
reactants.

It is assumed that the energy U is a function of
entropy S, the volume V , and the number of moles ni
of each constituent. Then the infinitesimal increase of
energy is

dU = TdS − pdV +
∑
i

µidni, (222)

where T = ∂U/∂S is the temperature, p = −∂U/∂V ,
and µi = ∂U/∂ni is the chemical potential of the con-
stituent i. The terms of the summation are understood
as the variation in the energy due to flux of molecules
from the environment.

Replacing (221) into equation (222) we get

dU = TdS − pdV −Adξ, (223)

were A is a quantity that De Donder calls the affinity,
given by

A = −
∑
i

νiµi, (224)

and we notice that

A = −
(
∂U

∂ξ

)
SV

. (225)

For a closed system, De Donder assumes the following
relation

dU = TdS − pdV. (226)

In a closed system no reactants of products of the
reaction are exchange with the environment. This does
not mean that the number ni of molecule of each
chemical species remains constant. It may vary due to
the chemical reaction occurring inside the system, which
is induced by variation of pressure or temperature. We
remark that this fundamental assumption is equivalent
to the thermochemical principle that we have discussed
above. It is independent but consistent with the funda-
mental laws of thermodynamics. If we consider a cyclic
process in the variables S and V , the equation (226)
says that the final and initial energy are the same.
The assumption represented by the equation(226) is
not obvious because the chemical state defined by the
number ni of molecules of each species might not be

the same, and the final energy could not be equal to
the initial energy.

The equation (226) is valid for equilibrium or for
reversible processes. For out of equilibrium of irreversible
process De Donder assumes the following relattion

dU = TdS − pdV − dQ′, (227)

where dQ′ is related to the irreversible process and called
by Clausius as the uncompensated heat. According
to Clausius, says De Donder, dQ′ ≥ 0 which is a
consequence of the second principle of thermodynamics.

Comparing (227) with (223) we find

dQ′ = Adξ, (228)

which De Donder writes in the form

dQ′

dt
= A

dξ

dt
. (229)

Considering that in irreversible process dQ′/dt > 0, then
if the affinity A is positive, the velocity of reaction dξ/dt
is positive and the reaction is shifted to the right. If the
affinity is negative, the velocity of reaction is negative
and the reaction is shifted to the left. The equilibrium
occurs when A = 0, that is, when∑

i

µiνi = 0. (230)

Replacing (228) in the equation (227),

dU = TdS − pdV −Adξ. (231)

Defining F = U −TS, H = U + pV , and G = U −TS+
pV , we have

dF = −SdT − pdV −Adξ, (232)

dH = TdS + V dp−Adξ, (233)

dG = −SdT + V dp−Adξ. (234)

From these equations, we may write

A = −
(
∂U

∂ξ

)
SV

, A = −
(
∂F

∂ξ

)
TV

, (235)

A = −
(
∂H

∂ξ

)
Sp

, A = −
(
∂G

∂ξ

)
Tp

. (236)

The condition of equilibrium is represented by
∂A/∂ξ ≤ 0. For T and p held constant this condition
gives

Ω = −
(
∂A

∂ξ

)
Tp

. ≥ 0 (237)

Taking into account that

−
(
∂A

∂ξ

)
Tp

= (∂A/∂T )ξp
(∂ξ/∂T )Ap

, (238)
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and defining

R = T

(
∂S

∂ξ

)
Tp

= T

(
∂A

∂T

)
ξp

, (239)

which is the heat of reaction, we may write(
∂ξ

∂T

)
Ap

= ΩR
T
. (240)

An analogous relation can be obtained for variation in
pressure. Defining

Λ = −
(
∂V

∂ξ

)
Tp

=
(
∂A

∂p

)
ξT

, (241)

we may write (
∂ξ

∂p

)
AT

= ΩΛ. (242)

De Donder states that (240) and (242) are generaliza-
tions of the relations due to Le Chatelier and van ’t
Hoff.

De Donder applies his theory to the mixture of ideal
gases and derives the van ’t Hoff equation related to the
equilibrium constant as well as the law of mass action of
Guldberg and Waage.

The relevant points of De Donder theory are the con-
cepts of extent of reaction and affinity, and the relation
he obtained between the Gibbs chemical potentials and
his affinity. Above we presented the case of a system
with just one chemical reaction. For several chemical
reaction, one should define one extent of reaction ξγ
for each reaction. The variation in the number of moles
becomes

dni =
∑
γ

νiγξγ , (243)

where νiγ are the coefficients related to the reaction γ.
Also one defines an affinity for each reaction by relations
(235) and (236). The affinity related to reaction γ is
obtained by these equations where the derivation is
respect to ξγ , and equation (228) becomes

dQ′ =
∑
γ

Aγdξγ . (244)

The condition of equilibrium occurs when this expression
vanishes, that is, ∑

γ

Aγξγ = 0. (245)

14. Prigogine

A further development of the De Donder theory was
carried out by Ilya Prigogine. A distinct feature of
Prigogine approach is that he intended to describe open

systems, understood as systems that are permanently
out of thermodynamic equilibrium, and thus are irre-
versible systems. To this end he base his theory on two
important concepts, the flux of entropy and production of
entropy, which may have been introduced by Jaummann.
Previous works on irreversibility, says Prigogine [114],
were limited to the use of the Clausius relation, without
an explicit determination of the uncompensated heat
which is related to the production of entropy. To study
open system it is necessary to explicitly consider the
production of entropy. The importance of uncompen-
sated heat was recognize by Duhem, Natanson, and
Jaummann, but the real development of the study of
the thermodynamics of irreversible process started with
De Donder.

We analyze here his book on the thermodynamic of
irreversible phenomena published in 1947 [114], which
was his thesis presented in 1945 at the Free University
of Brussels for obtaining the degree of Agrégé in higher
education. We also analyze his book on the same subject
published in 1955 [115]. The starting point of the
Prigogine theory is the Clausius relation

dS = dQ

T
+ dQ′

T
, (246)

where dS is the variation of the entropy of a system
at a temperature T during an interval of time dt, dQ
is the heat exchanged with the environment and dQ′ is
the uncompensated heat. This second quantity is due to
irreversible processes and is always positive.

Prigogine interpreted the firs term on the right hand
side of equation (246) as the entropy exchanged with
the environment, which he denoted by deS, but we write
it as Φdt, that is, dQ/T = Φdt, where Φ is the flux of
entropy, a quantity that can be positive, negative or zero.
The second term, he interpreted as the production of
entropy inside the system, which he denoted by diS, but
we write it as Pdt where P is the production of entropy
per unit time. This quantity is positive for irreversible
processes and vanishes for reversible processes, that is,
P ≥ 0. Thus equation (246) becomes

dS = Φdt+ Pdt. (247)

The variation of the energy of an open system with
several chemical species during an interval of time dt is

dU = dQ− pdV +
∑
i

µidn
′
i, (248)

where dQ is the heat absorbed, pdV is the work per-
formed by the system, and dn′i is the number of moles
of species i that enter the system during the interval of
time dt. The quantity dn′i is related to the increase dni
in the number of moles of species i by

dni = dn′i + νidξ, (249)

and we are considering just one chemical reaction.
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Recalling that dQ = TΦdt, we eliminate Φ from the
two equations (248) and (247), and use (249) to eliminate
dn′i. The resulting equation is

dU = TdS − pdV +
∑
i

µidni +Adξ − TPdt, (250)

where A is the affinity, given by (224). At the stationary
state the variations of U , S, V , and ni vanish and we find
the following expression for the production of entropy

P = 1
T
Av, (251)

where v = dξ is the velocity of reaction. Proceeding in
an analogous manner we reach the following equation for
the case of multiple reactions,

P = 1
T

∑
γ

Aγvγ , (252)

which is equivalent to the De Donder equation (244),
and is a definite-positive quadratic form.

Let us consider now that a closed system is in contact
with two heat reservoirs at temperatures T1 and T2. In
this case the variation of energy during an interval of
time dt is

dU = dQ1 + dQ2 − pdV, (253)

where dQ1 and dQ2 are the heats coming from the two
reservoirs and are related to the entropy fluxes Φ1 and
Φ2 from the two reservoirs by dQ1 = T1Φ1dt and dQ2 =
T2Φ2dt. The total flux of entropy is Φ = Φ1 + Φ2 and
equation (247) becomes

dS = (Φ1 + Φ2)dt+ Pdt. (254)

In the stationary state, the variations of U , S, and V
vanish and we find

T1Φ1 + T2Φ2 = 0, (255)

and

P =
(

1
T2
− 1
T1

)
Φq, (256)

where Φq = T1Φ is the heat flux from the first reservoir.
From the the two cases studied above we see that the

rate of entropy production is a sum of products

P =
∑
k

JkXk, (257)

where Xk is a generalized force, such as the affinity, and
Jk is a generalized rate, such as the velocity of reaction.
At equilibrium Jk = 0 and Xk = 0 for all k. Near
equilibrium we may assume that the rates are linear in
the forces, that is,

Jk =
∑
j

LkjXj . (258)

Replacing (258) in (257), the entropy production
becomes the quadratic form

P =
∑
kj

LkjXkXj . (259)

Since P ≥ 0, the eigenvalues of the matrix with elements
Ljk has nonnegative eigenvalues. The non-diagonal ele-
ments may be positive or negative but the diagonal must
be non-negative. A theorem due to Onsager [116] asserts
that the coefficient matrix is symmetric, that is,

Lkj = Ljk. (260)

We remark that the demonstration is outside the realm
of the theories of thermodynamics analyzed here. It is
based on a dynamic approach to thermodynamics and
that the equilibrium corresponds to a dynamic that
obeys detailed balance.

15. Discussions

15.1. Thermodynamic potentials

The thermodynamic potentials were introduced by
Massieu in 1869 with the name of characteristic func-
tions [41]. The main idea advanced by Massieu was
that a single characteristic function could enclose all
properties of a body. This idea was embraced by Gibbs
who stated in his treatise on thermodynamics of 1876
that Massieu has shown how all the properties of a fluid
which are considered in thermodynamics may be deduced
from a single function [60].

Massieu introduced two characteristic functions which
are Ψ = S − U/T and Φ = S − (U + pV )/T . Gibbs
instead introduced the functions F = U − TS and G =
H − TS which together with H = U + pV and U he
called fundamental equations [60]. We remark that, in
a later paper of 1876, using a suggestion of Bertrand,
Massieu simplified his previous approach by introducing
two characteristic functions that are identical to F and
G except for a minus sign [42, 117, 118].

A distinguishing feature of the Gibbs approach in
comparison with that of Massieu is that he considered
the thermodynamic potentials to be applied to systems
with variable composition, as pointed out by Gibbs
himself. The second and most important feature showed
by Gibbs is that the thermodynamic potentials hold the
conditions of equilibrium, which he wrote as (∆U)S ≥ 0,
(∆F )T ≥ 0, and (∆G)Tp ≥ 0, as well as the convexity
properties.

Duhem used the term thermodynamic potential to
name the Massieu characteristic function, a concept that
became central in his thermodynamics [87, 90]. The
name was borrowed from mechanics. Duhem explains
that if the work of a force depends only on the final
and the initial state, there exists a function called
potential such that the forces are obtained by differ-
entiation [87]. The main property of the potential is
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that it is a minimum in a state of stable equilibrium,
as shown by Lagrange and demonstrated by Dirichlet,
says Duhem [87]. Gibbs used the same concept of
potential but he associated it to a function with the
reverse sign of the potential, which he called force
function [60]. Thus −F is the force function of a system
at constant temperature, −U is the force function at
constant entropy. By analogy he called H the heat
function for constant pressure because the variation of
H at a constant pressure equals the heat. In this sense U
might as well be the heat function at constant volume,
says Gibbs.

The quantity U − TS was called available energy by
Maxwell in 1875 although he did not ascribe a letter
to it [43]. Helmholtz introduced the thermodynamic
potential F in 1882 and called it the free energy [93].
In a publication of the following year Helmholtz acknowl-
edges that Massieu had already introduced the function
F in 1876, except for the minus sign, but without relat-
ing it with chemical processes as he did [119]. Duhem
called F the internal thermodynamic potential [90].
In addition to free energy [78–80, 101, 110, 120–126],
other terminologies are Helmholtz free energy [113, 127–
130], work function [131], Helmholtz function [132] and
Helmholtz potential [133].

Planck [78–80] and others [120, 121, 125, 126, 130,
131], called H the heat function as did Gibbs, whereas
Lewis and Randall [106], called it the heat content. The
name enthalpy was proposed by Kamerling Onnes in
1908 [134, 135] and was widely adopted [110, 113, 120,
122, 124, 128, 129, 131–133].

Lewis and Randall [106] called G the free energy.
Other terminologies for G are thermodynamic potential
[120, 125], Gibbs free energy [121, 127–129], Gibbs ther-
modynamic potential [113], Gibbs function [130, 132,
133] and free enthalpy [124].

Guggenheim [130] and Kubo [129] called the potential
Ψ the Massieu function and Φ the Planck function. Both
potentials were called Massieu functions by Callen [133].

In Table 1 we show the notation for the thermody-
namic potentials used by several authors together with
the notation for temperature, heat, and work. In the
present paper, starting from the section on the Gibbs
thermodynamics, we employed the notation shown in the
first line of Table 1 instead of the original notations used
by the authors.

We remark that Massieu [136], Duhem and some other
French authors used for work the symbol T, which is
a French cursive capital letter ‘T’. In French, the word
for work (travail) begins with the letter ‘t’, as is the
case of Portuguese (trabalho) and Spanish (trabajo). It
is interesting to note that the symbol T is also used
for work in physics textbooks for the secondary school
in Brazil, which sometimes is called ‘tau’ due to the
resemblance with the Greek letter [137], as illustrated
in Figure 9.

Figure 9: Top panel. Massieu handwriting [136] of 1873 for
the first law of thermodynamics in differential form, dQ =
dU + AdTe. The symbol T for work is a French cursive
capital letter ‘T’, and A is the heat equivalent of work. Bottom
panel. Illustration of the first law in a secondary school book of
1965 [137].

Table 1: Notations for temperature θ, absolute temperature T ,
heat Q, work W , entropy S, energy U , Helmholtz free energy
F , enthalpy H, Gibbs free energy G. An asterisk∗ indicates that
the author mentions the Legendre transformation.
author θ T Q W S U F H G year ref.
Poisson θ q 1823 [22]
Clapeyron t Q 1834 [27]
Clausius t Q U 1850 [33]
Clausius t T Q W U 1854 [38]
Clausius T Q W S U 1865 [39]
Massieu t T Q S U U ′ 1869 [41]
Maxwell t t h w φ e 1871 [20]
Gibbs t H W η ε 1873 [58]
Massieu t T Q T S U −H U ′ −H′ 1876 [42]
Gibbs t Q W η ε ψ χ ζ 1876 [60]
Helmholtz ϑ Q W S U F 1882 [93]
Duhem T Q T S U F Φ 1886 [87]
Bertrand t T Q S U −H −H′ 1887 [117]
Poincare t T Q τ S U −H −H′ 1892 [118]
Nernst T Q S U A 1893 [101]
Duhem ϑ T Q T S U F H,Φ 1897 [90]
Planck t ϑ Q A S U F 1897 [78]
Planck t T Q A S U F W 1911 [79]
Partington θ T Q A S U Ψ W φ 1913 [126]
Planck t T Q A S U F W 1922 [80]
Lewis
and Randall T q w S E A H F 1923 [106]

Partington θ T Q A S U F H Z 1924 [120]
De Donder T Q W S U F Ψ H 1927 [110]
Schottky T Q A S U F W G 1929 [121]
van Lerberghe T Q T S U F I H 1931 [122]
Guggenheim T q w S E F H G 1933 [127]
De Donder T Q S E F H G 1936 [113]
Epstein∗ T Q W S U Ψ X Φ 1937 [131]
Fermi T Q L S U F Φ 1937 [123]
Zemansky T Q W S U F H G 1937 [132]
Guggenheim T q w S U F H G 1949 [130]
Sommerfeld∗ T Q W S U F H G 1952 [124]
Landau

and Lifshitz T Q R S E F W Φ 1958 [125]
Callen∗ T Q W S U F H G 1960 [133]
ter Haar
and Wergeland∗ T Q L S U F H G 1966 [128]

Kubo∗ T Q W S U F H G 1968 [129]

15.2. Legendre transformation

The recognition that the thermodynamic potentials are
connected to a Legendre transformation was made by
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Ehrenfest in a paper on the Le Chatelier-Braun principle
published in 1911 [138]. He adds that it is the same
transformation used to pass from the equations of
Lagrangian to the equations of Hamilton. Later it was
also recognized by Epstein in his book on thermodynam-
ics of 1937 [131]. He says that the method of replacing
ydx by the term −xdy through the subtraction of d(xy)
is called a Legendre transformation.

Sommerfeld in his book on thermodynamics of 1952
[124] used the Legendre transformation and pointed out
the same observations made by Epstein and Ehren-
fest concerning this transformation. Thereafter, it was
used by Callen in his textbook on thermodynamics of
1960 [133] and by Tisza in a paper on thermodynamics
of 1961 [139]. The transformation was also used by ter
Haar and Wergeland in his book on thermodynamics
of 1966 [128], where they remarked that it is a special
case of a Lie contact transformation, and by Kubo in
his book on thermodynamics published in 1968 [129],
which is a translation of the Japanese edition of 1961.
It should be remarked that many books do not refer
to the Legendre transformation, as seen in Table 1,
including the book of Landau and Lifshitz on statistical
mechanics published in 1958 [125], which includes a
section about thermodynamics.

The origin of the transformation associated to the
name of Legendre is found in his publication of 1787 [140]
about the integration of some partial differential equa-
tions. Legendre introduced a change of variable to
simplify a partial differential equation of the type

A
∂2z

∂x2 +B
∂2z

∂x∂y
+ C

∂2z

∂y2 = 0, (261)

where A, B and C are functions of p = ∂z/∂x and
q = ∂z/∂y. The variable z depends on x and y and
its differential is

dz = pdx+ qdy. (262)

Legendre then proposes to regard x, y, and z as functions
of p and q. To this end, he defines a function ω by

ω = px+ qy − z, (263)

from which follows that

dω = xdp+ ydq, (264)

and as dω is an exact differential, one finds x = ∂ω/∂p
and y = ∂ω/∂q. From these results Legendre reaches the
equalities

∂2z

∂x2 = 1
D

∂2ω

∂q2 ,
∂2z

∂y2 = 1
D

∂2ω

∂p2 , (265)

∂2z

∂x∂y
= − 1

D

∂2ω

∂p∂q
, (266)

where

D = ∂2ω

∂p2
∂2ω

∂q2 −
(
∂2ω

∂p∂q

)2

. (267)

Replacing these results in equation (261), the following
equation is obtained

A
∂2ω

∂q2 −B
∂2ω

∂p∂q
+ C

∂2ω

∂p2 = 0, (268)

which is simpler than (261) in that it does not contain
partial differentials of the first order.

We see that the equation (263), which defines the
change of variable proposed by Legendre, is identical to
the change of variables given by equations (60), (61),
(63), and (69) proposed by Massieu. Thus, the change
of variable employed by Massieu to obtain the several
thermodynamic potentials, which has become common
practice in the development of thermodynamics since
Gibbs, is the same transformation used by Legendre.
Considering that Massieu was the origin of the thermo-
dynamic potential used by Gibbs, Helmholtz, Duhem
and others, we find no reference to Legendre in these
authors, as the reference was Massieu. Only later was
the reference to Legendre recognized, as stated above.

Let us examine the transformation proposed by Leg-
endre and independently by Massieu. Given U(S), con-
sidered a continuous function of S, we obtain F (T ) by

F = U − TS, (269)

where T = ∂U/∂S. If U(S) is convex than T will be
a single-valued function of S and we can invert T (S)
to obtain S as a function of T , which replaced in (269)
gives F (T ). If U(S) is not convex then T may not be a
single-valued function and the same may happen to F .
To remedy this problem an appropriate way of defining
the Legendre transformation is [55, 141–144]

F = min
S
{U(S)− TS}. (270)

Using this definition, then F (T ) will be be single-valued
and will be a concave function.

An illustration of the transformation defined by (270)
is shown in Figure 10. If U(S) is convex than F (T )
will be concave. We remark that convex and concave
functions have convexity properties. A convex function
is facing upwards, as in Figure 10a, and a concave
function, facing downwards, as in Figure 10d. Thus the
transformation (270) preserves the convexity property.
The inverse transformation of (270) is

U∗ = min
T
{F (T ) + ST}. (271)

If U(S) in equation (270) has the convexity properties,
than U∗(S) will coincide with U(S). If not then U∗

will be the convex hull of U . The procedure of finding
the convex hull is equivalent to the Maxwell construc-
tion [55].

Another important feature of the transformation
defined by (270) is that it is also valid when the
derivative of F does not exist as happens in a discon-
tinuous thermodynamic phase transition as shown by
the function F in Figure 10d.
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S

(a)
U F (d)

T

(b)

S

T S
(c)

T

Figure 10: Illustration of a Legendre transformation. (a) Energy
U versus entropy S, (b) temperature T = ∂U/∂S versus S, (c)
entropy S = −∂F/∂T versus T , (d) free energy F versus T . The
curves in (a) and (d) are Legendre transforms of each other, and
both hold the convexity property. The functions shown in (b)
and (c) are inverse of each other. The full circle in (d) indicates
that the left and right derivatives are distinct. The dot lines are
guides to the eyes.

The Legendre transformation in the form (269) is used
in many text-books on thermodynamics. The form (270),
which is very useful in the study of phase transitions,
is less employed. Nevertheless, this form is found in
the chapter on thermodynamics contained in the book
on statistical physics by Salinas [143], in the book on
thermodynamics by Wreszinski [144], and in the book on
equilibrium thermodynamics by the present author [55].

It is noteworth that the equivalence of descriptions by
distinct thermodynamic potentials can be captured by
looking at the Figure 10. We clearly see that the deriva-
tives, which are conveniently located below the plots of
the potentials, are inverse functions of each other.

15.3. Carathéodory

In 1909, Carathéodory published a paper [145] where
he presented a derivation of the Clausius principle that
dQ/T = dS is an exact differential. He demonstrated
this statement from a postulate that he introduced and
which reads: In any arbitrary neighborhood of a given
initial state, there are states that cannot be arbitrarily
reached by an adiabatic process. This postulate is the
main result of the Carathéodory approach, which he
claimed to be an axiomatic treatment of thermodynam-
ics [145, 146].

To better understand the Carathéodory approach
we first formulate his main result as a theorem of
mathematical analysis. Let us consider the differential
equation, called Pfaffian,∑

i

Xidxi = 0, (272)

where Xi are given functions of the variables xi which
constitute a space x. Of all trajectories in space x, those
that obey (272) we call a Pfaff trajectory.

Given a point A belonging to a Pfaff trajectory we
may ask whether there exist a point B in an arbitrary
neighborhood of the point A that is not connected by
the Pfaff trajectory. If the answer is affirmative then the
differential form on the left hand side of equation (272)
can be integrated. That is, if we write

dS = λ
∑
i

Xidxi, (273)

then there exists a quantity λ such that dS is an exact
differential, which means that S is a function of x.
The quantity λ is a function of x and is called an
integration factor. The main consequence of the theorem
just presented is that the Pfaff trajectories will belong
to surfaces in space x, described by S(x) = k where k
is a constant. Distinct surfaces are described by distinct
values of k and they do not intercept each other.

To interpret this theorem in thermodynamics terms,
we begin by writing the conservation of energy U along
an adiabatic process in the differential form is written
as

dU = −
∑
k

fkdxk, (274)

where each term fkdxi represents one type of work
performed by the system. This equation is identified
with equation (272) and an adiabatic process as a Pfaff
trajectory. With this interpretation we may conclude
that

dS = dQ

T
, (275)

where

dQ = dU +
∑
k

fkdxk, (276)

where T is the inverse of the integration factor λ.
Interpreting dQ as the heat developed along a trajectory
and T as the temperature, then S is the Clausius entropy
and (275) is the Clausius principle.

It should be remarked that, according to Born [147,
148], who supported the Carathéodory approach, the
definition of adiabatic process does not use the notion
of heat. That is, the equality (274) which describes an
adiabatic process does not follow by setting the heat
dQ in (276) equal to zero. The equality (274) defines an
adiabatic process and the heat dQ is defined by (276). It
should be noted however that this does not distinguish
the Carathéodory approach from that of Clausius as
the same interpretation can be said about the Clausius
approach. In fact, we have emphasized the viewpoint
that heat is defined by means of adiabatic process which
is understood as a primitive concept and not defined as
the a process without the exchange of heat [9, 10].
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Table 2: The author and the abbreviated title of the work
that we have analyzed together the year of its publication and
references.
author work year ref.
Laplace Theory of elastic fluids 1822 [21]
Poisson Heat of gases and vapors 1823 [22]
Carnot Motive Power of Fire 1824 [26]
Clapeyron Motive power of heat 1834 [27]
Clausius Mechanical theory of heat 1850 [33]
Maxwell Theory of Heat 1871 [20]
van der Waals Continuity of the Gaseous

and Liquid States 1873 [49]
Gibbs Equilibrium of

heterogeneous substances 1876 [60]
Planck Treatise on Thermodynamics 1897 [78]
Duhem Chemical Mechanics 1897 [90]
Nernst New Heat Theorem 1906 [103]
De Donder Affinity 1927 [110]
Prigogine Irreversible Phenomena 1945 [114]

The theories of thermodynamics analyzed here used
the Clausius principle as a fundamental law. As any
scientific theory, the fundamental laws which are the
starting point on the development of the theory, can
be replaced by other equivalent laws if they exist. The
Carathéodory approach is an example of this type. It
is possible if we wish to replace the Clausius principle
by the Carathéodory. However, we find it more natural
to take the Clausius principle as fundamental and
consider the Charathéodory postulate stated above as a
consequence. That is, the existence of states near a given
state that cannot be reached by means of an adiabatic
process only is a consequence of the Clausius principle.

16. Conclusion

We have presented a critical analysis of the analytical
theories of heat that included the caloric theories of
Laplace, Poisson and Carnot, and the thermodynamic
theories founded on the energy conservation and on
the principle of the increase of entropy formulated by
Clausius, which are summarized in Table 2. They were
analyzed from the viewpoint that a scientific theory con-
sists of a theoretical framework and an interpretation.
The theoretical framework contains primitive concepts
and fundamental laws from which other concepts and
other laws are derived by a deductive reasoning. The
fundamental laws must not contradict each other but an
actual demonstration of consistency is not required.

Another feature of the theories of heat presented here
is that they incorporate some laws that are not derived
from the fundamental laws but are consistent with them.
This is the case of the laws related to the ideal gases,
such as the equation of state associate to the names of
Boyle and Gay-Lussac, the Avogadro law, and the Gibbs
rule used to determined the free energy of a mixture
of ideal gases. Another important example is the Gibbs
phase rule.

The way in which the laws are presented in some scien-
tific treatises is made through a textual statement. This
is particularly true in the case of thermodynamics where
it became a tradition to state the second law in a textual
form known as the Kelvin and Clausius statements.
Sometimes other equivalent forms are also presented
such as the Planck statement and the Charathéodory
postulate. Usually a textual presentation needs an inter-
pretation of its terms in order to be translated into
an analytical form. In the theories presented above,
the second law is formulated in the analytical form in
terms of the entropy. However, the textual forms are
still present in many textbooks.

The textual forms of the second law, such as those
stated in terms of the efficiency of machines, have been
argued to be inadequate to the construction of a theoret-
ical framework of thermodynamics and a reconstruction
of the theory is said to be necessary. The problem is not
properly the reference to devices such as the heat engine.
The problem lies in the lack of accuracy of the terms
used in the statement and also on the unclear reasonings
employed to reach the analytical forms. The principle
of Carnot, which was stated originally in textual form,
when interpreted by Clapeyron and by Clausius lead
them to the desired analytical expressions (20) and (47).

At the end of this paper it is worth reproducing
the words of Nernst concerning the study of theoretical
physics, but we think it can be applied to the study of
any scientific theory or any science. It the preface of his
book on the New Heat Theorem, Nernst says [104, 105]:
“In times of trouble and distress, many of the old Greeks
and Romans sought consolation in philosophy, and found
it. Today we may well say that there is hardly any science
so well adapted as is theoretical physics to divert the
mind from the mournful present and to lead it into other
spheres; it can, however, offer this attraction only to the
few who have studied it for years”. The mournful present
refers to the first world war but the quote could as well
be alluded to the present time of the pandemic.
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Da F́ısica dos Gases à Mecânica Estat́ıstica (Editora
Livraria da F́ısica, São Paulo, 2014).

[9] M.J. de Oliveira, Braz. J. Phys. 48, 299 (2018).
[10] M.J. de Oliveira, Rev. Bras. Ens. Fis. 41, e20180307

(2019).
[11] M.J. de Oliveira, Rev. Bras. Ens. Fis. 42, e20190192

(2020).
[12] G.S. Parks, J. Chem. Educ. 26, 262 (1949).
[13] M.W. Lindauer, J. Chem. Educ. 39, 384 (1962).
[14] V.M. Schelar, Chymia 11, 99 (1966).
[15] R.G.A. Dolby, History of Science 22, 375 (1984).
[16] A. Ya. Kipnis, in: Thermodynamics: History and Phi-

losophy, Facts, Trends, and Debates, edited by K.
Martinás, L. Ropolyi and P. Szegedi (World Scientific,
Singapore, 1991), p. 492.

[17] A. Lavoisier and P. S. Laplace, Memoires de l’Académie
des Sciences, année 1780, 355 (1784).
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1892).
[119] H. von Helmholtz, Sitzungsberichte der Königlich

preussischen Akademie der Wissenschaften zu Berlin,
(1883), p. 647 .

[120] J.R. Partington, Chemical Thermodynamics (Consta-
ble, London, 1924).

[121] W. Schottky, Thermodynamik (Springer, Berlin, 1929).
[122] G. van Lerberghe, Calcul des Affinités Physico-

Chimiques (Gauthier-Villars, Paris, 1931).

DOI: https://doi.org/10.1590/1806-9126-RBEF-2022-0008 Revista Brasileira de Ensino de F́ısica, vol. 44, e20220008, 2022



e20220008-38 Structure of the analytical theories of heat

[123] E. Fermi, Thermodynamics (Prentice-Hall, New York,
1937).

[124] A. Sommerfeld, Vorlesungen über theoretische Physik,
Thermodynamik und Statistik (Dieterische, Wisbaden,
1952), band V.

[125] L.D. Landau and E.M. Lifshitz, Statistical Physics
(Pergamon Press, London, 1958).

[126] J.R. Partington, A Text-Book of Thermodynamics
(Constable, London, 1913).

[127] E.A. Guggenheim, Modern Thermodynamics by the
method of Willard Gibbs (Methuen, London, 1933).

[128] D. ter Haar and H. Wergeland, Elements of Thermody-
namics (Addison-Wesley, Reading, 1966).

[129] R. Kubo, Thermodynamics (North-Holland, Amster-
dam, 1968).

[130] E.A. Guggenheim, Thermodynamics (North-Holland,
Amsterdam, 1949).

[131] P.S. Epstein, Textbook of Thermodynamics (Wiley, New
York, 1937).

[132] M.K. Zemansky, Heat and Thermodynamics (McGraw-
Hill, New York, 1937).

[133] H.B. Callen, Thermodynamics (Wiley, New York,
1960).

[134] I.K. Howard, J. Chem. Educ. 79, 697 (2002).
[135] H.C. van Ness, J. Chem. Educ. 80, 486 (2003).
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São Paulo, 1997).
[144] W.F. Wreszinski, Termodinâmica (EDUSP, São Paulo,
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