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On the spacing distributions in the spin-1/2 XX chain
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We provide a pedagogical calculation of the first two spacing distribution for a spin-1/2 XX chain in the
presence of an external magnetic field. The results obtained from analytical expressions are compared with those
from extensive quantum Monte Carlo simulations. The results obtained for the spacing distributions are used
to describe the magnetic behavior of the system and contrasted with the standard analysis based on quantities
such as the average energy, magnetization, and susceptibility. Finally, the equivalence between the analytical
expressions for the spacing distributions provided by the second quantization formalism and those from the
inter-particle distribution method is illustrated. As shown, the spacing distributions can be used as pedagogical
examples of the use of the second quantization formalism in introductory courses of quantum statistical mechanics.
Additionally, these distributions can be calculated easily from quantum Monte Carlo simulation and, therefore,
can be used to illustrate this numerical method.
Keywords: Emptiness distribution, spin chain, Wigner surmise, spacing distribution functions.

1. Introduction

Two of the main tools presented in courses on quantum
statistical mechanics to deal with interacting many-
particle quantum systems are the second quantiza-
tion formalism and the quantum Monte Carlo (QMC)
method [1–11]. Thus, one of the challenges in teaching
this topic is finding physical systems where these tools
can easily be applied, and therefore, can be used as
examples [1–8, 12, 13]. From a pedagogical perspective,
an example must illustrate the nature, usefulness and
scope of the methods but at the same time be accessible
for an upper-level introductory course.

The XX spin chain in the presence of a magnetic field h
is an integrable system and one of the simplest quantum
systems displaying long-range correlations along with
the associated large fluctuations. It clearly has the mini-
mal dimensionality and number of continuous degrees of
freedom per site. Therefore, it is a good starting point
to begin the study of quantum interacting many-particle
systems [14–19]. The XX spin chain is described by the
Hamiltonian

Ĥ = J

N∑
j=1

(
Ŝx

j Ŝx
j+1 + Ŝy

j Ŝy
j+1

)
− 2h

N∑
j=1

Ŝz
j , (1)

where J is the coupling constant between adjacent spins,
h is an external magnetic field and N the total number
of spins (lattice sites). As usual, Ŝi

j is an operator that

*Correspondence email address: diego.luis.gonzalez@correouni
valle.edu.co

gives the projection of the spin in direction i = x , y and
z for the lattice site j.

From the partition function of the XX spin chain,
many physical quantities can be calculated analytically,
such as the free energy, magnetization, susceptibility,
and heat capacity [1–3, 14]. The magnetic behavior
of the system can be understood from the analysis of
these macroscopic quantities. Thus, it is not surprising
that the XX spin chain is often chosen to illustrate
the useful of the second quantization formalism and the
QMC method [11, 14, 20–22]. Besides the macroscopic
quantities mentioned above, there are other quantities
that can also be used to describe the behavior of
spin chain and to illustrate the scope of these tools.
One of them is a special correlation function called
Emptiness Formation Probability (EFP), En, which is
the probability of finding an up-string with length n

En =
〈

n∏
j=1

(
Ŝz

j + Î

2

)〉
, (2)

where Î is the identity operator. A major advantage
of En is that, from its distribution one can calculate
the scaled domain-length distribution function, p(0)(ℓ)
[15–19]. The magnetic behavior of the spin chain can
be understood via the results obtained for p(0)(ℓ). It is
well known [14–16] that an interesting regime appears
as 2 h approaches J from below: consecutive domains of
spins parallel to the field are separated from each other
by a single spin pointing in the opposite direction. In
this regime, it is useful to map the spin system into an
equivalent system of interacting particles. In this analogy
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the minority spins are represented by particles, while the
spins parallel to the field by empty sites. In the context
of classical systems of interacting particles, En is the
probability to find an empty segment (without particles)
of length n. We can define another quantity that also
provides information about the structure formed by the
domains, the probability p(1)(ℓ). By definition p(1)(ℓ) is
the probability to find two consecutive domains sepa-
rated by a single spin in the opposite direction; thus, ℓ is
the sum of two domain lengths plus one additional lattice
site. This probability is less studied than p(0)(ℓ) but can
also be calculated analytically for the spin-1/2 XX chain
albeit not be expressable in terms of En [23, 24].

Typically, the structure and behavior of many-particle
systems are usually described in terms of pair distribu-
tions and density correlation functions. Equivalently, the
spacing distributions can be used to describe the statis-
tical behavior of one-dimensional many particle systems
[2, 25–29]. Therefore, it is not surprising that they have
been used to extract information in different contexts
such as reaction diffusion systems, epitaxial growth,
traffic flow, and random matrices. For instance, p(0)(ℓ)
can be used to extract information about the interaction
potential between particles in classical one-dimensional
many-particle systems [25, 30]. In the context of random
matrices, the structure formed by the eigenvalues is
described by the spacing distributions, allowing one to
characterize the different ensembles according to the
functional form of those distributions [27]. Furthermore,
there is evidence [28] that several different systems can
share the same p(0)(ℓ) even thought their statistical
behaviors are not equivalent. Therefore, the finest details
of their behavior are contained in the higher-order
spacing distributions.

We stress the methods presented here have pedagog-
ical value. For instance, they can fruitfully supplement
specialized books devoted to the study of exactly solv-
able one-dimensional systems [11, 14, 31]. Such books
seek to illustrate the exact calculation of several quan-
tities for complex systems. The spacing distributions of
the XX spin chain are an example of these quantities
which usually is not considered. Our discussion can com-
plement the standard material presented in the books
dedicated to spin chains [14, 32, 33], the spacing distri-
butions discussed here can provide another approach to
the description of the behavior of the XX spin chain.
Additionally, En is the basis of a method called inter-
particle-distribution function (IPDF), widely used in the
context of reaction-diffusion systems [23, 24]. Our work
exemplifies how second-quantization tools are related
to the IPDF method, serving as the motivation and
the starting point for the use of quantum-field-theory
methods in the study of reaction-diffusion systems.

This paper is organized as follows: In the second
section, we briefly present the model and the transfor-
mation used to diagonalize the Hamiltonian. A brief
discussion of the magnetic behavior of the system is

provided through results for the average energy, mag-
netization, and susceptibility. In the third section we
calculate p(0)(ℓ) and p(1)(ℓ) for the XX spin chain. In the
fourth section, we compare the analytical and numerical
results for p(0)(ℓ) and p(1)(ℓ) produced by the second-
quantization formalism and QMC, respectively. Finally,
we use our results for the spacing distributions to discuss
the magnetic behavior of the spin chain, as well as the
pedagogical value of these calculations.

2. Model Description

Consider a chain along the z axis of N spins-1/2 with
nearest-neighbor interactions in the presence of an exter-
nal magnetic field h parallel to this z axis. The system is
described by the Hamiltonian given in Eq. (1). Periodic
boundary conditions are imposed, i.e., Ŝj

N+1 = Ŝj
1 with

j = x, y or z. It is well know that this Hamiltonian
can be diagonalized by using the Jordan-Wigner (JW)
transformation [34], see Appendix A. Note well that
the JW transformation maps the spin system onto an
equivalent system of free fermions. The diagonalized
form of the Hamiltonian is

Ĥ =
∑

q

ϵq ĉ†
q ĉq − h N̂, (3)

where the dispersion relation is given by ϵq = 2h −
J cos(q); ĉq and ĉ†

q are fermionic annihilation and cre-
ation operators, respectively. The density of fermions
(down-spins) on the lattice is given by ρ = NF /N =
cos−1(2h/J)/π. It is illustrative to plot ϵq for different
values of h. As shown in Fig. 1, for h = 0 the Fermi
wavevector is given by kF = π/2. However, as h increases
kF decreases, implying that the number of fermions
decreases. For h > J/2 the Fermi sea disappears; the
absence of fermions means that all spins are parallel to
the field.

The energy of the ground state per particle, i.e., the
average energy per particle at T = 0, is given by

Eg = ⟨gs| Ĥ |gs⟩

= −h + 1
2π

∫ πρ

−πρ

dq (2 h − J cos q)

= −h(1 − 2ρ) − J

π
sin (π ρ) , (4)

where |gs⟩ =
∏kF

q=−kF
ĉ†

q |∅⟩ and |∅⟩ is the vacuum state.
In Eq. (4) we use the fact that, in the thermodynamic
limit (N, NF → ∞ with ρ = NF /N finite and fixed), the
sum over ql can be replaced by an integral over q accord-
ing to (1/N)

∑
l →

∫
dq/(2π). From Eq. (4) at T = 0,

for h ≥ J/2 we have ρ = 0 and Eg = −h. In contrast,
for h → 0, ρ → 1/2, Eg → −J/π and the number of
spins up and down are equal. For non-zero temperature
the thermal fluctuations must be considered. In order to
do that, we must calculate the partition function of the
system in the canonical ensemble, ZN (β). The details of
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Figure 1: Behavior of ϵq for different values of h with J = 1.
Here and henceforth we take kB = 1 and J = 1 for the
numerical evaluation of all quantities. The Fermi wavevector
tends to zero as h gets close to J/2 implying the disappearance
of the “down” spins.

Figure 2: Energy as function of T for different values of h.
Continuous lines corresponds to Eq. (6) while dots to the results
obtained from QMC. For T = 0 the internal energy reduces
to Eq. (4) while for large T the energy takes the form U ≈
−β(h2 + J2/8).

the calculation are shown in Appendix B. The explicit
form of ZN (β) is

ZN (β) = z−N/2
N∏

l=1

(
1 + zef(q)

)
, (5)

with q = 2πl/N . As usual, in the thermodynamic limit
the average energy per spin, U , can be obtained from
[1–8, 14]

U = −h +
∫ π

−π

dq

2π

ϵ(q)e−βϵ(q)

1 + e−βϵ(q) . (6)

For T = 0, the internal energy coincides with the ground
state energy Eg, and as T increases, U approaches zero,
see Fig. (2). In the limit of high temperatures (kB T ≫
J −2h), the parameter β is small and the internal energy
reduces to U ≈ −β(h2 + J2/8).

Figure 3: Magnetization as function of T for different values
of h. Continuous lines correspond to Eq. (7) while dots to the
results obtained from QMC. For h = 0 the magnetization is
zero for all T . In the case h > 0 the magnetization is not zero
for finite T but tends to zero as T → ∞.

For the QMC simulation we follow the algorithm pro-
posed by Sandvik based on a stochastic series expansion
with operator-loop update [20–22]. In the simulation
500,000 MCS were used to reach equilibrium, with N =
512, kB = 1 and J = 1. In all figures, continuous lines
correspond to the analytic expression while dots to the
numerical results obtained from a QMC simulation.

The free energy per site can be calculated straight-
forward from ZN (β) and can be used to calculate the
magnetization per spin

M = 1 −
∫ π

−π

dq

π

eβJ cos(q)

e2βh + eβJ cos(q) (7)

The numerical and analytical results for M are shown
in Fig. 3. As expected, for h = 0 the magnetization is
zero for any value of T . For T = 0 and h > 0.5 the
magnetization is equal to one because all the spins are
parallel to the field. For T = 0 and 0 < h < 0.5 the
magnetization is smaller than one due to the existence
of down spins. Naturally, for T > 0, the magnetization
decreases due to the thermal fluctuations, see Fig. 3.
In fact, from Eq. (7) it is easy to see that for large T ,
M ≈ hβ. For h = 0, M = 0 regardless the value of T
because ρ = 1/2, and the number of spins up and down
are equal.

From the above discussion, at T = 0 we can expect
interesting behavior as 2h approaches to J from below.
Note that in this regime small changes in h lead to large
changes in M. The susceptibility per spin, χ, gives the
response of the magnetization to changes of the magnetic
field. Therefore, by definition χ can be calculated from
the magnetization as follows

χ =
∫ π

−π

dq
2eβ(2h+J cos(q))

πkBT
(
e2βh + eβJ cos(q)

)2 (8)
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Figure 4: Susceptibility as function of T for different values of h.
Continuous lines correspond to Eq. (8) while dots to the results
obtained from QMC. For large T the susceptibility decreases and
does not depends on h. For T = 0 and h = 0.5 an interesting
behavior is found, χ diverges suggesting the presence of a critical
behavior.

As seen in Fig. (4), for h = 0.5 the susceptibility
diverges at T = 0. This fact suggests the existence of
critical behavior associated with the crossover from the
organized state M = 1 (2h > J) to a disorganized state
M < 1 (2h < J). The magnetic behavior described
in this section can be also understood in terms of the
spacing distributions.

3. Spacing Distributions

In general, the spacing distributions contain information
about the structure of one-dimensional systems and pro-
vide insights into the nature of the interaction between
the particles. Therefore, they are often used to describe
one-dimensional many-particle systems [28–30, 35, 36].
As explained earlier, the XX spin chain can be mapped
onto an equivalent free fermion system, and its spacing
distributions can be used to obtain information about
the behavior of the spin chain.

As usual, P (n)(L) is the probability that for a particle
at the origin we find another particle at a distance L,
with the condition that there are n additional particles
inside the gap between them. It is convenient to use the
scaled spacing ℓ = L/ ⟨L⟩, with ⟨L⟩ the average of L.
The scaled spacing distributions, p(n)(ℓ), are given by

p(n)(ℓ) = ⟨L⟩ P (n)(ℓ ⟨L⟩). (9)

Note that we use lower case for the scaled distribu-
tions and uppercase for the unscaled ones. From their
definition, it is clear that the spacing distributions
are related to the pair correlation function according
to g(ℓ) =

∑∞
n=0 p(n)(ℓ). The easiest distributions to

calculate analytically for the XX spin system are p(0)(ℓ)
and g(ℓ) [15, 17, 19, 30]. One of the objectives of the
present paper is to show that p(1)(ℓ) can also be easily

calculated analytically and numerically; therefore, it can
be used in courses of quantum statistical mechanics as
an illustrative example. In order to accomplish this, we
briefly present the standard method used to calculate
p(0)(ℓ) and then we extend it to p(1)(ℓ). In the free
fermion picture of the spin chain, each lattice site is
either empty (◦) or occupied (•). Let PC(C) be the
probability of a given configuration C. The probabilities
of both configurations for a given lattice site satisfy

PC(•) + PC(◦) = 1. (10)

Similarly, the probabilities of the configurations of two
consecutive sites are given by

P(••) + PC(•◦) + PC(◦•) + PC(◦◦) = 1. (11)

For an isotropic system as in this paper PC(•◦) =
PC(◦•). The key quantity required to calculate the
spacing distribution p(0)(ℓ) is the emptiness distribution
Eℓ, which is the probability to find ℓ consecutive empty
lattice sites. Thus, by definition E2 = PC(◦◦). On the
other hand we have PC(◦◦) + PC(•◦) = PC(◦), implying
that, PC(•◦) = E1 − E2. Thus, using these results in
Eq. (11) shows that

PC(••) = 1 − 2E1 + E2. (12)

Analogously, if we consider all the configurations of L+1
consecutive sites with the L−1 intermediate sites empty,
one finds [23, 24]

Eℓ−1 = PC(•
L−1︷ ︸︸ ︷

◦ · · · ◦ •) + PC(•
L−1︷ ︸︸ ︷

◦ · · · ◦ ◦)

+ PC(◦
L−1︷ ︸︸ ︷

◦ · · · ◦ •) + PC(◦
L−1︷ ︸︸ ︷

◦ · · · ◦ ◦), (13)

which leads to

P (0)(L) = PC(↓
L−1︷ ︸︸ ︷

↑ · · · ↑ ↓)

= PC(•
L−1︷ ︸︸ ︷

◦ · · · ◦ •)
= EL+1 − 2EL + EL−1, (14)

where we have used PC(•
ℓ−1︷ ︸︸ ︷

◦ · · · ◦ ◦) = EL − EL+1.
This method is well known in the context of reaction-
diffusion systems as the inter-particle distribution func-
tion method (IPDF) [24, 35]. Comparing Eqs. (12) and
(14) we conclude that E0 = 1. Note that in order
to calculate P (0)(L) it is only necessary to find En.
Additionally, it is important to realize that Eq. (14) can
be written equivalently by using the second quantization
approach as the following average value

P (0)(L) =
〈

ĉ†
0ĉ0

L−1∏
j=1

b̂†
j b̂j ĉ†

LĉL

〉
, (15)
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where ĉ†
j (b̂†

j) and ĉj (b̂j) are the fermionic (hole) creation
and annihilation operators at position j, respectively.
These operators are related according to ĉ†

j = b̂j and
ĉj = b̂†

j . Taking this into account and using the fermionic
commutation relations to eliminate the particle opera-
tors in Eq. (15) we find

P (0)(L) =
〈

L−1∏
j=1

b̂†
j b̂j

〉
−

〈
L∏

j=1
b̂†

j b̂j

〉
−

〈
L−1∏
j=0

b̂†
j b̂j

〉

+
〈

L∏
j=0

b̂†
j b̂j

〉
(16)

Comparing Eqs. (14) and (16) we can conclude that, the
first term on the right side of Eq. (16) corresponds to
EL−1, the next two to EL and the last one to EL+1.
By using the Wick’s theorem, EL can be written as a
determinant

EL =
〈

L∏
j=1

b̂†
j b̂j

〉
= det

[〈
b̂†

l b̂j

〉]L

l,j=1
. (17)

Note that Eqs. (2) and (17) are equivalent. The calcu-
lation of En can be done by Fourier transforming the
particle operators

ĉj = 1√
N

∑
k

eijkĈk and ĉ†
j = 1√

N

∑
k

e−ijkĈ†
k, (18)

where k = 2πr/N with −NF /2 ≤ r ≤ NF /2. In this
way, the average value

〈
b̂†

l b̂j

〉
can be written as

〈
b̂†

l b̂j

〉
= δl,j − 1

N

∑
k

eik(l−j)nk(β), (19)

where nk(β) = 1/(1+exp(−β ϵk)) is the average number
of fermions in state k. The simplest case for the Eq. (19)
is found at T = 0 because in that case the integral can
be calculated exactly. At T = 0 we have〈

b̂†
j b̂j

〉
= 1 − ρ, (20)

and 〈
b̂†

j b̂l

〉
= sin(2π(j − l)(1 − ρ))

π(j − l) . (21)

However, for T > 0 the integrals involved must be cal-
culated numerically. To calculate p(0)(ℓ), first Eqs. (17)
and (19) (or (20) and (21) for T = 0) are used to
calculate EL. Then, Eq. (16) is used to evaluate P (0)(L).
Finally, the scaled distribution, p(0)(ℓ), is calculated
from P (0)(L) using Eq. (9).

By definition, the next spacing distribution, P (1)(L)
can be calculated from the following expression

P (1)(L) =
L−1∑
m=1

PC(↓
m︷ ︸︸ ︷

↑ · · · ↑↓ ↑ · · · ↑↓︸ ︷︷ ︸
L

)

=
L−1∑
m=1

PC(•
m︷ ︸︸ ︷

◦ · · · ◦ • ◦ · · · ◦ •︸ ︷︷ ︸
L

)

=
L−1∑
m=1

[〈
ĉ†

0ĉ0Ôm−1
1 ĉ†

mĉmÔL−1
m+1ĉ†

LĉL

〉]
, (22)

where we have defined Ôm
n =

∏m
j=n b̂†

j b̂j . The sum in
Eq. (22) considers that the inner particle can be at any
position inside the gap. Writing the particle operators in
terms of the corresponding hole operators we find

P (1)(L) =
L−1∑
m=1

[〈
Ôm−1

1 ÔL−1
m+1

〉
−
〈

Ôm−1
0 ÔL−1

m+1

〉
−
〈

ÔL−1
1

〉
+
〈

ÔL−1
0

〉
+
〈

ÔL
1

〉
−
〈

ÔL
0

〉
−
〈

Ôm−1
1 ÔL

m+1

〉
+
〈

Ôm−1
0 ÔL

m+1

〉]
. (23)

All the terms in Eq. (16) can be interpreted as the
probabilities associated with a given configuration. For
instance,

〈
ÔL

1

〉
= EL = PC(

L︷ ︸︸ ︷
◦ · · · ◦), (24)

and

〈
Ôm−1

0 ÔL
m+1

〉
= PC(

m−1︷ ︸︸ ︷
◦ · · · ◦ •

L−m︷ ︸︸ ︷
◦ · · · ◦)

+ PC(
m−1︷ ︸︸ ︷

◦ · · · ◦ ◦
L−m︷ ︸︸ ︷

◦ · · · ◦). (25)

Defining the second-order emptiness distribution, EL,m,
by

EL,m =
〈

Ôm−1
1 ÔL

m+1

〉
, (26)

one can write Eq. (23) in the following form

P (1)(L) =
L−1∑
m=1

[EL−2,m−1 − EL−1,m − EL−1,m−1

+ EL,m − EL+1 − EL−1 + 2EL] . (27)

The determinantal representation of EL,m is given by

EL,m = det
[〈

b̂†
xl

b̂xj

〉]L

l,j=1
, (28)

where xl = l for l ≤ m + 1 and xl = l + 1 for l > m + 1.
The evaluation of p(1)(ℓ) is analogous to that of p(0)(ℓ).
First, we evaluate EL,m using Eq. (28), then Eqs. (27)
and (9) are used to calculate p(1)(ℓ).
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Another distribution that can be used to describe the
system is the probability of two consecutive domains
with a total length L

Q(L) =
L∑

l=1
PC(↓

l︷ ︸︸ ︷
↑ · · · ↑

L−l︷ ︸︸ ︷
↓ · · · ↓ ↑)

=
L∑

l=1
PC(•

l︷ ︸︸ ︷
◦ · · · ◦

L−l︷ ︸︸ ︷
• • · · · • • ◦)

=
L∑

l=1

〈
ĉ†

0ĉ0Ôl
1Q̂L

l+1b̂†
L+1b̂L+1

〉
, (29)

where Q̂L
l+1 =

∏L
j=l+1 ĉ†

j ĉj . Unfortunately, Q(L) cannot
be evaluated as easily as the distributions p(0)(ℓ) and
p(1)(ℓ) except for the trivial high-temperature regime.
In the next section we use the spacing distributions to
describe the magnetic behavior of the XX spin chain.

4. Results

As explained in Section II, at T = 0 and h > 0.5 we
have M = 1 in such way that there is a single domain
formed by spins parallel to the magnetic field. In this
case, P (0)(L) = δL,N . For arbitrary values of T and
h = 0, the domain distribution of spins up and down
are equivalent.

At high temperatures, it is reasonable to expect
that the spins behavior is dominated by the thermal
fluctuations. In this regime it is possible to neglect the
correlations between adjacent sites. Thus, Eq. (15) can
be written as

P (0)(L) ≈
〈

ĉ†
0ĉ0

〉 L−1∏
j=1

〈
b̂†

j b̂j

〉〈
ĉ†

LĉL

〉
= ρ2(1 − ρ)L, (30)

where we have used
〈

ĉ†
j ĉj

〉
= ρ and

〈
b̂†

j b̂j

〉
= 1 − ρ.

Similarly, the probability Q(L) can be approximated as
follows

Q(L) ≈ (1 − ρ)
L−1∑
l=1

ρl(1 − ρ)L−lρ

=
(ρ − 1)ρ

(
(ρ − 1)ρL + ρ(1 − ρ)L

)
2ρ − 1 . (31)

As seen in Fig. (5), Eqs. (30) and (31) reproduce
P (0)(L) and Q(L) for h = 0 and T = 10. However,
for low temperatures, quantum fluctuations are relevant,
and the spacing distributions cannot be approximated
by Eqs. (30) and (31); see dotted-lines in Fig. (5). In
fact, for high temperatures the spacing distributions
decay monotonically which does not occur for low
temperatures, indicating that consecutive domains are
correlated. At T = 10 the most probable length of a

Figure 5: Spacing distributions for T = 0.0025 and T = 10
with h = 0. For high temperatures (kB T ≫ J − 2 h) thermal
fluctuations dominate and the correlations between adjacent
sites are negligible. However, Eqs. (30) and (31) do not describe
the behavior of the system for low temperatures (kB T ≪
J − 2 h).

(a) Spacing distributions at T = 0.0025 and h = 0.48.

(b) Log-log replot of panel (a).

Figure 6: Spacing distributions as functions of the scaled
distance ℓ for T = 0.0025. Note that, for the parameters
selected, β(J − 2h) = 16. Therefore, the system is in the low
temperature regime. As expected, the exact results coincide with
the numerical results obtained from the quantum Monte Carlo
simulations. The EWS provides and excellent approximation for
p(0)(ℓ) and p(1)(ℓ), even for small and large values of ℓ.

domain is one; thus it is very likely to find two con-
secutive spins in opposite directions. For T = 0.0025 the
most probable length is two due the formation of dimers.
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(a) Spacing distributions at T = 0.01 and h = 0.48.

(b) In a Log-log replot of panel (a) it is easier to see that
the behavior for small values of ℓ remains unaltered.

(c) On a log-linear replot, it becomes evident that the
behavior for large values of ℓ changes from Gaussian to
exponential.

Figure 7: Plots of spacing distributions p(0)(ℓ) and p(1)(ℓ)
with replots to highlight the behavior at small and at large ℓ.
At T = 0.01, the spacing distributions given by the QMC
simulations deviate from the EWS but still coincide with the
exact results. In this case, the parameters were selected in such
way that β(J − 2h) = 4. Therefore, the energy associated with
thermal fluctuations is comparable with the interaction energy
and the system is not in the low temperature regime.

However, the most interesting behavior is found for
values of h smaller than but close to J/2. In this region,
the number of fermions is nearly to zero, i.e., domains of

spins parallel to h form. The domain-length distribution
is given by the inter-particle distribution p(0)(ℓ). The
probability to find two consecutive domains of up spins
separated by a single down spin is given by p(1)(ℓ).
The behavior of the first two spacing distributions for
h = 0.48, J = 1 and T = 0.0025 is shown in Fig. (6). The
continuous lines correspond to the analytic expressions
given by Eqs. (16) and (27), dots to the QMC simula-
tions and the dash-dotted line to the extended Wigner
surmise (EWS) with β = 2, see Appendix C. Given the
complexity of the analytical expressions for the spacing
distributions p(0)(ℓ) and p(1)(ℓ) it is convenient to use
the approximate expressions provided by the EWS; see
Appendix C. Note the excellent agreement between the
QMC results and the ones given by Eqs. (16) and (27).
The logarithmic scale used in Fig. 6 (b) highlights the
behavior of the distribution for small and large values
of ℓ.

As T increases, the thermal fluctuations randomize
the system, and the right tail of the distribution becomes
exponential rather than Gaussian, see Fig. (7). However,
the behavior for small values of ℓ remains unchanged.

5. Conclusions

The XX spin chain is an excellent illustrative example of
the rich behavior that can be found in interacting many-
particle systems. This system can be solved analytically
but can be used also to illustrate the numerical methods
such as the QMC. The domain distributions can be
easily obtained by using QMC from the configura-
tions of spins generated in the simulation. The spacing
distributions are not usually calculated in courses of
quantum statistical mechanics but as shown, they are
very revealing, allowing us to describe the magnetic
behavior of the spin chain in several regimes. The most
interesting behavior is found for 2h slightly less than J .
Thermal fluctuations change the functional form of the
right tail of p(0)(ℓ) and p(1)(ℓ). At T = 0 the spacing
distribution has Gaussian right tails but for T > 0
they are exponential. The left tail of the distributions
is not affected by thermal fluctuations. For large T the
correlations between adjacent sites can be neglected, and
the spacing distributions can be calculated easily. In
fact, the probability to find two or more consecutive
domains can be obtained by using the independent-
interval approximation, where the required distribution
is written in terms of the convolution of single-domain
distributions. This approach can also be used to illus-
trate how the IPDF method can be represented using
second quantization formalism; thus, it can be used to
study reaction-diffusion systems.
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