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Symplectic maps can provide a straightforward and accurate way to visualize and quantify the dynamics of
conservative systems with two degrees of freedom. These maps can be easily iterated from the simplest computers
to obtain trajectories with great accuracy. Their usage arises in many fields, including celeste mechanics, plasma
physics, chemistry, and so on. In this paper we introduce two examples of symplectic maps, the standard map
and the standard non-twist map, exploring the phase space transformation as their control parameters are varied.
Furthermore, for the non-twist map, we also present, that its chaotic motion is separated in phase space by the
non-twist transport barrier.
Keywords: Symplectic Maps, Standard Map, Non-Twist Map, Conservative Systems.

Mapas simpléticos podem fornecer o mais simples e preciso modo de visualizar e quantificar a dinâmica de
sistemas conservativos de dois graus de liberdade. Esses mapas podem ser facilmente iterados com os mais
simples dos computadores, obtendo trajetórias com grande precisão. Esses mapas aparecem em muitas áreas,
incluindo mecânica celestial, física de plasmas, química etc. Nesse artigo serão introduzidos dois exemplos de
mapas simpléticas, o mapa padrão e o mapa padrão não-twist, explorando a transformação do espaço de fase
conforme os parâmetros de controle são alterados. Além disso, também apresentamos, para mapas não-twist, que
o movimento caótico é separado no espaço de fase pela barreira de transporte não-twist.
Palavras-chave: Mapas Simpléticos, Mapa Padrão, Mapa Padrão Não-Twist, Sistemas Conservativos.

1. Introduction

Generally, dynamical systems are defined as systems
that change variables with time. This variation could
be continuous, like the Newtonian equations of motion,
or discrete, such as measuring the population number
over days, weeks, or years. Hamiltonian maps are a
specific class of dynamical systems that have particular
properties and model a large number of physical systems,
such as magnetic field lines [1], convex billiards [2] and
the cyclotron accelerator [3].
The phase space of a dynamical system represents all

its possible states. Starting from an initial condition,
trajectories along the phase space points represent an
evolution of the system in time [4, 5].
In particular, for two degrees of freedom systems, the

time progression of the flow of trajectories in phase space
can be studied within a bidimensional surface as the
phase paths intersect it successively [4]. These surfaces
are known as Poincaré sections and can be generalized
for a 2N degree of freedom system. The symplectic
maps, explained in detail in the following section, can
be approximately depicted as Poincaré sections of two
degrees of freedom quasi-integrable systems.
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This article is for students of physics, with the
goal of inviting them to delve deeper into the subject
of area-preserving maps by introducing fundamen-
tal concepts of symplectic maps using two examples:
the standard and standard non-twist maps. They are
paradigmatic systems, serving the purpose of introduc-
ing symplectic maps.
The standard map is a family of area-preserving maps

with a single parameter k that expresses the disturbance
of the system. It was introduced by Chirikov [6, 7]
establishing its universality and numerous applications,
as the description of the dynamics of magnetic field lines,
and independently by Taylor [8], modeling magnetic
fields in plasmas. Another significant result for the
standard map was obtained by Greene [9], involving a
method to determine the transition to chaos.
First introduced by del Castillo Negrete and Morrison

in 1993 [10] while studying the chaotic transport in shear
flow and described with further detail by Wurm, Apte,
Fuchss, and Morrison in 2005 [11], the standard non-
twist map is defined as a map that locally violates the
twist condition.
This violation of the twist condition leads to some

unique properties of physics interest, concerning trans-
port barriers and the map’s topology, such as the twin
islands chain appearance and the reconnection process.
The curve where the violation happens, the shearless
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curve, is destroyed for specific sets of parameters. This
set can be obtained with the standard non-twist map
breakup diagrams, where each point represents a pair of
parameters.
The standard map and standard non-twist map are

paradigmatic models that capture the universal behavior
of a variety of physical systems. The standard non-
twist map has robust invariants separating the chaotic
motion in phase space that can be used to investigate
transport in physical systems. Some examples are: mag-
netic field lines in tokamaks with nonmonotonic current
profiles [1, 12–15], stellarators [16], and transport on
plasma edge [17]; planetary orbits [18, 19] and stellar
pulsations [20]; atomic physics [21, 22] and condensed
matter [23]; and sheared flows such as the geostrophic
flows on Jupyter [10, 24].

This paper is organized as follows. In Section 2, we
start with a review of the main concepts of quasi-
integrable conservative systems in order to introduce
the symplectic maps. Sections 3 and 4 are dedicated
to the example maps, exploring the general properties
of the symplectic maps as well as some unique from
the standard and standard non-twist maps. Section 5
presents the parameter space as a tool to investigate the
shearless curve breakup.

2. Symplectic Maps

Essentially, a dynamical system can be described by
its phase space using the Hamiltonian framework. For
example, a 4-dimensional phase space will be formed
of the generalized positions {q1, q2} and momentum
{p1, p2} showing all possible states of the system. These
two degrees of freedom Hamiltonian dynamical systems
are fundamentally symplectic, this is, they preserve both
volume and infinitesimal areas in phase space, according
to the Liouville’s Theorem [25].

Dynamical systems with two degrees of freedom may
become hard to deal with, given their four-dimensional
phase space. In order to simplify the analysis of the phase
spaces, Poincaré introduced the concept of Poincaré
sections, as they are known nowadays. These sections
are cross-sectional surfaces to the flux of trajectories
in phase space [26]. Thereby, for a time-independent
Hamiltonian system of two degrees of freedom, the
Poincaré sections allow us to simplify the problem,
returning us to a two-dimensional system.
For the nth intersection of the trajectory of a dynam-

ical system with a Poincaré section in phase space
being Pn, the next point of intersection given the time
evolution will be Pn+1. We define a Poincaré map as
the discrete dynamics given by a transformation M in
such a way that Pn+1 = MPn [4], being each point
P placed only in a single direction. The transformation
M is a one-to-one function that, in general, we can
not obtain an analytic expression for it. Given this
framework, we define a discrete orbit as a sequence

Figure 1: Phase diagrams passing through a 2-dimension
Poincaré Section σ and its iterated intersection points P.

of points {P0, . . . ,Pn,Pn+1, . . . } (Fig. 1) such that
Pn+1 =MPn [25].
Poincaré maps can be introduced due to the existence

and uniqueness theorem that can be applied to the
differential equations of motion. Thus, the point Pn+1
is uniquely determined in terms of the previous point
Pn, i.e., the map can be iterated forwardly in a unique
way.
An indispensable concept for the understanding of the

symplectic maps is the integrability. A two-degrees-of-
freedom system is said integrable if there exists exactly
two independent integrals of motion [4, 27]. These so-
called integrals of motion are functions F(qn, pn), n =
1, 2 that are constants along a trajectory in phase
space [28]. For more general systems, its degrees of
freedom’s number must match the number of mutually
independent integrals of motion.
Let’s now consider the following perturbed Hamilto-

nian [4]

H(θ,J ) = H0(J ) + εH1(θ,J ), (1)

where (θ,J ) represents the action-angle variables of
the integrable system H0,1 of which orbit’s frequencies
depends on the action and are given by Ω(J ) = ∂H0

∂J .
The term H1 expresses the non-integrable part of the
Hamiltonian and ε is the amplitude of perturbation.
An important concept of a Hamiltonian system is the

twist condition. Given the integrable Hamiltonian H0
the system satisfies the twist condition if

∂2H0

∂J 2 6= 0, (2)

1 The nth action variable is defined as Jn = 1
2π

∮
pdq, n =

1, . . . , N and the nth angular variable as θn = ∂W
∂Jn

, n = 1, . . . , N
with the line integral along one period and W being the complete
integral of the Hamiltonian system [28].
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i.e., the system does not have orbits with the same
frequency. As we will see in this paper, systems that
violate the twist condition feature different properties
when compared to the twist ones.
From Kolmogorov-Arnold-Moser’s (KAM) theorem,

for frequencies Ω sufficiently irrational and for ε � 1,
most of the invariant tori will become slightly deformed
but preserving their former properties [4, 5, 27]. In other
words, for small perturbations, the system has just a
slight change in most of its phase space. However, this
kind of system has also chaotic orbits around the so-
called hyperbolic points, which will be described later.
For these quasi-integrable systems, the regular orbits

of irrational frequencies are presented in Poincaré sec-
tions by curves or invariant tori [4] (topologically they
match with the definition of a torus). These curves are
usually referred to as orbits or simply tori. However, in
the limit ε� 1 (overwhelming KAM’s theorem validity),
more tori become broken implying global chaos. Their
presentation in Poincaré sections is just of densely
distributed points.
In the same way, the KAM theorem states the quasi-

integrability for irrational frequencies, but it fails to
provide the same conclusion for the rational ones. Com-
plementing KAM’s theorem, Poincaré-Birkhoff theorem
states that, considering a rational torus of the integrable
system with frequency Ω = r/s, r, s ∈ Z, the per-
turbation H1 creates an even number 2ms, m ∈ N,
of periodic points. From these points, half of them are
stable, expressing the namely elliptical points and the
other half unstable, called hyperbolic points [29, 30].
Both of them will be described in the following section.
A periodic orbit of period s is defined asMs(θn,Jn) =

(θn+r,Jn), ∀ n, as a consequence of this statement, their
frequencies are rational numbers Ω = r/s, r, s ∈ Z [4].
Different from the quasi-periodic orbits, from Poincaré-
Birkhoff’s theorem the rational frequency implies peri-
odic distributions of the iterated points, presenting
themselves in Poincaré sections in closed ellipses.
The time evolution in quasi-integrable conservative

dynamical systems can be discrete (map) or continu-
ous (differential equations). The first one gives rise to
the symplectic maps, which are conservative systems,
described by Poincaré sections of time-independent bidi-
mensional Hamiltonians [4], given by recurrence rela-
tions of the approximated form [4]:{

Jn+1 = Jn + εf(θn,Jn+1)
θn+1 = θn + Ω(Jn+1) + εg(θn,Jn+1)

(3)

for n ∈ N being the nth iteration, f and g analytic
periodic functions in θ and Ω the unperturbed frequency.
Although the Hamiltonian system’s Poincaré section

gives rise to symplectic maps, its mathematical def-
inition is more general. In fact, it is related to the
conservation of a quantity called symplectic area [31]
which, for two-dimensional maps coincides with the

definition of an area-preserving map, defined as [25]

det
[
∂(Jn+1, θn+1)
∂(Jn, θn)

]
= 1. (4)

In the following sections, we will work with two
examples of symplectic maps, the standard and the
standard non-twist maps.

3. The Standard Map

Also known as Chirikov-Taylor’s map the standard map
is described by the recurrence equations [6–8],{

yn+1 = yn + k sin(2πxn) mod 1
xn+1 = xn − yn+1, mod 1

(5)

in which xn and yn represents the nth iteration of
the variables θn and Jn respectively and k ≥ 0 is
a perturbation parameter. The value of k is directly
connected with the constant ε in Equation (1) and
therefore as we increase it, the non-linearity of the map
raises, revealing eventually chaotic structures [6].
The system is a twist map since it satisfies the twist

condition [27]:

∂xn+1

∂yn
6= 0 (6)

everywhere. This circumstance is the analog of the
nondegeneracy condition from Hamiltonian systems,
Eq. (2), and it’s a crucial statement for KAM’s theorem
applicability to the map. Indeed, the standard map has
its importance because it models the general behavior of
any twist system in the region near a resonance [4] and
is a prototype to study transport in these systems [32].
From Fig. 2(a) we can see the standard map for

the small value of the parameter k = 1 × 10−4. This

Figure 2: Example of a sequence of standard maps increasing
the value of the disturbance parameter k ≥ 0.
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choice makes the non-linear term sin(2πxn) a diminutive
contribution to the Equations (5). This implies a near-
linear behavior on the map thus making the phase space
with predominant regular orbits.
The almost horizontal lines in Fig. 2(a) are called

invariant curves or KAM curves and each one of them
represents quasi-periodic orbits in phase space. Each
invariant curve is related to an initial condition (x0, y0),
in Fig. 2(a) only a few invariants are shown in order to
keep the image clean.
If we increase the magnitude of the parameter to k =

0.0318, as we can see in Fig. 2(b), the non-linearity starts
to take place. The invariant curves start to deform as
stated by the KAM’s theorem. It is also very prominent
in the same figure the arising of islands on the map that
represent the periodic orbits in phase space, as predicted
by the Poincaré-Birkhoff theorem. The central point
of an island is a periodic elliptical point, surrounded
by stable quasi-periodic motion around it [27, 33]. The
points on both sides of the islands in Fig. 2(b) are the
periodic hyperbolic points, being unstable, with a small
chaotic region around them [33].
Another important concept to extract from Fig. 2(b)

is the separatrix curve. The separatrices are the invari-
ant lines that almost connect the hyperbolic points.
These curves, for quasi-integrable maps, are along the
hyperbolic points, marking a boundary between two
different behaviors from the phase space paths. In fact,
in Fig. 2(b), the separatrix traces the boundary between
the invariant curves inside the islands and others outside.
For k = 0.151 in Fig. 2(c), a large number of islands

appear, revealing chaotic regions and thus the non-
integrability of the system. For a high value of the
parameter, as k = 4 for example (Fig. 2(d)), the map
gets completely chaotic, showing no sign of KAM curves
and islands. The chaotic regions shown in Figs. 2(c) and
2(d) originates from the hyperbolic points, having an
unpredictable behavior in the long run due to the high
sensitivity to the initial conditions. During the transition
from Figs. 2(c) to 2(d), there is a critical value of k from
which the chaotic regions are no longer separated. The
numerical calculation of this threshold value was made
for the first time by John Greene [9].
Maps can also have their topology and monotonicity

obtained from winding number profiles. These profiles
are based on the definition of winding number [25, 27]
(also called rotation number). Given a nonchaotic orbit,
the winding number associated is defined as

ω = lim
n→∞

xn+1 − x0

n
. (7)

For chaotic orbits, we can not define a winding number
because this limit does not exist. Invariant curves and
islands have a dense behavior as we can see in the fol-
lowing figures, thus having an existing winding number
corresponding to each one of them.
For ε = 0, invariant curves (quasi-periodic orbits)

have irrational winding numbers, while islands (periodic

Figure 3: Examples of winding number profiles increasing the
disturbance parameter k.

orbits) have their rotation numbers given by a rational
number ω = r/s, r, s ∈ Z (where r is the number of
revolutions in θ and s is the period) [4].
The winding number profiles are ω × y graphics that

show how the winding numbers within an arbitrary curve
act with respect to the coordinates of the vertical y-axis
(For the standard map we will always be using the line
x = 0.5 as the reference curve.).
Looking at the winding number profile in Fig. 3(a),

by comparing the major island interval in the y-axis
with the correspondent one in the map 2(b), it becomes
clear that the larger island in the middle has a constant
winding number, forming the central plateau. Thus,
having the winding number profile of a map enable us to
identify islands along the chosen curve without looking
at the map itself and obtain its rotation number.
As we can see in Fig. 3(b), a large amount of plateaus

in the figure actually represents the numerous islands
from the map (Fig. 2(c)). However, a new element
presents in the graphic, the irregular (clearly not contin-
uous) dark oscillating lines in the winding number profile
which can be identified as places where the winding
number does not exist (as the limits from Equation (7)).
If we compare the y-axis intervals of these regions within
the reference curve x = 0 with the ones from its
correspondent map, these regions evidently are chaotic.
Thus from the winding number profile, irregular regions
(places where ω does not exist) as the ones from Fig. 3(b)
represent chaotic regions on the map.
In Fig. 3 themonotonicity of the standard map profiles

is evident. A curve is said monotonic if is either strictly
increasing or decreasing in an interval, thus matching
the behavior seen in Fig. 3.
The standard map has an interesting property, it has

a fractal behavior [4]. Generally, fractals are geometric
patterns that keep their topological structures for arbi-
trarily small scales [34] In Fig. 4(a) (standard map for
k = 0.509), if we choose to take a closer look inside the
red rectangle, we’ll get Fig. 4(b).
This smaller portion of Fig. 4(a) has its own central

island with a chain of smaller ones around it, similar
to its larger-scale version (Fig. 4(b)). The second map
figure thus represents analogous information in compari-
son with the first one, showing the fractal behavior of the
standard map. Further successive amplifications would
confirm the fractal structure [4].
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Figure 4: Example of the standard map fractal behavior. The
red rectangle indicated in 4(a) is shown amplified in Fig. 4(b).

4. The Non-Twist Map

The so-called Standard Non-Twist map is defined by the
following recurrence equations [35].{

yn+1 = yn − b sin(2πxn)
xn+1 = xn + a(1− y2

n+1) mod 1,
(8)

in which the variables x and y, as in the Equations (5),
represent the action-angle variables θ and J respectively.
The two parameters a, b ∈ R regulate the map topology.
A non-twist map is defined as a map that violates the

twist condition (Equation (6)) at least in one invariant
curve [27]. In this section, we will only work with the
standard non-twist map, in which the twist condition is
violated (even for ε = 0), at y = 0. More results about
the standard non-twist map and other non-twist systems
are present on Ref. [36–39].
Distinguishing from the standard map, the standard

non-twist map has in the definition Equations (8) a
quadratic function a(1− y2

n+1). For b = 0 the derivative
of the quadratic function with respect to x is known as
the shear function and it provides an extremum point on
the winding number profile. The value of a, thus, has a
direct influence on the nonmonotonicity of the winding
number profile for the non-twist map.
In Fig. 5(a) we have the standard non-twist map for

the parameters a = b = 0.35. The curve referent to
the invariant that violates the twist condition is called
shearless curve [11, 35, 40] and it can be seen enhanced in
red in Fig. 5(a). In the same figure, this curve is centrally

Figure 5: The standard non-twist map and its nonmonotonic
winding number profile as an example.

located on the map. As we shall see, its position can be
comprehended from its winding number profile.

Figure 5(a) also shows hyperbolic points that connect
the periodic orbits from the twin chains of islands in the
center region. The twin chains are the islands connected
by separatrices in Fig. 5(a) on both sides of the shearless
curve [11].

Figure 5(b) has the winding number profile of
Fig. 5(a), being the reference curve the dashed blue line
x = 0. Each point in a winding number profile shows
the winding number of a specific orbit, the red one
referent to the shearless curve. From the same figure,
it becomes clear, in this case, that the shearless curve
point is related to the maximum of the profile.

The fact that the shearless curve refers to the max-
imum point in Fig. 5(b) is a direct consequence of
the twist condition (Equation (6)) violation, since the
winding number’s derivative is

∂ω

∂yn
= 0

there. From calculus, we know that if the slope of a
continuous function is zero, there is an extremum or
inflection on the curve of the function at that point.
Since an extremum can be a local maximum or a local
minimum, both possibilities represent a shearless curve
point in the winding number profile.
In Fig. 5(b) we can also notice that the winding

number profile is clearly nonmonotonic, as we expected.
Non-twist maps have a couple of remarkable properties,
different from the standard map ones. In the following
subsections, we shall explore some of them.

4.1. Even reconnection

When we have a winding number profile with an
extremum, the shearless curve point, there will be two
orbits with the same winding number, since the curve is
nonmonotonic. This fact is a unique property from the
non-twist maps since it originates from the violation of
the twist condition (Equation (6)) and it is known as
degeneracy.
If the winding number profile starts to decrease its

extremum vertically for a change in parameters a and
b, becoming flat, the periodic orbits at some point will
have the same rotation number (a plateau) [11]. This
sequence of events is called periodic orbit’s collision and
it is followed by its annihilation.
The periodic orbit’s collision involves another process,

the reconnection of the separatrices. This reconnection
is a process of global bifurcation (large stability changes
in an equilibrium [41]) that changes the topology of
the separatrices, during this event the separatrices col-
lide [11, 42].
The way the reconnection happens depends on the

parity of the orbit’s period that can be obtained from
the number of islands on the map. Notice that the maps
are periodic in the x-axis, so half islands on it are the
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Figure 6: Example of even period reconnection sequence of
maps (upper row y vs x) together with their respective winding
number profiles (upper row ω vs y).

same ones from the opposite side. In this section, we take
a look at the even-period scenario.
Fig. 6 shows an example of an even reconnection

sequence. Initially, in Fig. 6(a), we have two twin island
chains. Decreasing the parameter a give us Fig. 6(b).
Now the twin island chains start to merge in a dipole
topology [43], the separatrices get closer to each other,
becoming one and the islands and hyperbolic points
collide. In the same image, the shearless curve vanished
during the reconnection process.
Decreasing again the value of a even more, we see

that the islands finally collided, vanishing the twin island
chains (Fig. 6(c)). The center has become indistinguish-
able compared with the first image and the shearless
curve has reappeared.
From a winding number profile perspective, the max-

imum point from the profile in Fig. 6(d) starts to lower
with the decrease of the parameter a as we can see
from Figs. 6(d) to 6(e), becoming flat (no extremum,
implying the absence of a shearless curve). The last
profile Fig. 6(f), with the further decrease of a, shows a
new maximum showing the shearless curve on the map
once more.

4.2. Odd reconnection

In a correspondingly way, for an odd period scenario, the
reconnection process occurs. However, its development is
different from the even period’s case as we shall see. As
it is evident from Fig. 7(a), we have an odd number of
islands in each chain, setting an odd reconnection sce-
nario. We decrease the parameter a originating Fig. 7(b).
Now the shearless curve has already vanished and the
separatrices have connected themselves originating a
contour-invariant curve around the islands.
If we further decrease the value of a, the separatrices

from Fig. 7(b) take a meandering shape around the
islands until they are suppressed as in Fig. 7(c). The
separatrices, forming a homoclinic behavior (joins saddle
equilibrium points) in the middle, are then replaced by

Figure 7: Example of odd period reconnection sequence of
maps (upper row y vs x) together with their respective winding
number profiles (upper row ω vs y).

the heteroclinic (connects different equilibrium points)
curve exhibited in Fig. 7(c) in which the shearless curve
shows up again.
From a winding number profile perspective, similarly

to the even reconnection, from Figs. 7(d) to 7(e) the
maximum point becomes a plateau, and in the subse-
quent step (Fig. 7(f)) the reinstate of the shearless curve
comes from the arising of a new maximum.

4.3. Shearless curve destruction

Looking at the standard non-twist map definition, Equa-
tions (8), the perturbation term b evidently has an
important role in the disturbance of the map. If we
input a large value for b, the number of deformed
and destroyed tori will increase expressing regular and
chaotic regions [35, 44]. Eventually, with the increase of
the perturbation in the map, the shearless curve can be
destroyed.
In this section, we shall dissect this Shearless curve

breakup process step by step. Starting from similar
parameters in comparison with Fig. 7(a), we have
Fig. 8(a). Now, instead of changing a as we did to
show the odd reconnection scenario, in order to grow
disturbance in the map, we increase b. Within an odd
reconnection process, Fig. 8(b) shows the standard non-
twist map for a larger parameter b. On the image, we
can see that the chaotic regions of the map have grown
and the KAM curves and periodic orbits within the
separatrices start to reconnect.
Increasing the perturbation parameter to b = 0.7

brings to Fig. 8(c). From this point, there are no longer
invariant curves, islands, and separatrices, instead, we
have a darker region of stickiness, around the still-
standing shearless curve. Stickiness is the temporary
confinement of chaotic orbits in a specific region of the
phase space before they diffuse to a larger region after,
usually, a large number of iterations [45, 46].
Even with the vanishment of the majority of the KAM

tori in the center region of the map 8(c), the shearless
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Figure 8: Sequence of maps serving as an example of the
shearless curve destruction process.

curve is kept intact. This illustrates the shearless curve’s
resilience to perturbation, being it the most resistant
torus [35, 39, 43]. In the rupture limit to global chaos,
the shearless torus acts as a transport barrier. This
name comes from one of its traits: the barrier prevents
transport between the chaotic regions [46, 47]. Even after
the shearless curve destruction, the stickiness remains,
keeping the transport barrier a little longer [46].
In the last image of the process (Fig. 8(d)), the

chaotic sea takes over the last torus (the shearless curve)
and the darker stickiness region becomes homogeneous
chaos. This expresses the shearless curve destruction,
also known as Transition to Global Chaos in Non-Twist
Maps [35]. Thus by increasing the parameter b, the
perturbation on the map increases. Since this parameter
is directed related to the disturbance parameter ε in
Equation (1), for b� 1, KAM’s theorem implies a larger
number of chaotic tori, the same behavior exposed in
Fig. 7.

5. Parameter Space

The shearless breakup, shown in Fig. 8, occurs for a
specific set of parameters (a, b). In order to understand
which ones lead to this scenario, there is a method
proposed by Shinohara and Aizawa [48], using the so-
called indicator points of the standard non-twist map to
create the parameter space or shearless breakup diagram.
For the standard non-twist map, the indicator points are
the four points

z
(±)
1 =

(
±1

4 ,±
b

2

)
, z

(±)
2 =

(
a

2 ±
1
4 , 0
)
, (9)

that necessarily belongs to the shearless curve [49], if it
exists. Not only the standard non-twist map has points
like these. Other systems can also have these points [50],
satisfying some requirements like spatial symmetry and
decomposition in evolutions [11, 35, 48, 51].

Figure 9: Shearless breakup diagram for a mesh of 2000×2000
points, intervals 0 < a < 1 and 0 < b < 1, threshold range
|y| < 10 and 106 iterations.

The parameter space of the shearless curve consists of
a mesh of points whose axis are the parameters a (x-axis)
and b (y-axis), usually limited to the same interval.

The numerical method used to obtain the shearless
curve parameter space is the following: starting from
the indicator points (9) we iterate those orbits for a
long time (we used 106 iterations). If one of these orbits
exits the region |y| < 10 we consider the shearless
curve broken. Otherwise, the shearless curve is present in
phase space. Other references applied this method and
obtained similar results [48, 50, 52].

The above method is not the only one present in
the literature. Other methods, like those based on
recurrences of the shearless orbit [53, 54] can be applied
and obtain similar results.

In Fig. 9 we have the shearless curve parameter space.
The white points (out of the threshold range) represent
the parameters (a, b) for which the shearless curve has
been broken, while in the red ones it is maintained.
Figure 9 shows that the points for which the shearless
curve does exist and the ones it does not are separated
by a sharped boundary. Taking a closer look at Fig. 9 we
can visualize fractal and continuous boundaries [50, 52].

From Fig. 9, when b increases, it is noticeable the
shearless breakup tendency grows. However, this can be
compensated by decreasing a. Thus, the parameter space
acts as a useful tool in order to investigate which set
of parameters (a, b) preserves the shearless curve and
to visualize how a change in the value of one of them
or both influences the possibility of this scenario. The
continuous boundaries of the parameter space are related
to the collision of the twin islands [11].

6. Conclusion

In this review, we introduced the standard map and the
non-twist standard map. These maps can be derived
as approximations of Poincaré maps of Hamiltonian
of quasi integrable systems of two degrees of freedom.
Invariant curves, islands, and chaotic trajectories are
introduced. The route to global chaos in phase space
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is shown by varying control parameters. Special features
of the standard non-twist systems contained in the non-
twist map are presented. Among these features, are the
onset and break up of shearless invariants curves, as well
as their dependence on the control parameters.
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