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We study a process of heat transfer between a body of heat capacity C(T ) and a sequence of N heat reser-
voirs, with temperatures equally spaced between an initial temperature T0 and a final temperature TN . The
body and the heat reservoirs are isolated from the rest of the universe, and the body is brought in thermal
contact successively with reservoirs of increasing temperature. We determine the change of entropy of the com-
posite thermodynamic system in the total process in which the temperature of the body changes from T0 to
TN . We find that for large values of N the total change of entropy of the composite process is proportional to
(TN − T0)/N , but eventually a non-monotonic behavior is found at small values of N .
Keywords: second law of thermodynamics, entropy, reversible and irreversible processes, heat exchange.

Estudamos um processo de transferência de calor entre um corpo de capacidade térmica C(T ) e uma sequência
de N reservatórios térmicos cujas temperaturas são uniformemente espaçadas entre a temperatura inicial T0 e a
temperatura final TN . O corpo e os reservatórios térmicos são isolados do resto do universo e o corpo é colocado
em contato térmico sucessivamente com reservatórios de temperatura crescente. Determinamos a variação de
entropia do sistema termodinâmico composto no processo total, em que a temperatura do corpo varia de T0 a
TN . Encontramos que para valores grandes de N a variação total de entropia é proporcional a (TN − T0)/N ,
mas eventualmente um comportamento não monotônico surge em valores pequenos de N .
Palavras-chave: segunda lei da termodinâmica, entropia, processos reverśıveis e irreverśıveis, troca de calor.

1. Introduction

One of the original formulations of the second law of
thermodynamics, due to Clausius, states that “no pro-
cess is possible whose only result is the transfer of heat
from a body of lower temperature to a body of higher
temperature”. As discussed by Fermi in his book [1],
since as this statement was made the concept of temper-
ature was empirical, to find out which of two bodies has
the higher temperature one had to put them in thermal
contact and find out in which sense the heat flows, it
will flow spontaneously from the body of higher temper-
ature to the other. So, Clausius’s statement could be
rephrased into “If heat flows spontaneously from body
A to body B, no process is possible whose only result
is the transfer of heat from body B to body A”. To be
more precise, let us isolate the two bodies from the rest
of the universe, to assure that they will not exchange
heat or other forms of energy with the environment, this
is implicit in the term ‘only result’. We may notice in
this statement that already the idea of irreversibility is

present: if heat flows spontaneously from A to B, it will
not flow spontaneously from B to A. In other words, the
process of transfer of heat between two bodies which are
isolated from the environment is irreversible.

The second law off thermodynamics says that not
all processes which conserve energy, as required by the
first law, occur in nature. In many cases (if not all), if a
given process in an isolated system occurs, the inverse
process does not. This idea was further formalized by
the introduction of the concept of entropy, so that pro-
cesses in isolated systems which lead to a decrease of the
entropy are not allowed. In particular, in the process of
heat transfer mentioned above, the entropy of the com-
posite isolated system increases if the heat flows from
the body of higher temperature to the one of lower tem-
perature, but would decrease in the inverse process, so
that only the further is allowed. It is interesting to re-
call that in his paper of 1885, Clausius summarized the
two first laws of thermodynamics in just two sentences:
“The energy of the universe is constant. The entropy of
the universe tends to a maximum” [2]. We may notice
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that the universe is the only composite thermodynamic
system which is isolated by definition.

The entropy in equilibrium thermodynamics is a
state function, so that it is defined for equilibrium states
of the system. When two bodies of different tempera-
tures are brought into thermal contact, the composite
system in general will go through a sequence of non-
equilibrium states, but if we wait long enough, it will
finally reach a new equilibrium state, where both bod-
ies of the composite have the same temperature, and in
this state the entropy is larger than it was in the initial
state. If we now imagine a process which happens at
a very slow rate in time when compared to the relax-
ation time of the system [3], we may reach a situation
close to the one in which all intermediate states of the
system are equilibrium states. In this limit the process
is called quasi-static, and therefore the whole process
may be represented as a path in the space of variables
which define the equilibrium states of the system. In
the particular case in which the entropy of the final
state of the quasi-static process is equal to the entropy
of the initial state, and therefore to the entropies of all
intermediate states, this process will be reversible.

The process we will study in some detail here is
the transfer of heat in isolated systems composed by
a heat reservoir (constant temperature) and a body
whose heat capacity is described by a function of the
temperature C(T ). The initial temperature of the body
is T0 and its final temperature is TN . The change of the
temperature of the body is accomplished by putting it
in thermal contact with a sequence of N heat reservoirs
whose temperatures are equally spaced between T0 and
TN . For a finite number of reservoirs, each of the sub-
processes consists of heat transfer between two bodies
at different temperatures and is therefore irreversible,
leading to an increase of the entropy of the composite
isolated system. In the limit N → ∞, however, each
sub-process will contribute with a negligible increase of
entropy and, what may not be obvious initially, the to-
tal variation of entropy vanishes as well, so that this is a
concrete example of a limit which leads to a reversible,
quasi-static process of heat transfer.

This problem, of considerable pedagogical interest,
has been studied before in the literature. For a con-
stant heat capacity, such as is found for ideal gases,
Calkin and Kiang [4] have shown for a cyclic process
(T0 → TN → T0), that the total change of entropy van-
ishes as 1/N in the limit N → ∞ because, although
the number of sub-processes increases, the increase of
entropy in each of them is proportional to 1/N2 in
this limit. A similar situation is proposed in the ex-
ercise 4.4-6 in Callen’s book [3]. The same process was
studied also by Thomsen and Bers [5], again for the
case of constant heat capacity and discussing in detail
that it is always possible, given any positive value ϵ, to
choose a value of N for which the increase of entropy is
smaller than ϵ. This argument is then repeated for the
inverse process, thus characterizing the process in the

limit N → ∞ as reversible.
Here we generalize the problem in two ways: the

heat capacity of the system is no longer constant and
we develop the increase of entropy as a series in 1/N ,
so that we find the corrections to the leading term. We
also show that some symmetries in the result which are
valid in the asymptotic limit close to reversibility are
not longer present for finite values of N . In particu-
lar, we show that, although in the large N limit the
increase of entropy decreases monotonically with N ,
this may not happen at lower numbers of heat reser-
voirs. Also, the increase of entropy for the direct pro-
cess (T0 → TN ) may be different of the same quantity
for the inverse process (TN → T0). The determination
of the change of entropy is given in section 2 and appli-
cations to particular cases and final comments may be
found in section 3.

2. Determination of the change of en-
tropy

Let us define the problem in more detail. Our com-
posite system consists of the body, whose heat ca-
pacity is C(T ) and which will undergo a temperature
change ∆T = TN − T0, and a set of N heat reservoirs,
at equally spaced temperatures, so that the tempera-
ture of the reservoir j (j = 1, 2, 3, . . . , N) is equal to
Tj = T0 + j∆T/N . The body is brought into thermal
contact with the heat reservoirs in order of increasing
values of j until its temperature equals the one of the
reservoir and therefore is increased bi ∆T/N . In the
first sub-process, for example, the body starts with tem-
perature T0 and ends with temperature T0 + ∆T/N .
After the N ’th process, the body will reach the final
temperature TN . This sequence of heat transfer pro-
cesses is illustrated in Fig. 1. Actually, one could ar-
gue that the time required to reach equilibrium for each
sub-process of heat transfer would be infinite, and for
this reason, Thomsen and Bers, in their discussion of
a similar process [5], have chosen the temperature of
the j’th reservoir to be T0 + (j + 1)∆T/N , thus assur-
ing that the equilibration time of the system with each
reservoir is finite. Here, for simplicity, we will not use
this improved version of the process.

2
T1T jT NT

s

Figure 1 - Illustration of the j’th process of heat transfer, where
the system s is in thermal contact with the heat reservoir at tem-
perature Tj , so that its temperature is changed from Tj−1 to Tj .
The pair system-reservoir at Tj is isolated, as are all the other
reservoirs.
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If a the body, at temperature T , receives a quan-
tity of heat dQb, its temperature will change by dT =
dQb/C(T ). The change of entropy of the body in the
whole sequence of heat transfer processes is

∆Sb =

∫ TN

T0

dQb

T
=

∫ TN

T0

C(T )

T
dT.

The change of entropy of all reservoirs in the sequence
of processes will be

∆Sr(N) =
N∑
j=1

∆Sr(N, j) =
N∑
j=1

1

Tj

∫ Tj

Tj−1

dQr =

−
N∑
j=1

1

Tj

∫ Tj

Tj−1

C(T ) dT, (1)

where in the last passage, we recall that in each sub-
process, the body and the reservoir are isolated, so
that the heat received by the reservoir is given by
dQr = −dQb = −C(T ) dT . We thus may write the
total change of entropy as

∆S(N) = ∆Sb(N) + ∆Sr(N) =∫ TN

T0

C(T )

T
dT −

N∑
j=1

1

Tj

∫ Tj

Tj−1

C(T ) dT. (2)

If it is possible to perform both integrations, this ex-
pression above becomes

∆S(N) = Sb(TN )− Sb(T0)−
N∑
j=1

1

Tj
[U(Tj)−U(Tj−1)],

(3)
where Sb(T ) =

∫
C(T )/T dT and U(T ) =

∫
C(T ) dT .

It is convenient to rewrite the expression for the change
of entropy as

∆S(N) =
N∑
j=1

∫ Tj

Tj−1

κj(T,N)ϕ(T ) dT, (4)

where κj(T,N) = 1 − T/Tj and ϕ(T ) = C(T )/T . It
is now easy to see that, since stability implies that
ϕ(T ) ≥ 0, we must have ∆S ≥ 0, as required by the sec-
ond law of thermodynamics. Let us show this in some
detail. Suppose that TN > T0, so that the temperature
of the body increases in the process. It is then clear
that κj(T,N) ≥ 0 and as a consequence the entropy of
the composite system increases. The same happens in
the inverse process, where the temperature of the body
decreases from TN to T0. In this case the change if
entropy is

∆S′(N) = −
N∑
j=1

∫ Tj

Tj−1

κj−1(T,N)ϕ(T ) dT, (5)

and since now κj−1(T,N) ≤ 0 in the range of inte-
gration, again the entropy increases. It may be worth

noticing that the difference of the entropy increases be-
tween the processes with raising and lowering of the
temperature of the body δS(N) = ∆S′(N)−∆S(N) is

δS(N) =
N∑
j=1

∫ Tj

Tj−1

[(
1

Tj−1
+

1

Tj

)
T − 2

]
ϕ(T ) dT,

(6)
and the sign of this expression is not defined in general.

Another general property of the entropy increase is
its dependence of the number of reservoirs N . As we
will see below, it vanishes in the limit N → ∞ of a
quasi-static process. The question we will address is if
the change of the entropy decreases monotonically with
N . For convenience, we will define the function

κ(T,N) =
N∑
j=1

Θ(T − Tj−1)Θ(Tj − T )κj(T,N), (7)

where Θ(T ) is the step function. The function κ(T,N)
is defined in the whole temperature range [T0, TN ] and
has a sawtooth pattern, with N maxima of decreasing
values. The expression for the entropy increase Eq. (4)
may then be cast into the following form

∆S(N) =

∫ TN

T0

κ(T,N)ϕ(T ) dT. (8)

The difference of entropy increases for two values of N ,
(N2 > N1) is

∆S(N1)−∆S(N2) =

∫ TN

T0

[κ(T,N1)−κ(T,N2)]ϕ(T ) dT.

(9)
It is straightforward to see that if N2 is a multiple of
N1 the difference of κ functions is non-negative, and
therefore ∆S(N1) − ∆S(nN1) ≥ 0 for any integer n.
For example, we have ∆S(1) > ∆S(2). This, however,
is no longer true in general if the ratio N2/N1 is not
an integer. As an example, in Fig. 2 we show the dif-
ference of κ functions for N1 = 5 and N2 = 6, and
we notice that this difference assumes negative values
in part of the temperature domain. We thus reach the
conclusion that, depending on the function ϕ(T ), the
entropy increase for N2 heat reservoirs may be larger
than the one for N1 reservoirs, if 1 < N2/N1 < 2.

We now proceed obtaining the general asymptotic
behavior of ∆S(N) for N ≫ 1. Expanding the last
integral in the expression for the increase of entropy,
Eq. (2), which corresponds to the amount of heat Qj

exchanged by the body with reservoir j, in a Taylor
series around the temperature Tj , we get

Qj = −
∞∑
i=1

(−1)i

i

(
∆T

N

)i

C(i−1)(Tj), (10)
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Figure 2 - The function κ(T, 5) − κ(T, 6) for initial temperature
T0 = 10 and final temperature TN = 20.

where a superscript between parenthesis means a
derivative of the corresponding function of the order
of the superscript. We may now write the total change
of entropy as

∆S(N) =

∫ TN

T0

C(T )

T
dT +

∞∑
i=1

(−1)i

i

(
∆T

N

)i N∑
j=1

C(i−1)(Tj)

Tj
. (11)

We now proceed transforming the sum over the
reservoirs into an integral, using Euler-MacLaurin’s ex-
pansion [6]

n∑
i=m

f(i) =

∫ n

m

f(x) dx+
1

2
[f(n) + f(m)] +

kmax∑
k=1

B2k

(2k)!

[
f (2k−1)(n)− f (2k−1)(m)

]
+Rkmax , (12)

where B2k are the Bernoulli numbers (B2 = 1/6,
B4 = −1/30, B6 = 1/42, B8 = −1/30, . . .. See Ref. [7]
for a list of the numbers). The series in the right hand
side is divergent in many cases, since the Bernoulli num-
bers increase very fast for larger values of k. There are
procedures to evaluate the rest Rkmax [6] and we will
discuss this issue in the appendix. The sum we will
convert into an integral is

Gi =
N∑
j=1

C(i−1)(Tj)

Tj
=

N∑
j=0

C(i−1)(Tj)

Tj
− C(i−1)(T0)

T0
,

(13)
and applying the expansion (12) we find

Gi =
N

∆T

∫ TN

T0

C(T )(i−1)

T
dT +

1

2

[
C(i−1)(TN )

TN
− C(i−1)(T0)

T0

]
+

kmax∑
k=1

B2k

(2k)!

(
∆T

N

)2k−1

×[(
C(i−1)(TN )

TN

)(2k−1)

−

(
C(i−1)(T0)

T0

)(2k−1)
]
+Rkmax . (14)

Now we may substitute this last expression into
Eq. (11) and collect the terms in the change of entropy
of the body in the sequence of processes in powers of
1/N . We notice, as expected, than the term of order
0 cancels, so that, in the limit N → ∞ the whole pro-
cess becomes reversible. In the appendix, we proceed
calculating all coefficients σi of the expansion

∆S(N) =

imax∑
i=1

σi

(
1

N

)i

, (15)

but here we we will limit ourselves to the leading term,
which is

σ1 =
TN − T0

2
×[∫ TN

T0

C(1)(T )

T
dT −

(
C(TN )

TN
+

C(T0)

T0

)]
. (16)

Integrating by parts, we finally obtain the leading term
of the expansion

∆S(N) ≈ TN − T0

2N

∫ TN

T0

C(T )

T 2
dT, (17)

valid in the limit N ≫ 1.
Since C(T ) ≥ 0, we notice that the leading term

vanishes only in the trivial case where C(T ) = 0 in
the whole range of temperatures and there is no heat
transfer, so that the asymptotic behavior as 1/N in the
increase of entropy, as was found in the particular case
of an ideal gas [4], is universal. We also remark that in
the asymptotic regime the entropy increase is invariant
if the temperatures are interchanged and also monoton-
ically decreasing with N , properties which are not true
in general for small values of the number of reservoirs.

3. Discussions and conclusion

We will now apply the results of the preceding section
to some particular cases of physical interest. We start
with the ideal gas, which has a constant heat capacity
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C(T ) = C0. Applying Eq. (2) to this particular case,
the increase of the entropy will be

∆S(N)

C0
= ln f − f − 1

N

N∑
j=1

1

1 + j
N (f − 1)

, (18)

where f = TN/T0. The leading term in this case is

∆S(N)

C0
≈ 1

2N

(√
f −

√
1/f

)2

. (19)

In Fig. 3 we show some curves of the entropy increase
as a function of 1/N , for different values of the ratio
of temperatures f , as well as the dashed straight lines
which represent the asymptotic behavior. Notice that,
as expected, the same asymptotic behavior is found for
f = 2 and f = 1/2. If we consider two processes, one
with ratio f1 > 1 and the other with f2 = 1/f1 < 1,
that is, related by interchange of the temperatures,
both will have the same asymptotic behavior, as may be
seen in the particular cases depicted in the figure. Also,
the increase of entropy in the second process, where the
body is cooled, is always larger than the one in the first
process. Another way to state the same property is
that, as can be seen in the curves, the increase of en-
tropy is a concave function of 1/N for processes where
the body is heated and it is a convex function when the
temperature of the body decreases. In the asymptotic
regime these properties may be obtained the next term
of the Euler-MacLaurin expansion, as will be discussed
in the appendix. Also, the increase of entropy for this
particular case is a monotonically decreasing function
of N .

0 0,2 0,4 0,6 0,8 1
1/N

0

0,5

1

1,5

2

2,5

3

∆S
/C

0

Figure 3 - Increase of entropy for a system with constant heat
capacity C0 (ideal gas) as a function of the inverse number of
reservoirs 1/N . The four curves, in the upward order, correspond
to ratios of temperatures f = TN/T0 = 2, 1/2, 5 and 1/5. The
dashed straight lines are the asymptotic behavior for small 1/N .

In most cases the variation of entropy decreases
monotonically with N , a property which seems also in-
tuitive, since by decreasing the temperature steps in a
certain sense the composite process gets closer to a re-
versible process. For the ideal gas this is always the
case. We have seen above, however, that this may not
be generally true. If we look at the Eq. (9) for the

difference of entropy increases for different values of
N , a non-monotonic result is possible if the function
ϕ(T ) has one or more peaks at the temperatures where
κ(T,N1) − κ(T,N2) is negative. One system which
could possibly show a non-monotonic behavior is a two-
state system [3], since its heat capacity displays a peak,
sometimes called “Schottky hump”. However, we found
that this is not the case, the reason is that the peak is
too wide to produce a non-monotonic behavior.

We turn our attention to a situation where the width
of the peak in the heat capacity may be changed by ad-
justing a parameter. The simple expression we will use
for the heat capacity is

C(T ) = C[τ(2− τ)]m, (20)

where τ = T/Tc, so that Tc is the temperature where
the maximum of the heat capacity is located, and C is a
constant with the dimension of entropy. Although this
heat capacity does not correspond to a particular phys-
ical system, it is convenient for analytic calculations
and consistent with the third law of thermodynamics.
Of course, at least for odd values of the parameter m,
it is valid only if τ is in the range [0, 2], so we will re-
strict ourselves to this range of temperatures. As the
parameter m grows, the peak in C(T ) narrows, and
our main interest in this system is that, for sufficiently
large values of m, non-monotonic behavior is found in
∆S(N).

In Fig. 4 we show, in the same graph, the function
κ(τ, 2) − κ(τ, 3) and the function ϕ(τ) = C(τ)/(Cτ),
given by Eq. (20) with m = 16. As is apparent in the
graph, with the choices of initial (τ0 = 0.286) and final
(τN = 2.0) temperatures we made, the maximum of the
peak in C(T ) is close to the center of the negative peak
in κ(τ, 2)−κ(τ, 3), so that the difference ∆S(2)−∆S(3)
is minimized, since this difference is given by Eq. (9).
In Table 1 we list the results for [∆S(3) − ∆S(2)]/C
for different values of m, with the choices above for τ0
and τN , and it is clear that a non-monotonic behavior is
found form ≥ 16. Finally, we found some evidence that
a local maximum in the entropy could also be found at
N = 4, but if this actually happens for this particular
form of heat capacity, it will be at rather large values of
m, which lead to numerical problems. We remark that,
in order to reduce numerical errors, in all examples we
discuss the integrations involved in the calculation of
the entropy increase Eq. (2) are performed analytically,
as is done in Eq. (3).

Table 1 - [∆S(3) − ∆S(2)]/C for different values of the param-
eter m for a system with heat capacity given by Eq. (20). The
temperature range of the process is τ0 = 0.286, τN = 2.0

m [∆S(3)−∆S(2)]/C
14 −3.158309× 10−3

15 −3.427008× 10−4

16 2.185200× 10−3

17 4.463576× 10−3
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Figure 4 - κ(τ, 2)− κ(τ, 3) (dashed line) and the function ϕ(τ) =
C(τ)/(Cτ) = [τ(2 − τ)]16/τ . The initial temperature is τ0 =
0.286 and the final temperature is τN = 2.0.

As discussed before, we expect, qualitatively, the
non-monotonic behavior to be enhanced if the peak in
the heat capacity is more pronounced. This leads us, in
this final example, to a system which undergoes a con-
tinuous phase transition, since in this case a singularity
at the critical temperature Tc is found in the heat ca-
pacity, of the form C(T ) ≈ |1− T/Tc|−α, described by
the critical exponent α [8]. To the singular behavior of
the heat capacity, usually regular contributions should
be added, so that we will use the simple expression

C(T ) = Cτ |1− τ |−α, (21)

where we define the reduced dimensionless temperature
τ = T/Tc and which is compatible with the third law
of thermodynamics. It should be mentioned that since
the exchange of heat when the temperature of the body
crosses the critical temperature has to be finite, we
should restrict the critical exponent α to values smaller
than 1. It is easy to perform the necessary integrations
in this case, so that the entropy increase will be given
by Eq. (3) with

Sb(τ)

C
=


− (1−τ)1−α

1−α , τ < 1,

(τ−1)1−α

1−α τ ≥ 1,

(22)

and

U(τ)

CTc
=


− (1−τ)1−α

(1−α)(2−α) [1 + (1− α)τ ], τ < 1

(τ−1)1−α

(1−α)(2−α) [1 + (1− α)τ ], τ ≥ 1.

(23)

We would expect that the non-monotonic behavior
of the entropy should be enhanced as the value of the
critical exponent α increases. This is actually true, but
at variance with what is seen in the preceding example
of a peak in the heat capacity, the local maxima of the
entropy increase, for lower values of α, appear at larger
values of N . In Fig. 5 we see results of the increase
of entropy for two values of the exponent, α = 0.7 and
α = 0.5. It is apparent that, for α = 0.7 we already have

an increase of the change of entropy between N1 = 2
and N2 = 3, the segment with a thicker line in the
curve. Many other pairs of successive results with the
same property are found for larger values of N . For
α = 0.5, the first pair where the change of entropy in-
creases is seen at N1 = 7, N2 = 8.

0 0,2 0,4 0,6 0,8 1
1/N

0

1

2

3

4

∆S
(N

)

Figure 5 - Values of ∆S(N) as function of 1/N for a body with
a continuous phase transition (Eq. (21)). The upper curve is for
α = 0.7 and the lower one for α = 0.5. The pairs of data at the
end of the thick lines are the first ones, in the order of increasing
values of N , where a increase of ∆S(N) is found. These results
are for τ0 = 0.2 and τN = 2.2.

For a given a value of the critical exponent α, we
may find N1, the lowest value of N such that ∆S(N2) >
∆S(N1), where N2 = N1 + 1. In Fig. 6, the exponent
α is plotted as a function of 2/(N1 + N2), and we no-
tice that, at least for large values of α, that the func-
tion shows steps. The results shown are calculated for
τ0 = 0.2 and τN = 2.2. Thus, for example, if α > 0.555,
we notice that the first increase of ∆S(N) is seen be-
tween N1 = 2 and N2 = 3, while if α is in the range
[0.555, 0.454] this increase is seen at N1 = 7, N2 = 8,
if α is further decreased the increase shifts to N1 = 12,
N2 = 13, and so on. This pattern, although qualita-
tively remaining the same, changes quantitatively for
a different temperature range. We notice an interest-
ing behavior for small values of α, which leads to the
question if, for any positive α an increase if ∆S(N) is
found for a finite value of N . Due to round-off errors,
we could not address this question numerically. How-
ever, since the coefficients σi in the Euler-MacLaurin
expansion Eq. (15) diverge in this case for i > 1 and
any positive α, the answer to this question should be
positive. We discuss this point somewhat more in the
appendix.

Finally, we notice that, in opposition to what was
found in the first two examples we studied, when the
body undergoes a continuous phase transition it is pos-
sible that ∆S(N) > ∆S′(N), that is, the increase of
entropy in the heating process is larger than the one
in the cooling process, a possibility which was antici-
pated in the discussion after Eq. (6). In Fig. 7 we
present results for the difference in entropy increases
∆S′(N) − ∆S(N), for α = 0.7 and α = 0.5, as func-
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tions of 1/N . The temperature interval is τ0 = 0.2,
τN = 2.2 Although in most cases this difference is pos-
itive, for α = 0.7 already for n = 13 we get a negative
result, and a set of values of N above this one have the
same property. For α = 0.5 the effect is smaller, and
the first occurrence of a negative result is for N = 88.
Again it would be interesting to study more details of
these results at large values of N , but round-off errors
prevent this to be done numerically.
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Figure 6 - Values of the critical exponent α for which the first
increase of ∆S(N) if found between N1 and N2 = N1+1, as func-
tion of 2/(N1 +N2). The data are for τ0 = 0.2 and τN = 2.2.
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Figure 7 - Difference in the increases of entropy in the cooling
and the heating processes ∆S′(N) − ∆S(N), for τ0 = 0.2 and
τN = 2.2. The curve with larger oscillations is for α = 0.7 and
the other one for α = 0.5.

A final remark on this example is that, if τ ≪ 1,
C(τ) ≈ Cτ , so that it will show a behavior similar to a
gas of non-interacting fermions at low temperature. In
this case, if the initial temperature τ0 approaches 0, the
coefficient σ1 diverges as a logarithm. In other words, in
a heating process starting at τ0 = 0, the tangent to the
curve ∆S × 1/N at the origin is vertical. This curve is
concave, since σ2 is negative. The even more unphysical
cooling process with vanishing final temperature shows
a very uncommon behavior: ∆S(N) diverges for any
finite N and vanishes as N → ∞.

In conclusion, we notice that in general the process
of heat transfer between a body and a sequence of heat
reservoirs, is a very rich physical situation for under-
standing of the second law of thermodynamics and the

concept of a reversible process. In particular, if the
body undergoes a continuous phase transition in the
composite process, some curious phenomena appear ,
which at first seem to defy common sense, but of course
none of them violates thermodynamics.

Appendix: Euler-MacLaurin expansion

Here we will develop the terms of the Euler-MacLaurin
expansion in some detail. If we substitute Eq. (14) into
Eq. (11) and collect the terms in the change of entropy
of the body in the sequence of processes in powers of
∆T/N . We notice, as expected, than the term of order
0 cancels, so that, in the limit N → ∞ the whole pro-
cess becomes reversible. The coefficients we obtain for
the change of entropy Eq. (15) are

σi = (−1)i(TN − T0)
i

{
−1

(i+ 1)

∫ TN

T0

C(i)(T )

T
dT+

+
1

2i

(
C(i−1)(TN )

TN
− C(i−1)(T0)

T0

)
+

[i/2]∑
k=1

(−1)2k−1B2k

(i+ 1− 2k)!(2k)!
×[(

C(i−2k)(TN )

TN

)(2k−1)

−

(
C(i−2k)(T0)

T0

)(2k−1)
]}

, i = 1, 2, 3, . . . (24)

The two first coefficients of this series, after integrating
by parts, are:, are

σ1 =
TN − T0

2

∫ TN

T0

C(T )

T 2
dT, (25)

and

σ2 = − (TN − T0)
2

12

[
4

∫ TN

T0

C(T )

T 3
dT+

C(TN )

T 2
N

− C(T0)

T 2
0

]
. (26)

We notice that σ1 ≥ 0, and vanishes only if the tem-
perature interval is zero or if C(T ) = 0 in the whole
interval. In other words, if there is a non-zero heat ex-
change between the body and the reservoirs, σ1 is pos-
itive. If this coefficient could be negative, the second
law would be violated. It is also invariant with respect
to a permutation of the temperatures, as was already
noted in the examples discussed above. The sign of the
second coefficient σ2 is not fixed, and, as happens with
all coefficients of even order, it switches under permu-
tation of the temperatures. The odd order coefficients
do not change their sign under this permutation.
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In the particular case of an ideal gas, where C(T ) =
C0, the coefficients are

σ1 = −C0
TN − T0

2

(
1

TN
− 1

T0

)
, (27)

σ2k = C0
B2k(TN − T0)

2k

2k

(
1

T 2k
N

− 1

T 2k
0

)
, (28)

where the last expression is valid for k = 1,2,3,. . . . We
notice that, with the exception of the dominant term,
only terms with even powers of 1/N appear in the ex-
pansion for this particular case. For the heating process
TN > T0, σ2 < 0, so that the ∆S is a concave function
of 1/N in the limit N → ∞. For the cooling process
TN < T0, the function is convex. These properties can
be verified in the numerical results presented in Fig. 3.

Very often the expansion in the Euler-MacLaurin
summation (12) does not converge. We find that even
for N = 1 the truncated asymptotic values are close to
the exact ones at rather low orders. However, truncat-
ing at higher orders does not necessarily lead to results
closer to the exact ones. For example, for N = 1 the
result closest to the exact one is found truncating the
series at kmax = 6. We notice that higher orders of
truncation lead to wrong results, as may be seen in
Fig. 8, where the increase of entropy calculated using
the expansion Eq. (15), for N = 1 and TN/T0 = 2,
is shown for several orders of truncation. The results
oscillate around the exact value at successive orders.
The best result is obtained for kmax = 6 and if we
truncate the expansion at larger orders we observe that
they start deviating from the exact value.

2 4 6 8 10 12 14
k

max

0,1

0,15

0,2

0,25

∆S
k m

ax
/C

0

Figure 8 - Increase of entropy for a system with constant heat
capacity C0 as a function the order of truncation of the asymp-
totic expansion imax. The ratio of temperatures TN/T0 is equal
to 2 and the number of reservoirs is N = 1. The exact value
corresponds to the dashed line.

In the Table 2, we present more results of such cal-
culations. We notice that quite accurate estimates of
the entropy change may be obtained if the series is trun-
cated at the most favorable order. The question of de-
termining the order which minimizes the rest R in the
Euler-MacLaurin expansion Eq. (12) is rather technical
and we refer to the specialized literature for details, but
in general it may be assured that, if f(x) in Eq. (12)

has always the same sign and if the function and all its
derivatives tend monotonically to 0 as x → ∞, which
are valid for f(N) = ∆S(N), then the rest Rkmax

is
of the same order and has the same sign of the first
neglected term [6].

Table 2 - Body with constant heat capacity (C(T ) = C0). Values
of the relative difference between the increase of entropy calcu-
lated directly (∆S) and the one which follows truncating the
series Eq. (15) (∆Skmax ). Several values for TN/T0 and N are
considered, and the optimal order of truncation imax is given.

TN/T0 N kmax |∆S −∆Skmax |/∆S ∆S
1/3 1 2 6.8311× 10−2 0.9014
1/3 2 6 4.3650× 10−3 0.4014
1/3 3 8 2.5634× 10−4 0.2538
1/3 4 12 1.2824× 10−5 0.1847
1/3 5 16 6.4910× 10−7 0.1450
1/3 6 18 3.0760× 10−8 0.1192
1/2 1 6 5.6735× 10−3 0.3069
1/2 2 12 1.6897× 10−5 0.1402
1/2 3 18 4.0671× 10−8 0.0765
2 1 6 9.0135× 10−3 0.1931
2 2 12 2.1570× 10−5 0.1098
2 3 18 4.7960× 10−8 0.0765
3 1 2 1.4255× 10−1 0.4319
3 2 6 6.6046× 10−3 0.2653
3 3 10 3.4783× 10−4 0.1907
3 4 12 1.5940× 10−5 0.1486
3 5 16 7.7345× 10−7 0.1217
3 6 18 3.5619× 10−8 0.1030

Finally, it is clear from Eq. (24) for the expansion
coefficients, that for the case of a singular heat capacity
at a critical temperature Tc (C(T ) = Cτ(1− τ)α, with
τ = T/Tc), all but the first coefficients diverge if the
temperature interval includes the critical temperature.
This fact may account for the rather peculiar behavior
found numerically in the large N limit.
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