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Beyond the model of conductor with fixed cross-section
and length: exactly and numerically solvable problems
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In this paper we present an overview of methods of resistance finding for the conductor with variable cross-
section or (and) length. First, we consider the cases of the finite size resistors and an infinite homogeneous weakly
conducting medium with two electrodes. Next, we continue the Romano and Price analysis about the truncated
cone problem by means of comprehensive numerical calculations done for the trapezoid plates. We conclude that
in general case of a conductor with variable cross-section the homogeneous electric field approximation gives only
the lower limit estimation for the resistance value. This fact can be explained on the basis of the minimum electric
power principle. The issues outlined in this article will be useful for advanced undergraduates, who study methods
for solving electrostatic problems.
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1. Introduction

It is well known that the electrical resistance R of an
object is defined as the proportionality constant between
voltage U and current I:

R = U

I
. (1)

The electrical resistance of a uniform conductor is given
by relation [1]:

R = ρ
l

A
, (2)

where ρ is the electrical resistivity; l is the length of
the conductor; A is the cross-sectional area of the con-
ductor. It should be noted that Equation (2) is appli-
cable only for a conductor with a constant cross-section
(wherein this cross-section may have any shape) along
its length. In this paper we consider the examples allow-
ing analytical or only numerical solution of the prob-
lem of resistance finding for the conductor with variable
cross-section (length) or conductor without clear bound-
aries. The issues outlined in this article will be useful for
advanced undergraduates, who study methods for solv-
ing electrostatic problems.

2. Analytically Solvable Problems

Let us consider a hollow conducting ball with inner and
outer radii equal to r1 and r2 respectively. It is neces-
sary to find its resistance, if voltage is applied between
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the inner and outer surfaces. We note that in this case
the current flow lines are radial straight lines (see Fig. 1).
Using this fact one can split the conductor into infinitesi-
mal spherical layers of thickness dr and radius r. Accord-
ing to Equation (2) each of them has infinitesimal resis-
tance dR = ρdr/(4πr2). Since this layers are connected
in series, we have:

R =
ˆ

dR = ρ

4π

ˆ r2

r1

dr
r2 = ρ

4π

(
1
r1
− 1
r2

)
. (3)

If r2 → ∞ (charged ball with radius r1 placed in an
infinite conducting medium with resistivity ρ), then from
Equation (3) we get: R = ρ/(4πr1).

Now we consider a long hollow cylindrical conductor
of length h and with inner and outer radii equal to r1
and r2 (r2 � h) respectively. As in the previous case its

Figure 1: A hollow conducting ball.
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Figure 2: A hollow cylindrical conductor.

current flow lines are radial straight lines (see Fig. 2).
Then splitting this conductor into infinitesimal cylindri-
cal shells with thickness dr, we have: dR = ρdr/(2πhr)
and

R =
ˆ

dR = ρ

2πh

ˆ r2

r1

dr
r

= ρ

2πh ln
(
r2

r1

)
. (4)

If r2 →∞ (long charged cylinder of radius r1 placed in
an infinite conducting medium with resistivity ρ), then
from Equation (4) we get: R→∞.

The above-considered method for determining the
resistance by summing its value over infinitesimal lay-
ers, is also valid for the case, where the current flow
lines are bent (due to conductor bending), but remain
parallel in any cross-section of a conductor. As an exam-
ple we may consider the half ring with thickness t shown
in Fig. 3. Let us try to find the resistance between its
ends. In this case we deal with the conductor of variable
length. The resistance of an infinitesimal annulus with
radius r and width dr is dR = ρπr/(tdr). The resis-
tances from different sub-annuli are in parallel with one

another. Therefore,

1
R

=
ˆ 1

dR = t

πρ

ˆ r2

r1

dr
r

= t

πρ
ln
(
r2

r1

)
. (5)

3. The Resistor with no Clear
Boundaries

The above-described method for determining the resis-
tance of an object fails, when the conductor does not
have clear boundaries (“fuzzy conductor” or “massive
conductor”). Let us consider a system of two conduc-
tors of arbitrary shape, which are placed in an infinite
homogeneous weakly conducting medium with resistiv-
ity ρ and permittivity ε [2]. Now we find product RC,
where R is the medium resistance between conductors
and C is the mutual capacitance of this system. Since
the medium is weakly conductive, we can assume that
the conductivity of conductors is much higher than the
conductivity of the medium. Then we can neglect the
change in potential within the conductors, that is, we
assume that all the points of each electrode have the
same potential. We keep the voltage between electrodes
constant and equal to U .

We mentally surround one of the electrodes with
an arbitrary closed surface S. Then the total current
through this surface is:

I =
‹

S

~j · d ~A = 1
ρ

‹
S

~E · d ~A, (6)

where ~j is the current density; ~E is the electric field
strength (here we used relation ~j = ~E/ρ). On the other
hand, applying the Gauss’s law, we obtain:

‹
S

~E · d ~A = q

εε0
, (7)

where q = CU is the charge of one of the electrodes; ε0
is the vacuum permittivity. Using Eqs. (1), (6), (7), we
finally derive [2]:

RC = ρεε0. (8)

As an example of using Equation (8) we consider the
case of two parallel wires each of radius r and length
l. Let the distance between their axes of symmetry be

Figure 3: A conducting half ring.

Revista Brasileira de Ensino de F́ısica, vol. 42, e20200189, 2020 DOI: https://doi.org/10.1590/1806-9126-RBEF-2020-0189



Vladimir Ivchenko e20200189-3

Figure 4: πRL/ρ as function of 2r/d according to Equation (9).

equal to d (d > 2r). Taking into account the expres-
sion for electrical capacitance of such a system [3], we
immediately get:

R = ρ

πl
arcosh

(
d

2r

)
. (9)

Thus, according to Equation (9) resistance of such a sys-
tem increases nonlinearly with increasing of relative dis-
tance between wires d/2r (see Fig. 4). For d = 2r we
have: R = 0. If d→∞, then R→∞.

We can also consider the case of two balls each of
radius r, which are at large distance d (d � r) from
each other. The electrical capacitance of each ball is
C0 = 4πεε0r. Since such a system can be treated as
two capacitors connected in series, then C = C0/2 and

R = ρ

2πr . (10)

In accordance with Equation (10) resistance R does not
depend on the distance between the balls. This explains
the result empirically found by telegraph operators, who
discovered (to their surprise) that the earth resistance
between telegraph stations does not depend on the dis-
tance between them.

Using Equation (8) we may calculate the contact
resistance between two conductors. Such a resistor can
be considered as a single hole of radius r cut into an
infinitely large planar baffle of insulating material. The
self-capacitance of a conducting disk is defined by C0 =
8εε0r. Actually, only half of C0 is relevant (C = C0/2)
because for our problem the sides of the conducting disk
have opposite charge signs. The total contact resistance
appears as the series connection of two identical resistors
(Rin and Rout), at that Rin = Rout = ρεε0/C. Then

R = ρ

2r . (11)

Equation (11) was first derived by J. C. Maxwell
[4]. According to this equation the contact resistance
increases sharply with decreasing the contact spot size.

It is interesting that Equations (3), (4) can be derived
by using Equation (8). Equations (3), (4), (8) is often
applied to estimate leakage resistance [5] of spherical,
cylindrical and other types of capacitors. It should be
noted that in many cases the problem of finding mutual
capacitance is no less complicated than the problem of
finding resistance. For these cases one should use the
direct method for calculating resistance based on the
solution of the Laplace’s equation.

4. The Trapezoid Plate Problem

Let us consider a conducting plate of fixed length l and
thickness t. We assume that this plate has the shape
of an isosceles trapezoid with curved sides and voltage
U is applied between its bases. We denote the lengths
of the trapezoid bases as a and b (we put b > a) and
choose two-dimensional Cartesian coordinate system as
it is shown in Fig. 5. The equation of the curved side can
be approximated by a power function:

y =
(

2x− a
b− a

)n

l, (12)

where n is the exponent (power).
Using Equation (12) and the considered above method

of “stack of the infinitesimal slabs” one can find the total
resistance. For example:

R0 = ρl

t
√
a(b− a)

arctan
(√

b− a
a

)
(n = 1/2), (13)

R0 = ρl

t(b− a) ln
(
b

a

)
(n = 1), (14)

R0 = 2ρl
t(b− a)2

(
b− a− a ln

(
b

a

))
(n = 2). (15)

It should be noted that in the all cases R0 → ∞ as
a → 0 (the same situation occurs if we put r1 → 0 in

Figure 5: Geometry of the trapezoid plate problem.
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Figure 6: Three investigated geometry of the trapezoid plate. (a) – n = 1/2; (b) – n = 1; (c) – n = 2.

Figure 7: Dependence R(a/b). (1) – b/l = 1; (2) – b/l = 5; (3) – b/l = 10. (a) – n = 1/2; (b) – n = 1; (c) – n = 2.

Equations (3), (4)). When a → b we obtain “standard”
Equation (2).

The Equations (13)–(15) are derived assuming the
electric field inside the conductor is homogeneous. In
reality, the situation with determining the resistance for
such objects turns out to be much more complicated
due to the fact that the flow (electric field) lines are
not straight parallel lines but are bent (see Fig. 5), so
that the normal component of the electric field strength
vanishes on the plate sides. Accordingly, the equipoten-
tial surfaces are also not planes perpendicular to the
axis of symmetry of the trapezoid. This issue is dis-
cussed in detail in the article of Romano and Price [6].
Here we continue their analysis by means of compre-
hensive numerical calculations performed for three cases:
n = 1/2, 1, 2 (see Fig. 6).

We start from Equation (1) and write: U = Φ1 − Φ2,
where Φ1,2 are the electric potentials of the truncated
cone ends;

I =
¨

S

~j · d ~A = −1
ρ

¨
S

∇Φ · d ~A, (16)

where the integral is taken over an arbitrary cross-
section of the conductor (here we used Equation (6) and
relation ~E = −∇Φ). Thus, the solution to this prob-
lem is reduced to finding potential Φ everywhere inside
the resistor. This can be done by solving the Laplace’s
equation ∆Φ = 0 with the appropriate boundary condi-
tions. Taking into account symmetry of our problem,
we have that the electric potential depends only on
coordinates x and y and the Laplace’s equation takes

form:

∆Φ = ∂2Φ
∂x2 + ∂2Φ

∂y2 = 0. (17)

There are the following Dirichlet boundary conditions
on the bases:

Φ(x, 0) = Φ1 (−a/2 6 x 6 a/2), (18)

Φ(x, l) = Φ2 (−b/2 6 x 6 b/2). (19)

There is also the Neumann boundary condition at the
sides of the resistor, which means that the normal to
these surfaces component of the electric field strength
vanishes. This condition has the form:

∂Φ
∂~n

∣∣∣∣
y=f(x)

= 0, (20)

where ~n is the normal vector to the side surface; function
f(x) is defined by Equation (12).

We can solve system of Equations (17)–(20)
numerically, applying an open-source PDE solver
“FreeFem++” [7] that uses the finite element method.
In Fig. 7 we plot dependences R(a/b) calculated with
the help of Equations (1), (16)–(20) at different values
of b/l and n. It is seen that in all cases the real (true)
value of the resistance is larger than its value obtained in
supposition of the homogeneous electric field. This fact
can be explained on the basis of the minimum electric
power principle [8]. According to this principle the cur-
rents distribute themselves inside the piece of conductor
so that the electric power is as little as possible. Since
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P = U2/R, then at fixed voltage the currents should dis-
tribute themselves to provide the maximum resistance.
It means that R > R0 always.

At fixed value of b/l and n the difference between R
and R0 values of the resistance increases with decreasing
ratio a/rb. This difference also increases as b/l and n
increases.

We hope that consideration of the problems described
in this article will help students better grasp such an
important concept as the electrical resistance.
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