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Uma transformação de similaridade é uma relação de equivalência entre matrizes quadradas que
preserva o determinante, traço e autovalores da matriz, tendo papel fundamental na mecânica quântica
para fins de simplificar sistemas hamiltonianos muito complexos, o que permite melhorar de forma
significativa as soluções anaĺıticas no uso de teoria de perturbações. Um exemplo protot́ıpico desse tipo é
a teoria BCS para a supercondutividade convencional, derivada de uma transformação de similaridade da
interação elétron-fônon original, escrita na forma de segunda quantização. Nesse trabalho, discutimos o
método geral para escrever o operador de transformação de similaridade na forma de segunda quantização,
permitindo reescrever o hamiltoniano de interação entre férmions e bósons, obtendo uma teoria efetiva
em que somente os graus de liberdade de interesse são retidos depois da transformação.
Palavras-chave: sistemas férmion-bóson, transformações de similaridade, segunda quantização, super-
condutividade.

A similarity transformation is an equivalence relation between square matrices which preserves
determinant, trace and eigenvalues, playing a key role in quantum mechanics in simplifying complex
hamiltonian systems and improving analytical results attainable from the use of perturbation theory.
As a prototypical example, the conventional BCS theory of superconductivity is usually derived from
a similarity transformation of the original electron-phonon hamiltonian, written in second quantized
version. Here we discuss the general method for writing the similarity transformation operator in second
quantized form, allowing one to recast a hamiltonian describing an interacting fermion-boson system
into an effective theory in which only the desired degrees of freedom are kept after the transformation.
Keywords: fermion-boson systems; similarity transformation; second quantization; superconductivity.

1. Introduction

There is little room for controversy in stating that
fermion-boson interacting systems are among the
most general problems in physics, since they can be
used to describe almost everything in the real world,
at least at a quantum-mechanical level. For instance,
in the standard model of elementary particles the
interaction between fermions(electrons, neutrinos
and quarks) are mediated by the so-called gauge
bosons (photons, gluons and so on) [1–3]. In cavity
quantum electrodynamics problems, fermion states
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in a multilevel system are coupled via photons, lead-
ing to a large class of problems that can be mapped
to the Jaynes-Cummings models [4, 5]. Electronic
transport properties are affected by electron-phonon
coupling in solids, leading to the phenomenon of su-
perconductivity in many materials [6–8]. Despite the
apparent simplicity of fermion-boson models when
written in second quantization formalism, the vast
majority of these problems are not solvable in an
exact manner and, therefore, demand clever meth-
ods and mathematical tricks in order to obtain an
analytically tractable perturbation scheme, allowing
one to predict meaningful physical results.
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As a matter of fact, the term second quantiza-
tion is synonymous to quantum field theory, which
naturally describes many-body problems and can
be represented in two very dissimilar but other-
wise equivalent ways, to be known [1–3, 9, 10]: i)
Feynman path integral formulation, based on “sum
over histories”, which is beyond the scope of the
present contribution and ii) canonical quantization
formalism, firmly grounded on the use of the so-
called creation and annihilation operator algebra.
While Feynman formalism deals with gaussian inte-
gration gymnastics [10], one of the most important
mathematical tool for the canonical formalism is
the similarity transformation of the hamiltonian. A
similarity transformation is an equivalence relation
between square matrices which preserves all the rele-
vant information in quantum mechanics, i.e., matrix
determinant, trace and eigenvalues. It can be used
to promote a change of basis or a symmetry transfor-
mation [11,12], leading to an equivalent hamiltonian,
in which the terms too complicated to be dealt
with are completely eliminated, at least in first
order of a perturbation series expansion, thusly sim-
plifying the problem. In the canonical formalism,
the conventional BCS theory of superconductivity
is usually derived from a similarity transformation
of the original electron-phonon hamiltonian [12].

In the present contribution, we discuss the general
method for writing similarity transformation opera-
tors in second quantized form, allowing one to recast
a hamiltonian describing an interacting fermion-
boson system into an effective theory, in which only
the desired degrees of freedom are kept after the
transformation. The proposed rule of thumb is ap-
plied to the problem of electron-phonon interactions
in obtaining the BCS theory of superconductivity.

The content of this paper is organized in the fol-
lowing way: in the next Section we will introduce and
briefly discuss the fermion-boson general problem
in the canonical formalism. In Section 3 the gen-
eral method for obtaining similarity transformation
operators in second-quantized version is presented.
Section 4 brings the application of the method to
the BCS theory of superconductivity and, finally, in
the last Section a few conclusions and remarks are
added.

2. The general form of fermion-boson
interacting hamiltonians

Our primary interest is in the problem of fermion-
boson interacting systems, described by the follow-

ing general hamiltonian:

Ĥ =
∑
i

Eiĉ
†
i ĉi +

∑
n

~ωnâ†nân +∑
ijn

[γijnĉ†i ĉj ân + γ∗ijnĉ
†
j ĉiâ

†
n] , (1)

where Ei are the energy eigenstates of the
fermionic degrees of freedom with a set of
quantum numbers labeled by the index i, ~ωn
is the energy of a bosonic state with quantum num-
bers labeled by n and γijn is the fermion-boson
coupling parameter, depending on the bosonic quan-
tum number, ĉi(ĉ†i ) is a fermionic operator which
annihilates (creates) a fermion in the i-th quantum
state, while âi(â†i ) is a bosonic annihilation (cre-
ation) operator. Fermionic operators must obey the
following anti-commuting algebra:

{ĉi, ĉj} = {ĉ†i , ĉ
†
j} = 0 , (2)

{ĉi, ĉ†j} = δij , (3)

where {A,B} = AB +BA is the anti-commutator
for any two operators A and B, δij is the Kronecker
delta function, yielding 1(0) for i = j(i 6= j). By con-
trast, bosonic operators obey a commuting algebra,
explicitly written below:

[âi, âj ] =
[
â†i , â

†
j

]
= 0 , (4)[

âi, â
†
j

]
= δij , (5)

where [A,B] = AB − BA is the commutator of A
and B. The number operators are defined as ĉ†i ĉi
and â†nân for fermions and bosons, respectively.

In the above hamiltonian, the first term,∑
iEiĉ

†
i ĉi, is related to the fermion system

alone, whose energies are supposed to be ex-
actly known. The second term,

∑
n ~ωnâ†nân, is re-

lated to the energy of the bosonic degrees of freedom,
and it conserves the boson number, since it is diag-
onal in the number representation. The last terms
represent the fermion-boson interaction, which per-
mits non-conservation of the boson number. For
instance, the term γijnĉ

†
i ĉj ân represents the transi-

tion of the fermion from the j-th state to the i-th
state by absorbing a boson with quantum number
n. The last term γ∗ijnĉ

†
j ĉiâ

†
n represents the fermion

transition with boson emission. In either case, it is
clear that the total boson number is not preserved,
i.e., states with distinct boson number are coupled
due to the interaction. It is usually the case that
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the fermion-boson interaction is weak and can be
treated as a small perturbation, which is known as
the weak coupling limit.

3. The general method of similarity
transformation

As the starting point, consider the following hamil-
tonian:

Ĥ = Ĥ0 + λV̂ , (6)

where Ĥ0 is an unperturbed hamiltonian and V̂
is the perturbation, usually responsible for the in-
teractions. The parameter λ is used to control the
intensity of the perturbation term. For λ→ 0 inter-
actions are absent, but for small λ perturbation the-
ory is generally valid, while for λ→∞ the system is
dominated by the interaction term and perturbation
theory breaks down. In order to solve the problem
in the weak coupling limit (λ < 1), we assume the
eigenstates of Ĥ0 are known, and therefore we want
to eliminate the perturbation term V̂ , at least to
first order in the coupling parameter λ. This way,
in the transformed hamiltonian the perturbation
will appear only at the next leading order, which is
λ2. If necessary, the next leading order can also be
eliminated by continuing the transformation proce-
dure to be described below. Elimination of V̂ to first
order in λ is accomplished by applying a similarity
transformation to Ĥ, as follows:

Ĥ ′ = eŜĤe−Ŝ . (7)

Notice that, since the hamiltonian must be her-
mitian in quantum mechanics and eŜ must be an
unitary operator, the matrix Ŝ must obey the re-
lation Ŝ† = −Ŝ. Expanding the above equation in
Taylor series yields:

Ĥ ′ =
(

1 + Ŝ + 1
2! Ŝ

2 + ...

)
Ĥ

(
1− Ŝ + 1

2! Ŝ
2 + ...

)
,

(8)
which can be promptly recast into the following
form:

Ĥ ′ = Ĥ + [Ŝ, Ĥ] + 1
2[Ŝ, [Ŝ, Ĥ]] + ... (9)

After inserting (6) into the above equation, we get:

Ĥ ′ = Ĥ0 + λV̂ + [Ŝ, Ĥ0] + λ[Ŝ, V̂ ] +
1
2[Ŝ, [Ŝ, Ĥ0]] + λ[Ŝ, [Ŝ, V̂ ]]... (10)

Going further, the term λV̂ can be eliminated from
the problem to first order in λ by making:

λV̂ + [Ŝ, Ĥ0] = 0. (11)

Looking at the above equation, it is clear that Ŝ will
depend linearly on λ. Using the set of Ĥ0 eigenstates,
satisfying the eigenvalue equation below,

Ĥ0|m〉 = Em|m〉 , (12)

we can straightforwardly solve the equation (11) for
the operator Ŝ, being the result:

Ŝ = λ
∑
m,n

〈m|V̂ |n〉
Em − En

|m〉〈n| . (13)

Making use of (11), we can rewrite the transformed
hamiltonian Ĥ ′ in the following way:

Ĥ ′ = Ĥ0 + λ

2 [Ŝ, V̂ ] + ... (14)

Now the perturbation is in the term λ
2 [Ŝ, V̂ ], which

depends on λ2. It must be pointed out that the quan-
tum state of Ĥ satisfying the equation Ĥ|ψ〉 = E|ψ〉
is also transformed, |ψ′〉 = eŜ |ψ〉, but it possesses
the same energy eigenvalue E.

Next, we turn our attention to the form of the
transformation matrix Ŝ given by equation (13)
and its connection to the fermion-boson problem.
The term |m〉〈n| can be interpreted as an operator
which annihilates the initial state |n〉 and creates
the final state |m〉. It is weighted by the matrix
element 〈m|V̂ |n〉 of the perturbation operator V̂
divided by the energy difference (Em−En) between
final and initial states. It is our aim to write Ŝ as
a second-quantized operator, observing the form of
the perturbation operator V̂ . To do that, we must
replace |m〉〈n| in (13) by creation and annihilation
operators exactly in the same order as they appear
in the operator V̂ . The energy difference Em −En
can be easily calculated considering the total number
of particles appearing in the final and initial states.
Let us consider the fermion-boson hamiltonian (1)
written as follows:

Ĥ0 =
∑
i

Eiĉ
†
i ĉi +

∑
n

~ωnâ†nân , (15)

λV̂ =
∑
ijn

[γijnĉ†i ĉj ân + γ∗ijnĉ
†
j ĉiâ

†
n] . (16)

Taking a closer look at the term γijnĉ
†
i ĉj ân in V̂ , we

know that it will annihilate a boson in the n-th state
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and a fermion in the j-th state, creating a fermion
in the i-th final state. Therefore, the initial energy
of the fermion-boson system is E0 + Ej + ~ωn and
the final energy is E0 + Ei, where E0 is the sum of
all other energies in the system, not involved in this
specific interaction process. The energy difference
between final and initial states will be given by Ei−
Ej − ~ωn. In writing down the matrix Ŝ, this term
will show up as γnĉ†i ĉj ân/(Ei − Ej − ~ωn). Taking
into consideration the above discussion, we prescribe,
as a rule of thumb, a direct method for obtaining Ŝ,
as follows: i) write down the perturbation operator
V̂ for Ŝ and ii) divide each term by the energy
difference between final and initial states produced
by that specific term. It is easy to see that for the
perturbation (16) the transformation matrix Ŝ will
be given by:

Ŝ =
∑
ijn

 γijnĉ
†
i ĉj ân

Ei − Ej − ~ωn
+

γ∗ijnĉ
†
j ĉiâ

†
n

Ej − Ei + ~ωn

 .

(17)
The interested reader is encouraged to demon-
strate explicitly that the above expression
for Ŝ exactly solves equation (11), provided
the knowledge of the fermionic and bosonic
relations (2)-(5 and the Hamiltonian (6), con-
veniently splitted as (15) and (16).

Notice that the prescribed method for writing
down Ŝ works for very general situations. For the
sake of simplicity, consider the boson hamiltonian
below:

Ĥ = ~ωâ†â+ γ(â+ â†) . (18)

Indeed, the above problem is a trivial one, since
it can be exactly diagonalized by the replacement
â→ â−γ/~ω, leading to Ĥ = ~ωâ†â−γ2/(~ω), but
we will use the similarity transformation method
in order to eliminate the perturbation V̂ = γ(â +
â†). Following the above mentioned prescription, we
write down the matrix Ŝ:

Ŝ = − γ

~ω
â+ γ

~ω
â†. (19)

It is straightforward to show that the energy dif-
ference between final and initial state due to the
term γâ is −~ω, since initially there are n bosons
of energy ~ω and, after annihilation of one boson
we are left with n− 1 bosons, leading to an energy
deficit of ~ω. Inserting (18) and (19) into (14) and

making use of [â, â†] = 1 we obtain:

Ĥ ′ = Ĥ0 + 1
2[Ŝ, V̂ ]

= ~ωâ†â+ γ2

2~ω (−[â, â†] + [â†, â])

= ~ωâ†â− γ2

~ω
, (20)

which is the exact result in this particular case.
In the next Section we will use the method de-

scribed here to obtain the BCS hamiltonian describ-
ing conventional superconductivity.

4. The conventional BCS
superconductivity theory

The BCS theory successfully explains the conven-
tional superconductivity of materials, by considering
attractive electron-electron interactions mediated
by the exchange of virtual phonons(the quantized
excitations of lattice vibrations), which leads to the
formation of the so-called Cooper pairs, a bound
state of electrons in momentum space. The start-
ing point of the BCS theory is the electron-phonon
Hamiltonian [12]:

Ĥ0 =
∑

k
Ekĉ

†
kĉk +

∑
q

~ωqâ
†
qâq , (21)

λV̂ = i
∑
kq

Dqĉ
†
k+qĉk

[
âq − â†−q

]
. (22)

where ĉk(ĉ†k) annihilates(creates) an electron(fermion)
with momentum ~k (and spin σ =↑, ↓, which is be-
ing omitted) and energy Ek = ~2k2/(2m), âq(â†q)
annihilates (creates) a phonon (boson) with mo-
mentum ~q and energy ~ωq, the parameter Dq is
the electron-phonon coupling and depends only on
the phonon momentum ~q, not on the electronic
momentum ~k, in the present case. It is left as an
exercise to show that the requirement of hermiticity
of the hamiltonian leads to the condition D∗q = D−q.
Using the prescription described in the previous Sec-
tion we can easily write down the transformation
matrix Ŝ:

Ŝ = i
∑
kq

Dq

 ĉ†k+qĉkâq

Ek+q − Ek − ~ωq

−
ĉ†k+qĉkâ

†
−q

Ek+q − Ek + ~ωq

 , (23)
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where we have used the fact that ωq = ω−q. Going
further, we need to determine

[
Ŝ, λV̂

]
in order to

obtain Ĥ ′. The result is:[
Ŝ, λV̂

]
= −

∑
kq

∑
k′q′

DqDq′(A1 −A2 −A3 +A4) ,

(24)
where we defined the terms below

A1 =

[
ĉ†k+qĉkâq, ĉ

†
k′+q′ ĉk′ âq′

]
Ek+q − Ek − ~ωq

, (25)

A2 =

[
ĉ†k+qĉkâq, ĉ

†
k′+q′ ĉk′ â†−q′

]
Ek+q − Ek − ~ωq

, (26)

A3 =

[
ĉ†k+qĉkâ

†
−q, ĉ

†
k′+q′ ĉk′ âq′

]
Ek+q − Ek + ~ωq

, (27)

A4 =

[
ĉ†k+qĉkâ

†
−q, ĉ

†
k′+q′ ĉk′ â†−q′

]
Ek+q − Ek + ~ωq

. (28)

As a final step, we want to retain only fermionic de-
grees of freedom by tracing out the phonon variables.
It can be done by averaging phonon operators in the
canonical ensemble, for which the density matrix
is written as ρ̂ = e

−β
∑

q ~ωqâ
†
qâq/tr(e−β

∑
q ~ωqâ

†
qâq),

where β = 1/(kBT ) is the reciprocal of the tem-
perature. Notice that the terms A1 and A4 van-
ish by virtue of the trace properties tr(ρ̂âqâq′) =
tr(ρ̂â†qâ†q′) = 0. The remaining terms must be care-
fully calculated, taking into account that in the
canonical ensemble tr(ρ̂â†qâq′) = n̂qδq,q′ for phonon
operators. The commutators appearing in A3 and
A4 are of the form below:[
ĉ†i ĉj âm, ĉ

†
k ĉlâ

†
n

]
= δm,nĉ

†
i ĉj ĉ

†
k ĉl+â

†
nâm

[
ĉ†i ĉj , ĉ

†
k ĉl
]
,

(29)
where i = k + q, j = k and so on. The commutator[
ĉ†i ĉj , ĉ

†
k ĉl
]

can be handled with the help of the
following identity:

[AB,CD] = A{B,C}D − {A,C}BD +
CA{B,D} − C{A,D}B . (30)

The last steps towards the BCS hamiltonian are left
as an exercise, but the result Ĥ ′ = Ĥ0 + 1

2

[
Ŝ, λV̂

]
,

after averaging over the phonon operators, is shown
below:

Ĥ ′ =
∑

k
E′kc

†
kck + 1

2
∑
kk′q
|Dq|2

×
[ ĉ†k+qĉkĉ

†
k′−qĉk′

Ek+q − Ek − ~ωq
−

ĉ†k′−qĉk′ ĉ†k+qĉk

Ek+q − Ek + ~ωq

]
,(31)

where E′k is the electron energy, corrected by phonon
interactions:

E′k = Ek − 2
∑

q

nq|Dq|2(Ek+q − Ek)
(Ek+q − Ek)2 − (~ωq)2 , (32)

nq = tr(ρ̂qâ
†
qâq) = 1/(eβ~ωq − 1) is the phonon

number. At T = 0 the phonon number vanishes for
any q and the electron-phonon interactions does
not produce any effect on the electron energy, i.e.,
E′k = Ek, but for higher temperatures it deviates
from the parabolic energy-momentum dispersion re-
lation, which is characteristic of non-relativistic free
particles. Now we will put the effective electron-
electron interaction, by making some rearrange-
ments in the last term in (31). Using the fermionic
relations one can rewrite ĉ†k′−qĉk′ ĉ†k+qĉk as follows:

ĉ†k′−qĉk′ ĉ†k+qĉk = ĉ†k′−q(δk′,k+q − ĉ†k+qĉk′)ĉk ,

= δk′,k+qĉ
†
k′−qĉk − ĉ†k+qĉ

†
k′−qĉkĉk′

= δk′,k+qĉ
†
k′−qĉk − ĉ†k+q(δk,k′−q − ĉkĉ

†
k′−q)ĉk′

= δk′,k+qĉ
†
k′−qĉk − δk,k′−qĉ

†
k+qĉk′

+ĉ†k+qĉkĉ
†
k′−qĉk′ , (33)

Inserting this last result into equation (31) one can
show that:

Ĥ ′ =
∑

k
E′′kc

†
kck +

∑
kk′q

Vkk′qĉ
†
k+qĉkĉ

†
k′−qĉk′ , (34)

where E′′k is the re-corrected electron energy, given
by:

E′′k = E′k−
∑

q
|Dq|2

(Ek+q − Ek)
(Ek+q − Ek)2 − (~ωq)2 , (35)

and Vkk′q is the effective coupling resulting from
the (virtual) phonon exchange, firstly derived by J.
Bardeen, L.N. Cooper and J.R. Schrieffer [13], who
shared the Nobel Prize in 1972 for their achieve-
ments in the theory of superconductivity, The fa-
mous result is given below [8,12–14]:

Vkk′q = ~ωq|Dq|2

(Ek+q − Ek)2 − (~ωq)2 . (36)

We point out that it is usual to label Vkk′q
just as Vkq in the current literature [8,12,14].
Notice that for (~ωq)2 > (Ek+q−Ek)2 the coupling
Vkq becomes negative, meaning that the interac-
tion is attractive, which is the key ingredient for
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the formation of Cooper pairs, a bound state of
two electrons in momentum space, in the conven-
tional BCS theory of superconductivity. Further
discussions can be found in classical textbooks on
condensed matter theory [6–8,12,14].

5. Conclusion

In summary, in the present manuscript we presented
a brief introduction to general fermion-boson hamil-
tonians, in which boson number is not conserved due
to the fermion-boson interactions, thus complicating
the search for exact solutions in closed analytical
form, demanding a perturbation scheme to deal with
the mathematical problem. One of the most useful
methods is based on similarity transformation of the
original hamiltonian, eliminating the interactions to
first order in the coupling constant. A rule of thumb
for obtaining the similarity transformation operator
in second-quantized form is presented and applied
to the problem of BCS theory of superconductivity.
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