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This paper in a didactic way, presents an introduction to quantum computing where some quantum formalisms
are analyzed to finally address Grover’s algorithm. It is widely known that this algorithm is one of the key
algorithms in quantum computing, being its ability to explode successfully the superposition principle one of
the reasons. In addition, this algorithm can be used for both locating efficiently a specific element in a cluttered
database and solving certain problems when it is difficult finding a proper solution, but at the same time it is very
simple to try with possible candidates. Finally, a simulation of this algorithm is carried out and the results are
compared with other classical algorithms to illustrate the significant potential advantages of quantum computing.
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1. Introduction

It is well known that since the mid-nineteenth century
with the emergence of classical computing under the
architecture of the Church-Turing and Von Neumann
machines [1], it was possible to build a computer capable
of performing basic operations such as addition and mul-
tiplication in a few seconds. Over the years, technological
developments have allowed optimizing the response time
of all kinds of operations; however, there are still a large
number of mathematical calculations that would take
decades to be solved (e.g., determining whether a large
number is prime or not.). These types of complex cal-
culations encouraged Paul Beniof [2, 3, 4] and Richard
Feynmann [5] to reconsider the idea of using computers
under the principles of quantum physics, so they started
working with classical computers that they adapted and
operated with some of the main principles of quantum
mechanics. On the other hand, every day it becomes
more difficult to handle classical computing because of
the constant demands of miniaturization that electronic
components require, knowing that soon it will not be
possible to reduce them anymore and the laws of classi-
cal physics will not be considered anymore. An example
of this is that transistors have a limit where they sim-
ply stop working properly. This limit is met when the
electrons escape from the channels where they are sup-
posed to flow because of the so-called “tunnel effect”,
that in other words means if a classical particle reaches
an obstacle, normally this particle can go through it and
bounces back, but the electrons are quantum particles
which exhibit wave behavior keeping the possibility that
a significant portion of these electrons may go through
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the walls where they are confined. In this way, the signal
can interfere through channels where it is not supposed
to, causing the chip to stop working [6]; therefore, at
some point, the technical progress will come to an end
leaving space to the development of quantum mechanics.

It is important to stress that a quantum computer can
perform all kinds of tasks that a classical computer does
thanks to the fact that computability is the same, the
difference lies in the time of convergence in the results
obtained by the running algorithms since quantum com-
puters have the ability to process information in parallel
in a massive way. This is known as the superposition
principle or superposition property; superposition is the
fundamental law of quantum mechanics which defines the
collection of all possible states that an object can have,
meaning that a system can even be in two or more of its
states at the same time, which allows the development
of new and innovating algorithms.

Grover’s algorithm is one of the most important algo-
rithms of the quantum computing illustrating the funda-
mental quantum superposition principle by searching N
records in an unordered sequence inspecting all possible
combinations simultaneously, causing a significant reduc-
tion of the response time to O(

√
N ) steps compared with

a classical algorithm. Grover’s algorithm is defined as a
probabilistic algorithm, so the correct answer is obtained
with a certain error probability that, at the same time,
can be as low as desired by running more iterations. This
algorithm receives a list of numbers and simultaneously
the specific data to be found; afterward, a function f
which its primary goal is to assign the state f(x) = 0
if the element that is being searched is not requested;
otherwise, the assigned state is f(x) = 1. As soon as
the desired data matches a record, the amplitude of the
mentioned state is modified without affecting the other
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elements, obtaining that in the end, the probability of
one state differs completely from the rest. The simplicity
and helpfulness of this algorithm stand out the speed on
response times intended to implement in the computers
of the future.

It is important to note that a classic simulation of
the Grover algorithm and the study of other quantum
algorithms has been studied in different works such as
[7,8,9,10,11].

Unlike these works, in this article, in a didactic way
and sequentially, the physical and mathematical founda-
tions are constructed to better understand the Grover
algorithm in three steps.

For the simulation of the algorithm the Java program-
ming language is used, because it is independent of the
platform and because it has no problems with the release
of the system memory. The implementation of the algo-
rithm is easy to understand and is according to previously
developed concepts.

This paper has been organized in the following way:
First of all, preliminary concepts are introduced and
some concepts of the formalisms of quantum mechanics
are illustrated which will allow introducing Grover’s al-
gorithm that will be covered in the second part. Last of
all, a classical simulation of Grover’s algorithm is carried
out and the results are compared with other classical
algorithms.

2. Preliminary concepts

2.1. About the superposition principle

Following Penrose [12], ”think of the position of an
electron.” As we know, in a classical image, the electron
by an indivisible particle could be located in position
A or position B, however in the mechanical quantum-
image, in some sense it has the possibility of occupying
both positions simultaneously. Let | A〉 be the state for
the electron in position A and be | B〉 the state of the
electron in position B. According to the quantum the-
ory (principle of superposition), there are other possible
states open to the electron that is written as w | A〉+
z | B〉 where w and z are complex weight factors. If the
weight factors are taken as real numbers (not negative),
then it could be considered that this combination repre-
sents, in a certain sense, a weighted probability of the
expected value for the position of the electron, where w
and z represent the weighted probabilities of the electron
in the position A or in the position B. If w = 0 then the
electron would certainly be in B, and if z = 0 it would be
in A. If w = z = 1, then it represents equal possibilities
for the electron in A or in B. But w and z are Complex,
so that such an interpretation does not make any sense.
As Penrose [12] states, we can not say, in familiar and
everyday terms, what ”means” that an electron is in a
state of superposition of two places at the same time
with complex w and z weights. For the moment, we must

simply accept that this is really the kind of description we
have to adopt for quantum-level systems. In fact, quan-
tum superposition gives rise to many directly observable
effects, such as the interference peaks of a wave electron
in the double-slit experiment, the last of them made in
2008 [13] its most ambitious form, electron to electron,
thus proving the quantum-mechanical hypothesis

2.2. Quantum bits and Unitary transformations.

In classical computation the minimum unit of information
is the bit, which can be a 0 or 1 state. A quantum bit or
qubit can be in a state that is a superposition of states
0 and 1. In mathematical formalism a qubit is a Hilbert
space vector H2

Definition 2.1 A qubit or quantum bit is a nor-
malized vector of the space of H2 .Considering the base
{|0〉, |1〉} of H2 , any qubit can be written as |ψ〉 =
α|0〉 + β|1〉, with |α|2 + |β|2 = 1

Definition 2.2 A system of n-qubits is a space vector
H2n = ⊗n

i=1H
2 .

Definition 2.3 A quantum algorithm consists of the
evolution of a system represented by n-qubits.

To describe the states of a quantum system, the Dirac
representation and notation is usually used [9].

Instead of writing the vector as −→v the notation ket |v〉
is used. In particular the base {|0〉, |1〉} of H2 is written
as:

|0〉 =
(

1
0

)
and |1〉 =

(
0
1

)
(1)

Therefore, in H2 any vector representing the state of
a quantum system is written as:

|ψ〉 = α|0〉 + β|1〉 = α

(
1
0

)
+ β

(
0
1

)
(2)

Definition 2.4 Every vector ket has the form:

|ψ〉 =


α1
α2
.
.
.
αN

 (3)

And bra a vector of the form:

〈ψ| = (α∗
1, α

∗
2, ............α

∗
N ) (4)

Definition 2.5 the scalar product of bras and kets,
we call it ”braket”:
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〈ψ|ϕ〉 = (α∗
1, α

∗
2, ............α

∗
N )


β1
β2
.
.
.
βN

 = aεC (5)

Definition 2.6 Given a setB = {|u1〉, |u2〉, ......|uN 〉} , B
is an orthonormal basis of HN if for all i, j we have
〈ui|uj〉 = δi,j = {1 si i=j

0 si i 6=j

Theorem 2.1 Let B = {|u1〉, |u2〉, ......|uN 〉} be an

orthonormal basis, then
N∑

i=1
|ui〉〈ui| = I

Demonstration.
As I|ψ〉 =

N

(
∑

i=1
|ui〉〈ui|)(

N∑
j=1

aj |uj〉) =
N∑

i=1

N∑
j=1

aj |ui〉〈ui|uj〉 =

N∑
i=1
ai|ui〉 = |ψ〉

Definition 2.7 An operator A of HN is a square
matrix of dimension N and complex coefficients.

Definition 2.8 The tensor product ⊗, also called the
external product between two matrices A and B , is
defined as the matrix.

C = A⊗B =


a11B .. .. a1mB
. .
. .

an1B .. .. anmB

 (6)

Definition 2.9 The adjunct of an operator A is
denoted by A† and is defined as the transposed and
conjugated operator of A. That is, if αij = 〈ui|A|uj〉
are the components of A, the components of A†, are
α∗

ji = 〈uj |A|ui〉∗ = 〈ui|A†|uj〉
Definition 2.10 An operator A is Hermitian if A =

A†. If it is Hermitian its diagonal must be real, since
αij = α∗

ji , therefore αii = α∗
ii ,that is, their eigenvalues

are real.
Definition 2.11 An operator U is unitary if U†U =

UU† = I
Definition 2.12 To the operators of the form P =

|ϕ〉〈ϕ| they are called projectors,since they project or-
thogonally any ket |Φ〉 on a ket |ϕ〉

P |Φ〉 = |ϕ〉〈ϕ|Φ〉 = a|ϕ〉 (7)

Definition 2.13 A set of projectors {M1,M2.....Ml}
is said to be a measurement operator if

l∑
i=1

MiM
†
i = I (8)

Definition 2.14 Unitary and Hermitian operators are
called quantum gates.

Definition 2.15 It is said that a system represented
by a ket |ψ〉 evolves into system |ϕ〉 when one of the
following operations is carried out:

|ψ〉 U→ |ϕ〉o|ψ〉 M→ |ϕ〉 (9)

Definition 2.16 Quantum gates.The most impor-
tant quantum gates, for their usefulness in the design of
algorithms, are the following:

Gate h of Walsh-Hadamard.

The Hadamard gate applied to n−qubits, is known
as the Walsh-Hadamard transformation and produces
the superposition off all 2n possible states.

This transformation is defined as:

W = h⊗ h⊗ ........⊗ h (10)

Where h = 1√
2

(
1 1
1 −1

)
. For example, the trans-

formation of WalshHadamard applied to n = 2 qubits is
defined as:

W = 1√
2

(
1 1
1 −1

)
⊗ 1√

2

(
1 1
1 −1

)

= 1
2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 (11)

3. Grover’s algorithm

This algorithm is one of the most important of quantum
computing since it exploits the principle of superposition
to the maximum. It is a very attractive algorithm, since
it can be used both to efficiently locate a certain element
in a disorganized database, and to solve those problems
in which it is very difficult to find a solution, but at
the same time very simple tot est possible candidates.
That is, a list of size N is available. The classical theory
needs, on average, to read N

2 values, however, the Grover
algorithm requires only

√
N interactions.

Mathematically the problem can be reduced to
finding a x ∈ {0, 1, 2, .......N − 1} with N = 2n, such
that f(x) = a for a a known. The idea proposed by
Grover is based on the implementation of a function f
such that,if w denoted the x sought, then:

f(x) = { 0 if x 6= w
1 if x = w

(12)

From the perspective of a quantum computer, what is
needed is a unitary transformationUf such that Uf |x〉 =

(−1)f(x)|x〉 = { |x〉 if x 6= w
−|x〉 if x = w
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As we can observe in the previous equation, if it is a
state x which is not the mark, then the transformation
will have no effect on the state |x〉. If now
Uf |w〉 = (−1)f(w)|w〉 then the result will be Uf |w〉 =

−|w〉. The geometric interpretation is that the unitary
matrix Uf makes a reflection in its amplitude to the
marked within the set of N

elements.
Grover’s algorithm works in three steps as follows:
Step No1. It consists in the normalization of the

amplitudes of all the states, which is achieved with a
transformation of Hadamard: |s〉 = h⊗n|0〉 ,therefore,in
the instant t = 0 , |ψt=0〉 = |ψ0〉 = |s〉,that is, all states
have the same amplitude of probability.

Step No2. The reflection Uf is applied to all states:
|ψt〉 = Uf |ψ0〉 where if |ψt〉 is the state |w〉, then it can
be interpreted as a reflection negative −|w〉 and yes they
are the non-marked states |x〉 the transformation has not
effect. Mathematically the transformation Uf has the
following form:

Uf = I − 2|w〉〈w| (13)

It is not difficult to observe that: Uf |w〉 = (I −
2|w〉〈w|)|w〉 = I|w〉 − 2|w〉〈w|w〉 = |w〉 − 2|w〉 = −|w〉

and that Uf |x〉 = (I−2|w〉〈w|)|x〉 = I|x〉−2|w〉〈w|x〉 =
I|x〉 = |x〉 since 〈w|x〉 = 0.

The transformation (13) could classically be inter-
preted as an If-then-else selection operator.

Step No3. The third step is to apply a reflection to
the state |s〉 , which is described as:

Us = 2|s〉〈s| − I (14)

The transformation (14) modifies all the states to
Us|ψt〉 and thus completes the transformation:

|ψt+1〉 = UsUf |ψ0〉 (15)

The transformation (15) is amplified by the amplitude
of the element marked on the average of the amplitudes.

Mathematically:

|ψt〉 =
N−1∑
x=0

αx|x”〉 ,

Us = (2( 1√
N

N−1∑
x=0

|x〉)( 1√
N

N−1∑
x′=0

〈x′|) − 1) (16)

therefore

Us|ψt〉 = (2( 1√
N

N−1∑
x=0

|x〉)( 1√
N

N−1∑
x′=0

〈x′|) − 1)
N−1∑
x=0

αx|x”〉

or

Us|ψt〉 = ( 2
N

N−1∑
x=0,x′=0,x =0

αx|x〉〈x′|x”〉 −
N−1∑
x=0

αx|x〉

or

Us|ψt〉 = ( 2
N

N−1∑
x=0

α”
x

N−1∑
x=0

|x〉 −
N−1∑
x=0

αx|x〉)

from where

Us|ψt〉 =
N−1∑
x=0

(2
N−1∑
x′′=0

α”
x

N
− αx)|x〉 =

N−1∑
x=0

(2A− αx)|x〉

Where A is the average of each αx .

A =
N−1∑
x′′=0

α”
x

N
(17)

After some reductions by the summations and the
average for the state |ψt+1〉 we have:

|ψt+1〉 = UsUf |ψt〉 = {
2n+1+2n−4

2n
√

2n
|x〉 if x = w

2n+1−2n−4
2n

√
2n

|x〉 if x 6= w
(18)

When implementing the algorithm in a quantum com-
puter it repeats the three steps, and a response with a
greater amplitude of probability is obtained.

4. Simulation of Grover’s algorithm.

Grover’s algorithm is a search algorithm that returns the
match with the highest probability to be correct from
an unordered sequence of data with N elements. The
running time from the classical point of view has an
order of 2n but the quantum version has an order of 2n.
This simulation intends to show how the running time of
a quantum algorithm in a classical computer is crucial
when the goal is reducing response times.

This simulation consists of three important parts:
1. The initialization of the amplitudes of the differ-

ent states obtained by the superposition, in other words,
when the state of the system is for t = 0 , |ψt=0〉 =
|ψ0〉 = |s〉 = h⊗n|0〉

2. The reflection to all states, this means |ψt〉 =
Uf |ψ0〉 where only the marked state will be affected.

3. And finally, the reflection that modifies all the
states |ψt+1〉 = Us|ψt〉 completing this way the transfor-
mation.

4.1. Input of data

This simulation needs the number of Qbits that will
consider executing the search. This will determine the
number of records.
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System.out.println("Enter number of
qubits:");

numQubits = scan.nextInt();

At the same time, it requires the
expected record:

System.out.println("Enter the value you.re
searching for:");

value = scan.nextInt();

4.2. Data processing

This process starts by executing the initializeBinary()
method which will allow printing the bit string provided
by the user in binary, getting as a result a bra-ket notation
array using Walsh-Hadamar transform. (12)

public void initializeBinary()

\{

Integer i = 0;

double amplitude = 1 / Math.sqrt(Math.pow
(2, numQubits));

System.out.print(amplitude);

System.out.print("(");

for (i = 0; i \TEXTsymbol{<} Math.pow(2,
numQubits) - 1; i++)

\{

System.out.print("j" + Integer.
toBinaryString(i) + "\TEXTsymbol{>} + ");

\}

System.out.println("j" + Integer.
toBinaryString(i) + "\TEXTsymbol{>})");

\}

In addition, the simulation executes the
initialize() method with the purpose of
printing to the screen the bit string
in decimal numbers.

public void initialize()

\{

int i = 0;

double amplitude = 1 / Math.sqrt(Math.pow
(2, n)umQubits));

System.out.print(amplitude);

System.out.print("(");

for (i = 0; i \TEXTsymbol{<} Math.pow
(2, numQubits) - 1; i++)

\{

System.out.print("j" + i +
"\TEXTsymbol{>} + ");

\}

System.out.println("j" + i +
"\TEXTsymbol{>})");

\}

After that, the phaseInversion() method is
called and this method will be responsible
for the phase inversion equation (\ref{14x})
from Grover's algorithm, obtaining as an
output, the same array but with the sign
value changed.

public void phaseInversion()

\{

double element = 0;

element = array.get(value);

System.out.println(element+"element ok");

if (element \TEXTsymbol{<} 0);

else

\{ \qquad

element = -1 * element;

array.set(value, element);

System.out.println("array else"+array);

\}

\}
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At the same time, the inversionMean() method is be-
ing called which calculates the reflection over the mean
value, equation (16). The output shows the change of the
amplitudes from the initial array, so the chance that the
state collapse is higher.

public void inversionMean()

\{

double average = 0;

double element = 0;

for (int i = 0; i \TEXTsymbol{<}
array.size(); i++)

\{

average += array.get(i);

\}

average = average / array.size();

for (int j = 0; j \TEXTsymbol{<}
array.size(); j++)

\{

element = array.get(j);

element = (average - element)
+ average;

array.set(j, element);

System.out.println("array"+array);

\}

\}

4.3. Output

Finally, the simulation calculates the probability of using
the amplitude to the second power using the findProba-
bility() method.

public double findProbability()

\{

double probability = vector.get(value)/
(Math.sqrt((Math.pow(2, numQubits))));

probability = Math.pow(probability, 2);

return probability;

\}

And from the createArray() method, it is
created a matrix of 2n slots obtaining the
new array that will be sent to Grover's
algorithm

public ArrayList\TEXTsymbol{<}
Double\TEXTsymbol{>} createArray()

\{

ArrayList\TEXTsymbol{<}Double\TEXTsymbol{>}
newVector = new ArrayList%
\TEXTsymbol{<}Double\TEXTsymbol{>}();

for (int i = 0; i \TEXTsymbol{<} Math.pow
(2, numQubits); i++)

\{

newVector.add(1.0);

\}

return newVector;

\}

Example

Step 1. Capture the size of the vector and the number you want
to find:

Step 2. View of the initial vector in decimal and in binary:
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Step 3. Capture of the numbers that the vector will store:

Step 4. View of the complete vector and the final vector after
the completion of the search:

4.4. Comparison of results with other classical
algorithms

The simulation of a quantum search using Grover’s algo-
rithm (G) and the simulations of sequential search (SS)
and binary search (BS), allow determining the efficiency
of the quantum algorithm compared to a simple search
algorithm. After analyzing five different sizes of arrays,
each with a sample of 20 measurements, it is possible to
obtain an average which is illustrated in the next table.
In the three algorithms, the simulation uses an unordered
list with N elements.

vector size algorithm # of interactions response time
4 G

BS
BB

2
4
3

0,0028369
0,3298
0,28

16 G
BS
BB

4
16
5

0,00328628
0,3845
0,3

32 G
BS
BB

5
32
6

0,003958214
0,3911
0,3096

64 G
BS
BB

8
64
10

0,00523802
0,3997
0,3141

128 G
BS
BB

11
128
12

0,01546982
0,4009
0,3299

5. Conclusions

To conclude, the development of this simulation allowed
understanding the scope and the potential that quantum
computing may have in future’s technology, it is now only
necessary to create new tools that will implement algo-
rithms such as Grover’s, which not only seek to speed up
and improve response times when solving mathematical
calculations, but also, to start being a fundamental part
of new software development that can solve many prob-

lems as computer security , where these new algorithms
will be the first choice and eventually leaving behind
classical computing.

Once again, it is important to point out that the po-
tential and the speed of the Grover Algorithm and other
quantum algorithms [ 9] lies in the fact that the principle
of quantum superposition is exploited to the maximum
exploiting the possibility of a coherent quantum super-
position of states as input. Therefore, the quantum al-
gorithm allows solving the problem in exponentially less
time if compared to the classical procedure.

The authors thank the reviewer for the observations.
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