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Textbooks on Solid State Physics, such as[1–3], include
a mandatory chapter on Superconductivity. Usually the
basic item to start with is the famous Bardeen-Cooper-
Schrieffer model(BCS)[4]. One of the main results con-
cerns the way in which the superconducting order
parameter ∆(T ) vanishes at the critical temperature Tc,
namely as

∆(T ) ∼ B(Tc − T )1/2 (1)

where the prefactor B is a non-universal coefficient and
the exponent has the classical value α = 1/21.

Then one may read that this is a standard result
for any mean-field theory, although the student may
wonder, why it does not follow straightforwardly from
the model?

Yet in the literature this outstandingly simple state-
ment is obtained in a rather roundabout manner.
Furthermore α and B are computed only in the weak-
coupling limit ~ωD � kBTc, where ωD is the Debye
frequency. This is certainly an aesthetically not very
pleasing situation and I doubt the student really wants
to grind through the approximations just to get this
simple result.

The following lines show a little trick straightening
out this situation. It will hopefully find its way to the
textbooks.

In the BCS theory the order-parameter ∆(T ) satisfies
the non-linear integral equation2

1 = g

∫ ~ωD

0
dε

tanh
(
βE
2

)
2E , (2)

with E =
√
ε2 + ∆2, β = 1/kBT and g is some coupling

constant.
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1 Although traditionally the exponent is referred to as β = 1/2,
we use α to avoid confusions with β = 1/kBT
2 See e.g [3] equation(23.20) or [2] equation (6.28).

We extract the critical behavior of the order param-
eter straightforwardly and without approximations. For
this purpose we choose ∆ to be real and parametrize it
as

∆(β) = a
(β − βc

βc

)α
; β ∼ βc. (3)

This yields for the derivative ∂β∆2 ≡ ∂∆2

∂β :

lim
T→Tc

∂β∆2 =


0 α > 1/2
a2/βc α = 1/2
∞ α < 1/2

(4)

The non-linear integral equation (2) for the order
parameter has the solution ∆(β, ωD, g), depending on
three parameters. Substituting this solution into equa-
tion (2) yields an identity. Differentiating this identity
with respect to β easily yields the following relation

∂β∆2(β, ωD, g) =

∫ ~ωD
0

dε

cosh2 βE
2∫ ~ωD

0
dε
E3

(
tanh βE

2 −
βE

2 cosh2 βE
2

) .
(5)

Taking the limit T → Tc,∆→ 0, we obtain

0 < a2 =
2(kBTc)2 tanh ~ωDβc

2∫ ~ωDβc
0

dx
x3

(
tanh x

2 −
x

2 cosh2 x
2

) <∞ (6)

implying α = 1/2. Notice that the above integrand is
finite at x = 0.

As illustration we evaluate the integral for ~ωDβc = 10
to get

∆(T ) = 3.10 · kBTc
(

1− T

Tc

) 1
2
, T . Tc. (7)
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