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It is well known that in general relativity theory two spacetimes whose metrics are related by a coordinate
transformation are physically equivalent. However, given two line elements, it is virtually impossible to implement
the most general coordinate transformation in order to check the equivalence of the spacetimes. In this paper we
present the so-called Cartan-Karlhede algorithm, which provides a finite sequence of steps to decide whether or
not two metrics are equivalent. The point of this note is to illustrate the method through several simple examples,
so that the reader can learn the fundamentals and details of the algorithm in practice.
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1. Introduction

In the theory of general relativity, the gravitational field
is represented by the metric of the spacetime, a rank two
symmetric tensor of Lorentzian signature. One of the
main features of this theory is that it is totally covariant,
in the sense the equations of motion are written in a
way that are invariant under the change of coordinates.
This is a quite appealing property, since the observers
are totally free to choose how to label the points of the
spacetime and the physical results should not depend on
these arbitrary choices. However, this desirable feature
of the theory comes at a price, the difficulty of knowing
whether two metrics are equivalent or not. More precisely,
given two line elements in two coordinate systems, it is
generally very hard to check if they represent the same
physical spacetime. For instance, in the search of new
exact solutions for Einstein’s vacuum equation two people
can find two solutions that look completely different,
due to the use of different coordinate systems, but they
might represent the same physical spacetime. In the same
fashion, while integrating Einstein’s equation one might
end up with several integration constants. However, in
general, many of these constants can be eliminated by
a coordinate transformation, with just a few of them
being physically relevant. These are the problems that
are going to be tackled in the present paper.

For instance, consider the following two line elements:

ds2 = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1
dr2

+r2dθ2 + r2 sin2 θdφ2 , (1)
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ds̃2 = − b2

ax2 (ax2 − c)e2τ dτ2 + 4a3x4

ax2 − c
dx2

+ a2c2x4

4 − c2y2 dy2 + a2c2x4y2

4(y2 + z2)2

(
z2dy2

+y2dz2 − 2zy dydz
)

. (2)

The first line element is the well-known Schwarzschild
solution in spherical coordinates, which represents the
gravitational field outside a static and spherically sym-
metric distribution of mass, with the total mass being
M . In its turn, the second line element is not known
and has three constant parameters, namely a, b, and
c. Although they look completely different, it follows
that both metrics represent the same gravitational field
whenever c = 2M . In particular, this implies that the pa-
rameters a and b are meaningless and can be eliminated
by a coordinate transformation.

In order to check whether the above line elements rep-
resent the same gravitational field, the most naive way to
proceed is to look for a coordinate transformation that
connect both metrics. However, in general this procedure
is unbearable, due to the intricate and nonlinear equa-
tions involved. A more clever path would be to compare
things that do not depend on the coordinate system. For
instance, it is well-known that Schwarzschild solution has
a vanishing Ricci tensor, since it is a vacuum solution.
Therefore, one should check whether the same is true
for the line element (2). If the second line element is not
Ricci-flat then we can immediately conclude that they
are not the same solution. However, it turns out that
the line element (2) is also Ricci-flat, so that the test is
inconclusive.

Another clever idea is to compare curvature scalars,
which are scalars constructed exclusively from the Rie-
mann tensor, its derivatives, and the metric. This is in-
teresting because scalars are invariant under coordinate
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transformations. However, since in general the curvature
scalars are not constant, they will depend explicitly on
the adopted coordinates, which is somehow complicated
to compare. For example, let us compare the curvature
scalars of the line elements (1) and (2). The Ricci scalar
is easy, since both spaces are Ricci-flat they both vanish.
The next simple curvature scalar is the Kretschamnn
scalar, given by R2 ≡ RµναβRµναβ , where Rµναβ de-
notes the components of the Riemann tensor. For the
metrics (1) and (2) we have

R2 = 48M2

r6 and R̃2 = 12c2

a6x12 ,

respectively. Note that we cannot tell whether they are
the same, since we do not know the possible relations
between the coordinates r and x as well as the relations
between the constants M , a, b, and c.

A way to scape from the awkward position of compar-
ing scalars in different coordinate systems is to try to
write curvature scalars in terms of the curvature scalars
themselves and then compare the functional relations
between them. For instance, defining the cubic curvature
scalar

R3 ≡ Rµν
αβRαβ

ρσRρσ
µν ,

it follows that for the solutions (1) and (2) it is given
respectively by

R3 = 96M3

r9 and R̃3 = 12c3

a9x18 .

Thus, in both cases we have the same functional relation
between the curvature scalars, namely

R3 = 1
2
√

3
(R2)2/3 and R̃3 = 1

2
√

3
(R̃2)2/3 .

However, this is not enough for asserting that the metrics
are the same. Indeed, they are generally not the same,
unless we have specifically c = 2M . Nevertheless, we can
move on and compare the functional relations between
other scalars, like ∇σRµναβ∇σRµναβ and so on. If at
least one of the functional relations between the curvature
scalars does not coincide, then the solutions are not the
same, whereas if all the functional relations are the same
there is the possibility that the line elements describe the
same geometry. Notwithstanding, even in the latter case
one cannot guarantee that the solutions are the same.
An example of this statement is given by the so-called
VSI spacetimes, standing for vanishing scalar invariants
spacetimes, which are defined as the Lorentzian metrics
for which all curvature scalars vanish identically [1, 2].
An example of a VSI spacetime is provided by the line
element

dŝ2 = H(u, x, y)du2 + 2dudv + dx2 + dy2 , (3)

in which H(u, x, y) is an arbitrary function of the coor-
dinates x, y, and u. All curvature scalars of the latter
metric are zero. For instance, R̂ = R̂2 = R̂3 = 0 for this
metric. Another spacetime with all curvature scalars van-
ishing is the Minkowski spacetime, which is flat. However,

the line element (3) and the Minkowski metric do not
represent the same geometry. Indeed, while Minkowski
spacetime has vanishing curvature, the line element (3)
yields a nonzero Riemann tensor. This example proves
that it is possible for two metrics to have all the func-
tional relations between their curvature scalars coinciding
and still they represent different gravitational fields. In
spite of this dramatic example, in several families of
spacetimes one can distinguish its members by looking
at the curvature scalars, an example of which s given in
Ref. [3]. In addition, it is interesting that more recently it
has been proposed that the event horizons of black holes
could be identified by the vanishing of certain curvature
scalars [4].

Thus, in conclusion, the functional relations between
the curvature scalars cannot be used to state that two
line elements describe the same spacetime geometry but,
on the other hand, can be used to rule out the possibility
of two metrics representing the same physical solution.
There are several other ways to prove the inequivalence
of two line elements. For instance, if two metrics admit
a different number of independent Killing vector fields
or if the algebra of the Killing vector fields is different
(thus leading to different isometry groups) they must be
different spaces. Likewise, if the two metrics have different
algebraic types (according to the Petrov classification, for
example) they must be different. However, if we have two
metrics to compare and we have computed the functional
relations between the curvature, the isometry group and
the algebraic types of the curvature tensor, and all of
them coincide, even in this case we cannot state that
they represent the same gravitational field.

The question that remains to be answered is: is there
an algorithmic way to check whether two line elements
written in different coordinate systems are the same?
The answer is yes and the procedure for comparing the
metrics is called Cartan-Karlhede algorithm [5–8]. The
goal of this paper is to show by simple examples how this
method is used in practice. In particular, many of the
calculations are done in three-dimensional spacetimes,
in order to make the exposition more clear. This work
does not aim in proving the validity of the method but,
rather, in being explicit on the meaning of the steps of
the algorithm.

The outline of the article is the following. In Sec. 2,
we explain the steps of the Cartan-Karlhede algorithm
in an abstract way, pointing out some of the subtleties
that we should pay attention to while implementing the
procedure. Then, in Sec. 3, we present several examples
illustrating the main features of the method. We restrain
ourselves to three-dimensional examples, so that the al-
gorithm can be applied much more neatly and explicitly.
Sec. 4 is then a more advanced section in which we tackle
the four-dimensional problem presented in this introduc-
tion, namely the comparison of the four-dimensional line
elements (1) and (2). In order to do so, we briefly intro-
duce some useful tools for applying the algorithm. This
section can be skipped by the less experienced reader.
Finally, in sec. 5 presents the discussion of how to cir-
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cumvent two of the main difficulties that might appear
while applying the method.

2. Cartan-Karlhede Algorithm

Suppose that we are interested in comparing two metrics
gµν(x) and g̃ab(x̃) of Lorentzian signature living in an
open set of an n-dimensional manifold described by the
coordinate systems {xµ} and {x̃µ}. We would like to
check whether these two metrics are equivalent or not, in
the sense that there exists a coordinate transformation
xµ = xµ(x̃) such that

g̃µν(x̃) = ∂xα

∂x̃µ

∂xβ

∂x̃ν
gαβ(x(x̃)) .

The above equation is a nonlinear set of coupled partial
differential equations whose solution by direct integration
is generally unfeasible. The intent of the present section
is to present an algorithm which after a finite number
of steps will tell us whether the coordinate transforma-
tion xµ → x̃µ exists or not. If the answer is positive,
we say that the metrics gµν and g̃µν describe the same
geometry; while if the answer is negative we say that
these metrics are not equivalent. In what follows we will
assume Lorentzian signature for definiteness, although
the procedure applies for any signature.

In order to implement this formalism, the first thing
we need to do is to choose a constant symmetric matrix
ηab that is non-degenerate and has Lorentzian signature
as a quadratic form, the labels a and b range from 0 to
n − 1. For instance, we can choose ηab to be the usual
Minkowski metric,

ηab = diag(−1, 1, 1, · · · , 1) ,

although any constant symmetric matrix with the correct
signature will do the job. Then, introduce a frame of
vector fields {ea = e µ

a ∂µ} such that the inner products
between them yield exactly the constant matrix ηab,
namely

gµν e µ
a e ν

b = ηab . (4)
Note that once chosen ηab, the choice of frame is not
unique, rather we have a freedom of applying Lorentz
transformations Λ ∈ O(n − 1, 1). By a Lorentz transfor-
mation it is meant that the frame is transformed as

ea 7→ e′
a = Λ b

a eb , (5)

with the matrix Λ obeying

ηab Λ a
c Λ b

d = ηcd .

This set of matrices form a Lie group of dimension 1
2 n(n−

1), the Lorentz group. Here, the Lorentz transformations
can be local, i.e., the matrices Λ can vary from point to
point, Λ = Λ(x).

Then, we need to compute the curvature tensor and
project its components on the frame. For instance, the
component Rabcd means

Rabcd ≡ Rµναβ e µ
a e ν

b e α
c e β

d .

With this at hand, we should take a look at the com-
ponents Rabcd that are nonconstant and compute the
number of functionally independent components, which
we will denote by t0. For instance, should the components
depend just on x1 and x2, but not on x3, x4, · · · , xn, we
would have either t0 = 1 or t0 = 2, with the former case
happening whenever all components of Rabcd depend on
the same combination of x1 and x2. In general, we always
have 0 ≤ t0 ≤ n. The next step is to compute the so-
called isotropy group, which is comprised by the subset
of matrices Λ that preserves the form of the components
Rabcd, namely

Rabcd = R′
abcd ,

where R′
abcd denotes the components of the curvature in

the transformed frame {e′
a}. We call this subgroup H0.

As the next step, we need to calculate the derivative
of the Riemann tensor and project in our frame, namely
we need to compute ∇eRabcd. Then, we define t1 as the
number of nonconstant functionally independent compo-
nents of the set {Rabcd, ∇eRabcd}. For instance, if t0 = 2
with Rabcd depending just on x1 and x2, while ∇eRabcd

depends on x2 and x3, then we should set t1 = 3. After
this, we must compute the subgroup of H0 that preserves
∇eRabcd, we denote this subgroup by H1. In other words,
H1 is the subgroup of the Lorentz group such that after
the frame transformation (5) we have

Rabcd = R′
abcd and ∇eRabcd = ∇′

eR′
abcd .

Note that H1 ⊂ H0.
After this, we do the same procedure for the sec-

ond derivative of the curvature, ∇e∇f Rabcd. Namely,
we compute the number of nonconstant function-
ally independent components that exists in the set
{Rabcd, ∇eRabcd, ∇e∇f Rabcd} and call it t2. Then we
compute the subgroup of H1 that preserves the form of
∇e∇f Rabcd when frame transformation (5) is performed.
This subgroup is denoted by H2.

We continue this procedure with higher derivatives of
the curvature tensor and should end only when we reach
the order q such that tq = tq−1 and Hq = Hq−1. When
we reach this point we have a full characterization of
the metric gµν(x) and we can move on to compare with
g̃µν(x̃). It is worth pointing out that the maximum order
q is always finite and cannot exceed 1

2 n(n + 1), as proved
by Cartan [5], although generally q is lower and in some
cases we can even anticipate that it must be lower [6].

Once finished the above steps with the metric gµν(x),
let us deal with g̃µν(x̃). First, define a frame of vector
fields {ẽa = ẽ µ

a ∂̃µ} such that

g̃µν ẽ µ
a ẽ ν

b = ηab ,

where ηab is the same matrix used in Eq. (4) when defin-
ing the frame {ea}. Then, compute the components of
the curvature in this frame,

R̃abcd ≡ R̃µναβ ẽ µ
a ẽ ν

b ẽ α
c ẽ β

d .

Then we should check whether Rabcd ∼ R̃abcd or Rabcd �
R̃abcd. However, we must be careful with the meaning
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of the previous equations, since Rabcd depend on the
coordinates xa, while R̃abcd depend on x̃a, so that the
comparison is tricky. What is meant by the inequality �
is that the functional relations are different. For instance,
suppose that

R0101 = x1 and R0202 = 2 x1 ,

hence we can write R0101 = 2R0202. Thus, if R̃0101 6=
2R̃0202 we can definitely say that R̃abcd � Rabcd. In order
for the metrics to be equivalent it must be possible to
find a frame {ẽa} such that R̃abcd ∼ Rabcd, where the
symbol ∼ denotes that all functional relations agree. If
this is not the case for the first adopted frame, we should
try to find a Lorentz transformation Λ ∈ O(n−1, 1) such
that the equivalence Rabcd ∼ R̃′

abcd holds, where R̃′
abcd

stands for the components of R̃µναβ in the frame {ẽ′
b}

obtained from the initial frame {ẽb} through a suitable
Lorentz transformation as follows:

ẽ′
a = Λ b

a ẽb . (6)

If we cannot find a frame {ẽ′
b} such that Rabcd ∼ R̃′

abcd,
then we conclude that the metrics gµν and g̃µν are not
equivalent. Otherwise, if we manage to find a frame {ẽ′

b}
such that Rabcd ∼ R̃′

abcd, we need to compare the first
derivative of the curvature tensor.

If ∇̃′
eR̃′

abcd � ∇eRabcd, we need to try to find a frame
{ẽ′′

b } that is connected to {ẽ′
b} through a Lorentz trans-

formation contained in H0 such that ∇̃′′
e R̃′′

abcd ∼ ∇eRabcd

holds. The requirement that the Lorentz transformation
belongs to H0 is to guarantee that R̃′

abcd = R̃′′
abcd, so that

Rabcd ∼ R̃′′
abcd whenever Rabcd ∼ R̃′

abcd holds. Note that,
due to the relation Rabcd ∼ R̃′

abcd, we have H0 = H̃0.
If we cannot manage to find such a frame, the metrics
are not equivalent. On the other hand, if we can find
this frame we must continue and compare the second
derivative of the curvature. If we manage to equate the
curvature and its derivatives of both metrics up to order
q, where q is the maximum order that we need to go in
the procedure with gµν , we conclude that gµν and g̃µν

describe the same geometry.
At this point, it is worth stressing that while comput-

ing the functional relations one needs to register which
components are constant and the values of these con-
stants. More precisely, if one has R0101 = R0202 and
R̃0101 = R̃0202, but R0101 is a constant function while
R̃0101 is not, it follows that Rabcd � R̃abcd. Analogously,
if R0101 = R0202 and R̃0101 = R̃0202 but R0101 = 1 while
R̃0101 = 2 then we also have Rabcd � R̃abcd.

The lists {t̃i, H̃i} and {ti, Hi} can be compared as a
quick check of wether is there a chance of the metrics
being equivalent. Note, however, that this comparison is
not necessary, since these lists are already determined
by functional relations of the curvature components. In
other words, if we manage to find a frame {ẽa} in which
the functional relations of the components R̃abcd and its
derivatives coincide with those Rabcd and its derivatives,
it follows as a consequence that the lists {t̃i, H̃i} and
{ti, Hi} also coincide. It seems that this fact have, so
far, not been stressed in the literature [6, 9].

Below we sum up the steps that must be followed in
the Cartan-Karlhede algorithm in order to check whether
the metrics gµν and g̃µν describe the same geometry.

1. Define a constant metric ηab and find a frame {ea}
for the metric gµν whose inner products yield ηab.

2. Compute the curvature components and its deriva-
tives in the previous frame. Also, for each order
of derivative, compute ti and Hi the number of
functionally independent components that appear
up to order i and the isotropy group up to order i.

3. The maximum derivative order that we need to go
is the qth order such that tq = tq−1 and Hq = Hq−1.

4. Use the Lorentz group degrees of freedom to try to
find a frame {ẽa} for the metric g̃µν such that the
functional relations between the components of the
Riemann tensor R̃abcd, and its derivatives, coincide
with the analogous ones associated to the metric
gµν up to the qth derivative order. If this is not
possible the metrics are not equivalent, whereas if
one manages to find such a frame we conclude that
there exists a coordinate transformation connecting
gµν and g̃µν .

In particular, note that, by definition, we must have the
following relations:

0 ≤ t0 ≤ t1 ≤ · · · tq ≤ n ,

Hq ⊂ Hq−1 ⊂ · · · H1 ⊂ H0 ⊂ O(n − 1, 1) ,

where n is the dimension of the spacetime. It is worth
stressing that although the algorithm tells us whether
there exists a coordinate transformation connecting the
line elements, it does not provide the actual coordinate
transformation.

Note that since the functional relations between the
curvature components up to order q in the derivative fully
characterize the geometry, one must be able to obtain
all geometric information from those. For instance, the
isometry group could be extracted. In particular, its
dimension is given by

DIsometry = (n − tq) + dim(Hq) . (7)

Recall that if a metric does not depend on some coor-
dinate z, namely if z is a cyclic coordinate, then the
spacetime is invariant under the translation z → z + z0,
where z0 is some constant. We then say that there ex-
ists a symmetry on the spacetime, and this symmetry is
generated by the vector field ∂z, which is then called a
Killing vector field. The isometry group is the set of trans-
formations comprised of all symmetries of the spacetime.
Technically, the isometry group is a Lie group whose Lie
algebra is formed by all Killing vector fields. Since tq is
the number of “relevant” coordinates in the geometry,
it follows that the (n − tq) remaining coordinates are
cyclic. Thus, the dimension of the isometry group is at
least (n − tq). However, this reasoning deals only with
the transitive part of the isometry group. Indeed, the
isometry group at a point o of the manifold can always
be decomposed as the product of the transitive subgroup,
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whose flow changes the point o, and the isotropy sub-
group, whose flow does not move the point o [10]. This
explains why we need to add the term dim(Hq) in Eq.
(7). As an example, consider the isometry group of the
flat 2-dimensional Euclidean space, whose line element in
cartesian coordinates is ds2 = dx2 + dy2. Since x and y
are cyclic coordinates, ∂x and ∂y are obvious Killing vec-
tors. The flow of these Killing vectors yield a translation
in the coordinates x and y respectively. So, in particu-
lar, their flows do not leave the origin (x = 0, y = 0)
static. However, besides these Killing vectors we also have
x∂y − y∂x, which generates rotations around the origin
and, therefore, leave it still. In other words, x∂y − y∂x

generates the isotropy group at the origin.
Up to now, the procedure has been described in a

formal and abstract way. In order to make each of the
steps more clear, in the next section we will present
several simple examples that show explicitly how to apply
the algorithm. However, before doing so, let us point out
that, in some cases, instead of starting with a randomly
chosen frame {ea} for gµν , it is better to start with a
specific frame related to some geometrical structure of
gµν . For instance, suppose that gµν allows a time-like
Killing vector field K, then we can define the Lorentz
frame to be such that et ∝ K, this is a way to partially
fix a canonical frame. In this case, if g̃µν does not have
a time-like Killing vector field the metrics cannot be
equivalent. On the other hand, if g̃µν has a time-like
Killing vector K̃, we should choose ẽt ∝ K̃. This is a
coordinate-independent way of trying to fix a canonical
frame. The advantage of doing so is that the isotropy
freedom that is generally necessary in order to match the
functional relations is decreased. These canonical frames
can also be fixed by the so-called principal null directions
of the Weyl tensor, which are associated to the Petrov
classification. More on the latter way of proceeding will
be left to Sec. 4.

3. Applying the Algorithm in some
Examples

For the sake of illustrating the use of the algorithm, in
this section we will apply it to several examples. How-
ever, instead of considering the dimension four, which
is the most physically relevant, we shall tackle three-
dimensional examples. This choice is to decrease the
number of curvature components that could obfuscate
the essentials of the algorithm. This is advantageous be-
cause in three dimensions (n = 3) the Weyl tensor is
identically zero, so that the degrees of freedom of the
Riemann tensor are totally contained in the Ricci ten-
sor Rµν . Thus, the curvature can be represented by a
symmetric 3 × 3 matrix. Also, in three dimensions the
Lorentz group is 3-dimensional, while in four dimensions
(n = 4) the Lorentz group has dimension six, so that
things are much easier when n = 3.

First, let us compare the 3-dimensional line element

ds2 = −(1 + α x) dt2 + dx2 + dy2 , (8)

with the following line elements:

ds̃2 = −(1 + x̃) dt̃ 2 + ỹ dx̃2 + dỹ2 , (9)
ds̆2 = −e2βx̆ dt̆ 2 + dx̆2 + y̆2γdy̆2 , (10)
dŝ2 = −(1 − x̂2) dt̂ 2 + dx̂2 + (1 − x̂2) dŷ2 , (11)
ds̄2 = −

(
1 + t̄ + ex̄

)
dt̄ 2 + βe2x̄dx̄2 (12)

+ 2βex̄ dt̄ dx̄ + 4ȳ2 dȳ2 .

In these expressions α, β, and γ are nonzero constants.
In order to perform the comparison, we will choose the
frame metric to be the 3-dimensional Minkowski metric

ηab = diag(−1, 1, 1) .

The orthogonal group associated to this metric is the
Lorentz group O(2, 1), generated by the composition of
the following three types of transformations:

B1(σ1) =

 cosh σ1 sinh σ1 0
sinh σ1 cosh σ1 0

0 0 1

 ,

B2(σ2) =

 cosh σ2 0 sinh σ2
0 1 0

sinh σ2 0 cosh σ2

 ,

R(θ) =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 ,

where σ1, σ2, and θ are arbitrary real parameters, with
θ ∈ [0, 2π). B1 and B2 are boosts in the space-like direc-
tions e1 and e2 respectively, while R is a rotation in the
plane e1 ∧e2. These transformations generate the part of
O(2, 1) that is connected to the identity, namely they can
be continuously deformed to the identity. In particular,
they all have unit determinant. This connected subgroup
is denoted by SO(2, 1). Besides, we also have the discrete
inversion transformations:

T =

 −1 0 0
0 1 0
0 0 1

 ,

P1 =

 1 0 0
0 −1 0
0 0 1

 ,

P2 =

 1 0 0
0 1 0
0 0 −1

 .

The elements of O(2, 1) are given by the composition
of these six matrices. More precisely, the most general
element of O(2, 1) can be written in one of the following
forms:

B1 B2 R , T B1 B2 R , P1 B1 B2 R , (13)
P2 B1 B2 R , T P1 B1 B2 R , T P2 B1 B2 R ,

where the dependence on σ1, σ2, and θ have been omitted.
Note that we have not considered terms of the form P1P2,
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since these are already contained in R(θ) when θ = π. As
a side note, notice that although TP1 and TP2 have unit
determinant, they are not connected to the identity.

Now, following the procedure described in the previous
section, let us characterize the metric gµν given in Eq.
(8). First, we need to define a Lorentz frame. An obvious
one is given by

e0 = 1√
1 + αx

∂t , e1 = ∂x , e2 = ∂y .

The components of the Ricci tensor in this frame are

Rab = Rµνe µ
a e ν

b = α2

4(1 + αx)2

 −1 0 0
0 1 0
0 0 0

 .

Note that these components depend just on the coordi-
nate x, so that we have t0 = 1. In particular, only two
components are nonzero, namely R00 and R11, and these
obey the following functional relation:

R00 = −R11 . (14)

Now we should find the Lorentz transformations that
preserve the components Rab, namely the ones such that

Rab = Λ c
a Λ d

b Rcd .

Testing each one of the six branches of Eq. (13), for
arbitrary parameters σ1, σ2, and θ, we find that these
transformations are given by

B1(σ1) , B1(σ1)R(π) , TB1(σ1) ,

P1B1(σ1) , P2B1(σ1) , TP1B1(σ1) , (15)
TP2B1(σ1) , TB1(σ1)R(π) ,

for an arbitrary parameter σ1. This is a one-dimensional
subgroup with eight disconnected branches, this is the
isotropy group H0. Formally, this group can be under-
stood as H0 = R × Z2 × Z2 × Z2, where R is the group
formed by the real numbers with the addition operation,
and Z2 is the cyclic group of order 2. Denoting the iden-
tity transformation by I, the three components of Z2 are
formed by {I, T}, {I, P1}, and {I, P2}, where it is worth
recalling that P1P2 = R(π).

Now, let us evaluate the components of the derivative of
the curvature tensor in our frame, more precisely, ∇aRbc.
Computing them, one verifies that the only nonvanishing
components are the following two:

∇1R00 = −∇1R11 = α3

2(1 + α x)3 .

Moreover, since these components also depend just on the
coordinate x, we have t1 = 1. Regarding the indices bc in
the object ∇aRbc, the tensor has the same structure of
Rbc, which would lead to the same isotropy group. How-
ever, the existence of nonzero components with the index
a = 1 implies that a change of sign in e1, namely the par-
ity transformation P1 and the rotation R(π), will change

the components ∇aRbc by a sign and, more importantly,
B1(σ1) will not preserve the form of ∇aRbc for arbitrary
σ1, but rather just for the value σ1 = 0, which is the
identity transformation. Summing up, the isotropy group
up to this order is comprised of the following discrete set
of elements:

I , T , P2 , T P2 ,

where I stands for the identity transformation. Thus,
H1 = Z2 × Z2, with the cyclic groups given by {I, T}
and {I, P2}. In particular, we have dim(H1) = 0. Note
that t1 = t0, but since H1 6= H0, we have to go to the
next order of derivative in the curvature.

Computing the components ∇a∇bRcd, we can check
that the only nonvanishing components are:

∇0∇0R11 = −∇0∇0R00 = α4

4(1 + α x)4

∇1∇1R11 = −∇1∇1R00 = 3α4

2(1 + α x)4

Again, since all the components of {Rab, ∇aRbc, ∇a∇bRcd}
depend just on the same coordinate x, we have t2 = 1.
Moreover, the isotropy group H2 is the set of Lorentz
transformations that preserve {Rab, ∇aRbc, ∇a∇bRcd}
or, equivalently, is the subgroup of H1 that preserves
∇a∇bRcd. Since all the transformations of H1 also pre-
serve ∇a∇bRcd, it follows that H2 = H1 = Z2 ×Z2. Once
t2 = t1 and H2 = H1, we can terminate the algorithm
at this order. Thus, the line element (8) is fully charac-
terized by the following functional relations between the
components of {Rab, ∇aRbc, ∇a∇bRcd}:

R00 = −R11 ,

∇1R00 = −∇1R11 = 4(R11)3/2 ,

∇0∇0R11 = −∇0∇0R00 = 4(R11)2 , (16)
∇1∇1R11 = −∇1∇1R00 = 24(R11)2 ,

with all the components not appearing in the above
equation being zero and R11 being non-constant. This
is the canonical form of the curvature that we need to
compare with when testing the equivalence of other line
elements. As a first result, note that the parameter α has
no geometrical relevance, since it does not appear at all
in the above functional relations. Thus, line elements of
Eq. (8) with different values of α (assuming α 6= 0) are
all equivalent. Indeed, defining the coordinates

t =
√

α t and x = x − 1 + 1
α

,

it follows that the line element (8) becomes

ds2 = −(1 + x) dt2 + dx2 + dy2 ,

which is just the metric (8) for α = 1. Thus, we have
proved that all line elements (8) with nonvanishing α are
equivalent to the one with α = 1.

Now, let us compare the line element (8) with (9), (10),
(11), and (12). We shall start comparing gµν with the
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metric g̃µν defined in Eq. (9). First, note that

ẽ0 = 1√
1 + αx̃

∂t̃ , ẽ1 = 1√
ỹ

∂x̃ , ẽ2 = ∂ỹ

is a frame with the desired inner products. Computing
the components of the Ricci tensor in this frame we find

R̃ab =

 R̃00 0 0
0 R̃22 − R̃00 (R̃00R̃22)1/2

0 (R̃00R̃22)1/2 R̃22

 ,

where

R̃00 = −α2

4ỹ(1 + αx̃)2 and R̃22 = 1
4ỹ2 .

Thus, we see that R̃00 is functionally independent of
R̃22, so that we have t̃0 = 2. Since t0 = 1, we can
guarantee right off the bat that gµν and g̃µν describe
different geometries. We do not need to bother about
using Lorentz transformations in order to match the
functional relations, since the parameters t̃i are invariant
under Lorentz transformations. Thus, we will never be
able find a frame in which R̃ab ∼ Rab.

Then, let us compare gµν with ğµν , given in Eq. (10).
Defining

ĕ0 = e−βx̆∂t̆ , ĕ1 = ∂x̆ , ĕ2 = y̆−γ ∂y̆ ,

it follows that {ĕa} is a Lorentz frame associated to ğµν .
Computing the components of the Ricci tensor in such a
frame, we find:

R̆ab = β2

 −1 0 0
0 1 0
0 0 0

 .

In particular, the components R̆ab obey the relation (14)
just as the components Rab. In spite of this, we can
already conclude that gµν and ğµν are not equivalent,
because whereas R̆11 = β2 is constant, so that t0 = 0, we
have found that R11 is nonconstant, so that we should
write R̆ab � Rab. Moreover, note that the metrics ğµν for
different values of β describe different geometries, since
no Lorentz transformation can be used to change the
set of components R̆ab to a form that does not depend
on β. For instance, it is impossible to find a Lorentz
transformation {ĕa} → {ĕ′

a} such that

R̆′
ab =

 −1 0 0
0 1 0
0 0 0

 .

Moving on to the metric ĝµν , defined in Eq. (11); a
Lorentz frame is provided by

ê0 = 1√
1 − x̂2

∂t̂ , ê1 = ∂x̂ , ê2 = 1√
1 − x̂2

∂ŷ .

Computing the components of the Ricci tensor in such a
frame, we find:

R̂ab =

 −R̂22 0 0
0 2(R̂22)2 0
0 0 R̂22

 ,

where R̂22 = (1 − x2)−1. The next step is to try to
use the most general Lorentz transformation in order to
make R̂ab acquire the functional form of Rab, namely
Rab = diag(−R11, R11, 0). In order to do so, we must
test each of the six branches of the Lorentz group shown
in Eq. (13). For instance, focusing in the first branch we
have

ê′
a = [B1(σ1)B2(σ2)R(θ)] b

a êb ,

whereas the transformed components of the Ricci tensor
are

R̂′
ab = [B1B2R] c

a [B1B2R] d
b R̂cd .

The expression for R̂′
ab is quite messy, so that here it

is shown just the important ones for the argument. For
instance,

R̂′
22 = R̂22 cosh2 σ2 (cos2 θ + 2R̂22 sin2 θ) .

In order to achieve R̂′
ab ∼ Rab, one must impose R̂′

22 = 0,
since R22 = 0. The only solution for this imposition is

θ = arctan
(

−1
2R̂22

)
. (17)

Then, assuming (17) to hold, it follows that

R̂′
02 =

√
2(−R̂22)2/3 sinh σ1 cosh σ2 .

Since one also needs to impose R̂′
02 = 0, one concludes

that σ1 = 0. Then, assuming the latter value for σ1, it
follows that R̂′

00 = 0, which is incompatible with the
desired equivalence R̂′

ab ∼ Rab. Hence, the first branch
of the Lorentz group shown in Eq. (13) does not allow a
solution for R̂′

ab ∼ Rab. Likewise, the other five branches
yield no solution. Thus, we conclude that gµν and ĝµν

describe different geometries.
Finally, let us compare the line elements (8) and (12).

First, we need to introduce a Lorentz frame for ḡµν . One
option is given by

ē0 = 1√
z̄

∂t̄ ,

ē1 =
√

β√
z̄(z̄ + β)

∂t̄ + e−x̄
√

z̄√
β

√
z̄ + β

∂x̄ ,

ē2 = 1
2ȳ

∂ȳ ,

where, for simplification, we have defined z̄ ≡ t̄ + ex̄ + 1.
Computing the components of the Ricci tensor in this
frame, we have that the only nonvanishing components
are

R̄11 = −R̄00 = 1
4β(z̄ + β)2 .

This functional relation is in perfect accordance with the
zero order functional relations in Eq. (16). Thus, in order
to check whether the line elements describe the same
geometry we need to go to higher order. In particular,
since Rab ∼ Rab, it follows that the isotropy group H̄0 is
equal to H0 = R × Z2 × Z2 × Z2, i.e. H̄0 is generated by
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the transformations (15). Now, let us compute ∇̄aR̄bc.
Doing so, we obtain the following nonzero components:

∇̄0R̄11 = −∇̄0R̄00 = 1
2β

√
z̄(z̄ + β)3

,

∇̄1R̄00 = −∇̄1R̄11 = 1
2β3/2

√
z̄(z̄ + β)5/2

.

These functional relations differ from the ones of ∇aRbc.
In particular, here we have ∇̄0R̄11 and ∇̄0R̄00 both dif-
ferent from zero, whereas for the metric gµν these compo-
nents vanish, see Eq. (16). However, recall that at order
zero we have a nontrivial isotropy group of dimension
one. Thus, the frame {ēa} is not yet fixed by the order
zero canonical form for Rab. For instance, we can try to
use a Lorentz boost B1 in order to try to match ∇̄aR̄bc

and ∇aRbc. Thus, defining

ē′
a = [B1(σ1)] b

a ēb ,

we find that ∇̄′
0R̄′

00 and ∇̄′
0R̄′

11 can be made zero, in
accordance with (16), as long as we choose σ1 to be

σ1 = arctanh
( √

β√
z̄ + β

)
.

Assuming this value for σ1 we find that the only nonvan-
ishing components of ∇̄′

aR̄′
bc are

∇̄′
1R̄′

00 = −∇̄′
1R̄′

11 = 1
2β3/2(z̄ + β)3 = 4(R̄′

11)3/2 ,

which is in accordance with the functional relations of Eq.
(16). So far we have managed to equate the functional
relations up to first order derivative of the Riemann
tensor, let us finally check the second order. Using the new
frame {ē′

a} we eventually find that the only nonvanishing
components are

∇̄′
0∇̄′

0R̄′
11 = −∇̄′

0∇̄′
0R̄′

00 = 1
4β2(z̄ + β)4 = 4(R̄′

11)2 ,

∇̄′
1∇̄′

1R̄′
11 = −∇̄′

1∇̄′
1R̄′

00 = 1
4β2(z̄ + β)4 = 24(R̄′

11)2 ,

which agrees perfectly with the functional relations in
Eq. (16). Since for the metric gµν we just need to go
up to second order derivative in the curvature, we con-
clude that gµν and ḡµν represent the same geometry.
Indeed, it can be checked that performing the coordinate
transformation {t̄, x̄, ȳ} → {t, x, y} defined by

t̄ = a t , x̄ = log (b x − a t + c) , ȳ = √
y ,

where the constants a, b, and c are given by

a = α1/2β1/4 , b = β−1/2 , c = 1 − αβ3/2

αβ1/2 − 1 ,

the line element ds̄2, given in Eq. (12), gets transformed
into the line element ds2, given in Eq. (8). Note that
in this example it was necessary to perform a Lorentz

transformation in order to compare the components of
the curvature and its derivatives. This fact could be
expected from the fact that ∂t is a Killing vector field
for the metric gµν and e0 points in the direction of the
flow of this symmetry, inasmuch as e0 ∝ ∂t. On the other
hand, for the metric ḡµν we have started with a frame
such that ē0 ∝ ∂t̄, but now t̄ is not a cyclic coordinate, so
that ∂t̄ is not a Killing vector. Thus, since symmetries are
geometrical concepts that are independent of coordinate
systems, one could already tell that the frame {ēa} was
not the frame {ea} written in another coordinate system,
so that a Lorentz transformation should be necessary.

As you might have noticed in the previous examples,
the tricky part of comparing the metrics stems from
the freedom in the choice of the frame. Should we have
no such freedom, we would just need to check whether
the functional relations between the nonvanishing com-
ponents of the curvature (and its derivatives) for both
metrics are the same or not. Therefore, it would be very
handy if we could eliminate the freedom in the choice
of the frame. As exemplified before, one way to do so
is to look for Killing vectors of the spacetime and use
these symmetry directions to form the frame or part
of the frame. However, in general, a spacetime has no
Killing vector, let alone enough Killing vectors to form
a basis, but we should use creativity to seek for geo-
metrical structures that might help on the fixation of
a canonical frame. In spite of the latter assertion, this
creativity is not mandatory. Indeed, in the 80’s and 90’s
some computer programs have been created to imple-
ment the steps of the Cartan-Karlhede algorithm using
a computing system called SHEEP, that was created for
symbolic tensor calculations. For more details on these
programs the reader is refereed to [11–13]. As far as the
authors could search for, there exists no modern freely
available computing package implementing an algorithm
for comparing metrics. Thus, the field is open to be ex-
plored by the reader. Building such a code would be a
really valuable contribution for the community of general
relativity. However, a huge price will be paid, in terms of
computational time, if the frames are chosen randomly
by the computer program. Therefore, in order to make
such a program less time-consuming, it would be valu-
able if the user could fix part of the isotropy freedom
by means of geometrical structures. Hence, it would be
important for the program to allow the user to use his
creativity in order to make the computer task easier. In
the next section other important geometrical structures
different from Killing vectors are briefly presented, such
as the Petrov classification and its associated principal
null directions.

4. A Four-Dimensional Example

In this section we shall consider the more advanced prob-
lem of comparing the four-dimensional line elements (1)
and (2) presented in the introductory section. This ex-
ample requires more advanced tools of general relativity.
Thus, the student of general relativity that is not experi-
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enced yet might struggle to follow in detail. Therefore,
such a student can skip this section, since the essentials of
the method have already been presented in the previous
sections. Indeed, the main idea of the present section is to
expose the reader to the tools and tricks that are useful
in the implementation of the method, so that when a
necessity of comparing geometries shows up, the reader
has a guide to follow. In this sense, even the beginner
student can benefit from acquiring a brief idea about
these practical tools. The details can be neglected in a
first reading.

In order to compare the line elements (1) and (2) we
first need to define a frame. An interesting way partially
fixing a frame is by means of the so-called principal
null directions, which are defined for any spacetime of
dimension four whose Weyl tensor is non-vanishing. Given
a four-dimensional spacetime one can compute its Weyl
tensor Cµναβ and try to find the null directions Nµ, with
NµNµ = 0, such that the following constraint holds

N[αCµ]νσ[ρNβ]N
νNσ = 0 . (18)

It turns out that solving this constraint amounts to
finding the roots of a fourth order polynomial [14], so that
this algebraic equation admits four solutions, dubbed the
four principal null directions (PNDs). These directions
can be degenerate or not. The Petrov classification is then
an algebraic classification of the Weyl tensor based on the
degeneracy of these PNDs [14,15]. If all four PNDs are
distinct we say that the Weyl tensor is type I, if two of
them coincide and the other two are different we say that
it is type II, if three coincide we have type III, if the
four PNDs are the same we have type N , while if one pair
coincides and the other pair also coincides, but the pairs
do not coincide with each other, we say that the Weyl
tensor is type D. Whenever two metrics have different
algebraic types according to the Petrov classification they
cannot be equivalent, but if their Petrov type is the same
we can use the PNDs to form a frame composed of null
vectors.

As mentioned before, we can use any type of frame to
start the Cartan-Karlhede algorithm. When using the
PNDs to establish the frame, instead of using Lorentz
frames, whose inner products give the Minkowski metric,
it is useful to adopt a null frame {`, n, m, m̄}, in which all
vectors are null and the only nonvanishing inner products
are

`µnµ = −1 , and mµm̄µ = 1 .

In other words, the metric of this frame is

g(ea, eb) =


0 −1 0 0

−1 0 0 0
0 0 0 1
0 0 1 0

 . (19)

An important point is that in this type of frame it is
assumed that ` and n are both real, while m is complex
with its complex conjugate given by m̄. Since we are
assuming Lorentzian signature, the use of complex vectors
is necessary if we insist to work with a frame whose inner

products are give by (19). Indeed, the reality conditions
of a frame are intimately related to the signature of
the metric [15, 16]. In Lorentzian signature, the reality
condition of the null frame is given by

`? = ` , n? = n , and m? = m̄ ,

where the operation ? stands for complex conjugation.
Now, the idea is to fix the frame through the use of

PNDs, by choosing the frame vectors ` and n as PNDs.
Regarding the Schwarzschild metric, given in Eq. (1), it
is well-known that its Petrov type is D, with the repeated
PNDs being

N1 = f−1∂t + f∂r , and N2 = f−1∂t − f∂r ,

where f =
√

1 − 2M
r . Taking advantage of these two

distinguished null directions, let us choose our null frame
to be such that ` ∝ N1 and n ∝ N2. More precisely, let
us adopt the following frame

` = λ√
2
(
f−1∂t + f∂r

)
, n = 1

λ
√

2
(
f−1∂t − f∂r

)
,

m = eiσ

r
√

2

(
∂θ + i

∂φ

sin θ

)
, m̄ = e−iσ

r
√

2

(
∂θ − i

∂φ

sin θ

)
.

Since we have chosen to set ` ∝ N1 and n ∝ N2 this
fixes partially the frame. In other words, we are using a
geometrical structure, namely the PNDs, to define our
frame. However, this choice does not fix uniquely the
frame, i.e. there is some isotropy remaining. Indeed, if
we multiply ` by a real number λ and multiply n by λ−1

this will preserve the hypothesis ` ∝ N1 and n ∝ N2,
and will also preserve the inner products of the frame.
For instance, ` will remain a null vector field, orthogonal
to m and obeying `µnµ = −1. Likewise, we can multiply
m by eiσ while multiplying m̄ by e−iσ without changing
the inner products, preserving the reality condition of
the frame and keeping ` ∝ N1 and n ∝ N2 valid. Thus,
the real parameters λ and σ in the above expressions
for the frame represent the remaining isotropy group.
Thus, using the PNDs to define the frame we have re-
duced the six-dimensional isotropy group associated to
a general Lorentz frame to a two-dimensional isotropy
group, providing a much easier starting point to apply
the Cartan-Karlhede algorithm. In addition to this free-
dom, we also have the discrete freedoms of interchanging
` by n and m by m̄.

Since Schwarzschild spacetime has vanishing Ricci ten-
sor, its curvature reduces to the Weyl tensor. In turn, the
only independent nonvanishing component of the Weyl
tensor is

C`mnm̄ = M

r3 . (20)

Although there are other nonvanishing components, like
C`n`n = −2M/r3, these other components must all
be proportional to C`mm̄n due to the Bianchi identity
C[abc]d = 0 and to the trace-less condition Ca

bad = 0, so
that it is unnecessary to consider them in our analysis.
Note that this component does not depend on λ and σ,

DOI: https://doi.org/10.1590/1806-9126-RBEF-2020-0041 Revista Brasileira de Ensino de Física, vol. 42, e20200041, 2020



e20200041-10 On the equivalence of spacetimes, the Cartan-Karlhede algorithm

so that we cannot use the isotropy group to fix a value
for C`mm̄n. At this point, we conclude that t0 = 1, due
to the dependence on r, and dim(H0) = 2, due to the
freedom in the choice of λ and σ. Apart from the related
components that stem from the identities C[abc]d = 0,
Ca

bad = 0, and ∇[eCab]cd = 0, the only nonzero compo-
nents of the derivative of the curvature are

∇`C`mnm̄ = − 3Mf√
2λr4

, ∇nC`mnm̄ = 3Mλf√
2r4

. (21)

In particular, note that we can use the freedom in the
choice of λ in order to set ∇`C`mnm̄ = −∇nC`mnm̄,
which amounts to choosing λ = 1. Thus, the dimension of
the isotropy is lowered at this order, so that dim(H1) = 1,
while t1 = t0 = 1. With the choice λ = 1, we can solve
Eq. (20) for r and substitute this expression for r into
(21), leading to the following functional relation:

∇nC`mnm̄ = 3(C`mnm̄)4/3
√

1 − 2M2/3(C`mnm̄)1/3
√

2M1/3
.

At this point, we already see that line elements with
different values of M are not equivalent, since the latter
functional relation depends on the parameter M and
this dependence cannot be eliminated by means of the
isotropy freedom. Moving on to the next order, we see
that an example of nonvanishing component is given by

∇`∇nC`mnm̄ = 3M(5M − 2r)
r6

= 15(C`mnm̄)2 − 6
M2/3 (C`mnm̄)5/3 ,

just as this component, the other nonzero second order
components do not depend on σ, so that H2 = H1. In
addition, these components depend just on the coordinate
r, so that t2 = 1. Thus, since t2 = t1 and H2 = H1, we
should stop the Cartan-Karlhede characterization at this
order. Here we will not list all the nonvanishing second
order components, since there are several of them.

Now, let us analyse the line element (2). First, we need
to set a null frame { ˜̀, ñ, m̃, ˜̄m} for this line element. In
order to perform the comparison with the Schwarzschild
geometry, we should choose the null vectors ˜̀ and ñ as
the principal null directions of the metric (2), since this
was our choice in the characterization of (1). Solving Eq.
(18) in this geometry, we find the following principal null
directions for the Weyl tensor:

Ñ1 = e−τ

2b2 ∂τ + ax2 − c

4ba2x3 ∂x ,

Ñ2 = ax2e−τ

ax2 − c
∂τ − b

2ax
∂x .

It turns out that both PNDs are degenerate, so that
the line element (2) is of Petrov type D, just as the
Schwarzschild solution, so that there is the possibility
of these two geometries being equivalent. Now, let us
define a null frame such that ˜̀∝ Ñ1, and ñ ∝ Ñ2. For

instance, let us adopt

˜̀= λ̃

(
e−τ

2b2 ∂τ + ax2 − c

4ba2x3 ∂x

)
,

ñ = λ̃−1
(

ax2e−τ

ax2 − c
∂τ − b

2ax
∂x

)
,

m̃ = eiσ̃
√

4 − c2y2
√

2 acx2

[
∂y +

(
z

y
− i

2(y2 + z2)
y2
√

4 − c2y2

)
∂z

]
,

with ˜̄m being the complex conjugate of m̃. Note that
the remaining isotropy have already been made explicit
through the arbitrary real parameters λ̃ and σ̃ appear-
ing in the basis. Since this geometry is also Ricci-flat
(R̃ab = 0), its curvature reduces to the Weyl tensor. A
nonvanishing component of the Weyl tensor is

C̃˜̀m̃ñ ˜̄m = c

2a3x6 . (22)

The other nonvanishing components of C̃abcd are all pro-
portional to the latter one due to the Bianchi identity
and the trace-less property of the Weyl tensor. Concern-
ing the first derivative of the of the curvature, the only
“independent” nonvanishing components are

∇̃˜̀C̃˜̀m̃ñ ˜̄m = −3bc

2a4x8λ̃
, ∇̃ñC̃˜̀m̃ñ ˜̄m = 3cλ̃(c − ax2)

4ba5x10 .

Thus, making the choice λ̃ = bx
√

2a√
ax2−c

we obtain the
functional relation ∇̃ñC̃˜̀m̃ñ ˜̄m = −∇̃˜̀C̃˜̀m̃ñ ˜̄m, just as in
the Schwarzschild spacetime for the frame {ea}. More
precisely, for this choice of λ̃ we obtain

∇̃ñC̃˜̀m̃ñ ˜̄m = −∇̃˜̀C̃˜̀m̃ñ ˜̄m = 3c
√

ax2 − c

2
√

2a9/2x9
.

In terms of C̃˜̀m̃ñ ˜̄m, the above relation can be written as

∇̃ñC̃˜̀m̃ñ ˜̄m =
3(C̃˜̀m̃ñ ˜̄m)4/3

√
1 − (2c2C̃˜̀m̃ñ ˜̄m)1/3

(2c2)1/3 .

This functional relation coincides with the analogous
one for the Schwarzschild spacetime as long as we ac-
cept the identification c = 2M . Thus, up to first order
in the derivative, we conclude that the metrics can be
equivalent, it remains to check the second order relation.
The nonvanishing components of the second derivative of
the Weyl tensor are the same as the analogous ones for
the Schwarzschild spacetime with the frame {ea}. For
instance, the component ∇˜̀∇ñC̃˜̀m̃ñ ˜̄m is nonvanishing
and given by

∇˜̀∇ñC̃˜̀m̃ñ ˜̄m = 3c(5c − 4ax2)
4a6x12 .

Thus, assuming that c = 2M , we eventually find that

∇˜̀∇ñC̃˜̀m̃ñ ˜̄m = 15(C̃˜̀m̃ñ ˜̄m)2 − 6
M2/3 (C̃˜̀m̃ñ ˜̄m)5/3 ,
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which agrees perfectly with the analogous functional re-
lation that we have established for the Schwarzschild
spacetime. It can be checked that all other second order
functional relations also agree. Thus, we conclude that
the line elements (1) and (2) represent the physical ge-
ometry as long as we set c = 2M . Moreover, as a spin off,
we conclude that, since the functional relations of the
Schwarzschild spacetime depend on the Mass parameter
M , different values of M lead to different geometries.
This is the reason why M is a physical parameter. On
the other hand, since the parameters a and b that appear
in the line element (2) do not show up in the functional
relations of this line element, they have no physical rele-
vance. In other words, the line elements obtained from Eq.
(2) by choosing different values for a and b all represent
the same geometry.

5. Discussion and Conclusions

In this article we have reviewed the Cartan-Karlhede
algorithm, which is a procedure that allows one to check
whether two line elements represent the same geometry,
in spite of written in different coordinate systems, by
following a finite sequence of steps. The review was per-
formed through the use of simple examples in which the
steps of the algorithm have been performed analytically
and explicitly. We hope that this provides a useful guide
for students and researchers to learn the essentials of the
method.

A source of difficulty in the algorithm that, has been
glossed over in the above examples is that sometimes it
can be quite difficult to solve an equality like R1212 =
f(x) for the coordinate x in order to find the functional re-
lations in terms of the curvature components themselves,
without referring to coordinates, as done in Eq. (16).
Moreover, it can happen that one should not solve the
relation for a single coordinate but rather for a specific
combination of coordinates, as happened in the example
in which we have dealt with the three-dimensional line
element ḡµν , in which a particularly useful coordinate
combination was z̄ ≡ 1 + t̄ + ex̄. This part of the algo-
rithm will generally demand from the user creativity and
ingenuity to do smart choices of the components in terms
of which the other curvature components will be written.
For instance, if tq is the number of functionally indepen-
dent components of the curvature (and its derivatives),
then one should choose tq components of the curvature
(and its derivatives) to serve as the “basis” in terms of
which the other components will be written. Different
choices of this “basis” can enormously simplify or greatly
hamper the establishment of the functional relations. In
spite of highlight on the use of creativity, these steps can
be done systematically by a computer [11–13], but the
computation time can become quite big if the computer
turn out to choose an unsuitable path.

As we have stressed throughout the text, the most
difficult part of the implementation of the method is
working out the remaining isotropy freedom at each or-
der of the method. In order to make things easier in Sec.

4, in which we have compared the line elements (1) and
(2), we have started with frames that already incorpo-
rated the isotropy freedom through the parameters λ and
σ. Then, since the components of the curvature did not
depend on σ, we concluded that this part of the Lorentz
group belongs to the isotropy group of the metric. On
the other hand, since one of the components depended
on λ, we concluded that the dimension of the Lorentz
group associated to the parameter λ is not part of the
isotropy group of the metric. Moreover, in the latter case,
we have chosen λ in way to establish a convenient func-
tional relation. For instance, if it is possible to make some
curvature component vanish by a suitable choice of a free
parameter, we can do so in order to fix the frame. The
idea of starting the Cartan-Karlhede procedure algorithm
with the Lorentz freedom explicit in the frame is gener-
ally handy for establishing the isotropy group at each
order. However, in general, allowing the Lorentz group
freedom to be explicit from the beginning is unfeasible,
due to the complicated expressions for the frame that
stem from the fact that a general Lorentz transformation
has several parameters. We have been able to adopt this
procedure in the four-dimensional example because we
have already started with a partially fixed frame, since
we have chosen two frame vectors to point along prin-
cipal null directions. This choice reduced the freedom
in the frame, remaining just two dimensions of freedom
in the Lorentz group. Thus, one of the main strategies
to apply the Cartan-Karlhede algorithm efficiently is to
use geometric structures of the metric, namely special
directions defined in a coordinate independent form, like
symmetry directions and principal null directions, to fix
completely or partially the frame with which we start
the procedure. In this case it is said that the curvature
tensor has been put in a canonical form. As an example,
suppose that the Ricci tensor has an eigenvector with
constant eigenvalue, then we can use this distinguished
eigenvector as one of the frame vectors. One can also
use conformal Killing vectors, Killing tensors and Killing-
Yano tensors to define special directions or planes along
which the frame is aligned. It is worth mentioning that
notion of principal null directions of the Weyl tensor are
also defined in dimensions greater than four [17,18], so
that this concept can be used to put the curvature in a
canonical form in higher dimensions [9].
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