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While most common holographic methods of digital reconstruction are based on the convolution theory, for
the ease in the mathematical approach, here we present an algorithm by a discretization of the Huygens-Fresnel
integral from a Taylor series expansion to produce a bidimensional Fourier transform. Compared to the digital
convolution method, the algorithm presented here is more concise and generates a reduction in processing time,
since the Fourier transform appears only once in the discretization. Another advantage is associated with the
production of results in the frequency domain, allowing the optical information to be obtained directly.
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1. Introduction

Holography was proposed in 1948 by the hungarian
physicist Dennis Gabor in the work: A new microscope
principle [1]. His initial idea was to improve the quality
of the image in an electron microscope. Gabor achieved
his goal when he discovered that a second reference wave,
interfering with the object wave, produced a significant
improvement in the overall quality of the image.

In the early 1960s, holography became of great interest
due to the invention of the laser, theorized by Arthur
Schawlow and built by Theodore H. Maiman [2]. The
coherent laser light, coupled with the adjustment of
a holographic technique called the off-axis recording
technique developed by Emmett Leith and Juris Upat-
nieks in 1962 [3], provided an increase in the quality of
the holographic images and motivated, even more, the
research of the time. With this, the Holography found
relevant importance in the scientific universe taking
Dennis Gabor to the Nobel Prize of physics in 1971.

Digital holography (HD) was introduced in the
early 1970s by Yaroslavski et al. [4]. Currently, some
techniques use digital cameras to record holograms
and computational methods for intensity and phase
reconstructions. There are several methods to digitally
reconstruct holograms, the main two are known as the
convolution method and Fresnel method [5–7].

The wieldy use of HD throughout the years has
resulted in great advances in both techniques and meth-
ods inside the scientific and technological universes, as
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shown by the works of Wang (2018), Narayanamurthy
(2017), Da Silva (2017), e Zhang (2012) [8–11]. Cur-
rently, digital holography is a fast and efficient tool that
can be very useful for the analysis of mechanical effects
on materials [12].
This paper shows the construction of an algorithm

to perform digital holographic reconstruction, based on
a discretization of the Fresnel approximation for the
Huygens-Fresnel diffraction integral. When compared
to discretization by convolution, this discretization is
considerably simpler, since the Fourier transform, which
appears only once, implies a reduction in processing
time. Furthermore, the result obtained is given in the fre-
quency domain, facilitating works that use this domain
directly, as opposed to the convolution method that
produces results in the spatial domain.

2. Theoretical Analysis

2.1. Two-dimensional Fresnel transform

The method presented in this work is based on the
Fresnel approximation to the Huygens-Fresnel integral
of the function (1) [13, 14], and so it is called the Fresnel
method.

~ψ0(~r) = 1
iλ

∫∫
A

~ψdif(~r ′)
rP

e−i~k·~rP cosθds (1)

Expression (1) represents the calculation of the
diffracted image field, ~ψ0(~r), in HD. While ~ψdif(~r ′)
represents the diffraction between the incident wave
with wavelength λ and the hologram with area A. The
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Figure 1: Fresnel’s holographic reconstruction geometry.

term cosθ = z/r is associated with the geometry of the
reconstruction, as shown in Figure 1.
The goal of this work is to reconstruct a digital image

of a sample object by holography. The diffraction will be
the result of a reference wave, ~ψref(~r ′), which will focus
on the hologram, represented by its intensity Ihol(~r ′).
The final product of this method will be a discrete
expression, which is the basis of the digital holographic
reconstruction algorithm. With these considerations, the
initial expression of Huygens-Fresnel is

~ψrec(~r) = 1
iλ

∫∫
Ihol(~r ′)~ψref(~r ′)

e−i~k·~rP

rP
cosθ ds (2)

where ~ψrec(~r) is the complex amplitude of the recon-
structed wave. Using the holographic reconstruction
geometry outlined in Fig. 1, where xy represents the
plane of the object, ξη the plane of the hologram, uv the
reconstruction plane and z the direction of propagation,
function (2) can be rewritten as

~ψrec(u, v) = 1
iλ

∫∫
Ihol(ξ, η)~φref(ξ, η)e−i~k·~r(ξ,η,u,v)

r(ξ, η, u, v)

× cosθ dξdη (3)

If r(ξ, η, u, v) = [(u−ξ)2 + (v−η)2 + z2]
1/2

is the dis-
tance between a pixel of the hologram plane and a pixel
of the reconstruction plane, and z = r cos θ is the
distance between the two planes with θ very small, then,
after using approximations by Taylor series, the function
(3) can be rewritten as follows [3, 4],

~ψrec(u, v) = e−ik z

iλz e− ik
2z (u2+v2)

∫∫
f(ξ, η)ei(kξξ+kηη)dξdη

(4)

where were defined: kξ = −k
z u, kη = −k

z v and,

f(ξ, η) = Ihol(ξ, η)~ψref(ξ, η)e− ik
2z (ξ2+η2)e− ik

2z (u2+v2).

The term e− ik
2z (ξ2+η2) is called the chirp function, and

represents the quadratic approximation of the spherical
wave generated by the encounter of the reference wave
with the hologram. The Fourier transform of the func-
tion f(ξ, η) = 1

2π
∫∫
F(kξ, kη) e−i(kξξ+kηη)dkξdkη can be

defined as

F(kξ, kη) =
∫∫

f(ξ, η)ei(kξξ+kηη)dξdη (5)

Thus, function (4) can be rewritten as

~ψrec(u, v) = e−ik z

iλz e− ik
2z (u2+v2)F(kξ, kη) (6)

with the field of the reconstructed image expressed in
the universe of frequencies. Function (6) is called the
Two-Dimensional Fresnel Transform.

2.2. Discretization of the Fresnel transform

To discretize the Two-Dimensional Fresnel transform,
expression (6), ∆u = λz

N∆ξ and ∆v = λ z
M∆η were defined,

based on the scheme of Figure 2.
But as, u = n∆u = n λz

N∆ξ and v = m∆v = m λz
M∆η .

Therefore,

ψnm = e−ik z

iλz e−
ik
2zλ

2
[
( n

N∆ξ )2+( m
M∆η )2]

F(∆kξ,∆kη) (7)

where ∆kξ = −k
z ∆u = −k

z
λz

N∆ξ = − 2π
N∆ξ and, ∆kη =

−k
z ∆u =− k

z
λ z

M∆η = − 2π
M∆η , nε[1,N] and mε[1,M].

Thus, the intensity and phase of the reconstructed
field can be determined, respectively, as follows,

Irec = 〈ψ2
nm〉τ = 1

2Re{ψ
∗

nmψnm} (8a)

Φrec = arc tg
[
Im(ψnm)
Re(ψnm)

]
(8b)

As the recordings of holograms are carried out on the
sensor of a digital camera, it must be far from the

Figure 2: Discretization scheme of the two-dimensional fresnel
transform.
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interference plane so that there is an angular difference
θmax, between the reference wave and that of the object.
This angular difference is important, as it allows the

identification of diffraction orders due to the simula-
tion of reference waves with holograms, during digital
reconstruction [15]. By the sampling theorem, at least
two sensor pixels are required for each period of spatial
variation in the hologram intensity distribution [16, 17].
Thus,

θmax < 2 arcsen
(

λ

4∆ξ

)
. (9)

3. Computational Program

Here we describe the general steps for the creation of
a computer program, based on the Fresnel method,
capable of reconstructing the hologram picture. The
determinations of intensity and phase maps were per-
formed utilizing the mathematical algorithms shown in
expressions (7), (8a), and (8b).
The program input is composed of two digital images:

(i) a hologram, obtained by any experimental technique
of Holography, and (ii) an image of the same reference
wave used during the production of the hologram.

Structure:

PART 1 – Initial data capture and treatment:

(1.1) Read input images, hologram and reference, and
assign images to two 8-bit matrix variables: one
for the hologram and one for the reference;

(1.2) Convert the arrays of 8-bit images to floating-point
arrays and calculate the mean intensities of the
converted matrices;

(1.3) Calculate the intensities for each cell of the matri-
ces using the following expression:

New Int. = Old intensity · Intensity factor
Mean intensity (10)

The intensity factor is the value calculated from
the measured power that arrives on the digital
camera sensor;

(1.4) Store the height and width of the images in
variables. The images must have the same area.

PART 2 – Select region of interest of the hologram:

(2.1) Filter and centralize hologram and reference
image;

(2.2) Calculate the logarithm of the absolute value of
the hologram transform;

(2.3) Select the region for reconstruction, in the holo-
gram picture;

(2.4) Round the values of the selection regions for
construction of new regions, and store the new
images for the final transform.

PART 3 – Construct a matrix of the image plane from
the propagation matrix of the hologram plane:

(3.1) Center the selected images from the dimensions of
the hologram;

(3.2) Include only the amplitudes of the selected images,
in the complex format, in the central regions of the
matrices.

PART 4 – Calculate the Chirp function and carry out
the reconstruction:

(4.1) Calculate the coefficient of the Chirp function, by
approximation of the Taylor series in first order.

(4.2) Calculate the reconstruction matrices from the
hologram and the reference pictures;

(4.3) Calculate the intensities matrix from the recon-
struction matrices;

(4.4) Calculate the phase matrix from the reconstruc-
tion matrices.

PART 5 – Display the reconstruction:

(5.1) Show the reference and hologram images.
(5.2) Show the phase and intensity maps.

4. Application

The program was used to reconstruct a hologram of
a half-wave plate placed in one of the arms of a
Mach-Zehnder interferometer. With the addition of two
polarizers, one for the object arm and another for the
reference arm of the interferometer, it was possible to
control the intensity of the images and, consequently,
improve the quality of the reconstruction.
Figure 3 shows the experimental configuration used to

register the images.
The best reconstruction was obtained when the inten-

sities of both the object and reference arms were approx-
imated to the same value.

Figure 3: Mach-Zehnder interferometer. Where L is the laser;
M1, M2, M3 and M4 are plane mirrors; F is a spatial filter; C is
a plane-concave lens; I is an iris; B1 and B2 are beam splitters;
P1 and P2 are linear polarizers; A is a polarizer analyzer; S is
the sample (half-wave plate); D is the CMOS digital camera.
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Figure 4: A – hologram part of a half-wave plate; B – Fresnel
transform of the hologram; C – intensity map; D – demodulated
phase map.

The results of intensity and phase reconstructions,
with the developed program, are presented in Figure 4.

During data processing, a larger region was selected in
the Fourier space, frame B, to improve the definition of
the resulting image. In frame D, the outline represented
by the darker curved line divides the regions of the half-
wave plate, on the left, and the free space, on the right.

5. Conclusion

The program showed efficiency in the reconstruction of
the images, both intensity and phase, by the Fresnel
method, observed in the images of Figure 4. Good
data obtained from property calibrated experimental
configurations are important for good holographic recon-
structions. A suitable selection of the region of the
phase space, Fresnel space, showed improvement in the
definition of the reconstructed images.

It is important to state that, one can improve the
observations of stress and deformation of materials by
making the holographic reconstruction algorithm include
a Third dimension in the reconstructed image, thus
increasing the range of values to be analyzed.

References

[1] D.A. Gabor, Nature 161, 4098 (1948).
[2] B.E.A. Saleh and M.C. Teich, Fundamentals of Pho-

tonics (John Wiley & Sons Inc., Ottawa, 2007), 2ª ed.
[3] E.N. Leith and J. Upatnieks, JOSA 52, 1123 (1962).
[4] M.A. Kronrod, N.S. Merzlyakov and L.P. Yaroslavski,

Sov. Phys.-Tech. Phys. 17, 329 (2018).
[5] M.S.Z. Taietti,Métodos recursivos para o cálculo da inte-

gral de convolução. Masters Dissertation, Universidade
Federal do Rio Grande do Sul, Porto Alegre (2002).

[6] U. Schnars and W.P. Jüptner, Measurement science and
technology 13, R85 (2002).

[7] A.V. Fantin, Holografia digital complexa utilizando um
interferômetro shearing. Doctoral Thesis, Universidade
Federal de Santa Catarina, Florianópolis (2003).

[8] F. Wang, Y. Zhang, H. Wang, W. Xu, Y. Zhang and C.
Li, Journal of Optics 47, 547 (2018).

[9] C.S. Narayanamurthy, G. Pedrini, and W. Osten,
Applied Optics 56, F213 (2017).

[10] S.L. Silva, Estudo de tensões em amostras fotoelásti-
cas com Holografia Digital (Novas Edições Acadêmicas,
São Paulo, 2017), 1ª ed.

[11] Y. Zhang, M. Huang, H. Liang and F. Lao, Optics and
Lasers in Engineering 50, 619 (2012).

[12] S.L. Da Silva, F.M. Prado, D.J. Toffoli and N.U. Wetter,
in: Proceedings of Photonics West – Practical Holog-
raphy XXXIV: Displays, Materials, and Applications,
edited by H. I. Bjelkhagen (SPIE, San Francisco, 2020),
p. 113060.

[13] E. Hecht, Óptica (Fundação Calouste Gulbenkian,
Lisboa, 2002), 2ª ed.

[14] M.A. Kronrod, N.S. Merzlyakov and L.P. Yaroslavsii,
Sov. Phys. Tech. Phys. 17, 333 (1972).

[15] I. Naydenova, Advanced Holography: Metrology and
Imaging (InTech, Rijeka, 2011).

[16] E. Carcolé, J. Campos and S. Bosch. Applied Optics 33,
162 (1994).

[17] M. Jacquot, P. Sandoz and G. Tribillon, Optics commu-
nications 190, 87 (2001).

Revista Brasileira de Ensino de Física, vol. 44, e20210193, 2022 DOI: https://doi.org/10.1590/1806-9126-RBEF-2021-0193


	Introduction
	Theoretical Analysis
	Two-dimensional Fresnel transform
	Discretization of the Fresnel transform

	Computational Program
	Application
	Conclusion

