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Electromagnetic momentum balance equation

and the force density in material media
(Equação de balanço do momento eletromagnético e densidade de força em meios materiais)
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We present a momentum balance equation derived directly from Maxwell’s equations. This equation con-
tains a force density, which we call Maxwell’s force density, which generalizes the Lorentz force density, now
including total fields rather than only external fields, and arbitrary charge and current distributions. As a test
for this balance equation we derive for gases the electrostatic and magnetostatic Helmholtz force densities. This
deduction will be useful for advanced undergraduates and graduate students, as well as for specialists interested
in the conceptual aspects of electromagnetism.
Keywords: Maxwell’s equations, Balance equation, electromagnetic force density.

Apresentamos uma equação de balanço do momento eletromagnético deduzida diretamente das equações de
Maxwell. Esta equação contém uma densidade de força, por nós chamada de densidade de força de Maxwell,
que generaliza aquela de Lorentz, incluindo neste caso os campos totais e não apenas os externos, bem como
distribuições arbitrárias de cargas e correntes. Como teste desta equação deduzimos as forças de densidade
magnetostática e eletrostática de Helmholtz para o caso de gases. Estas deduções são úteis para estudantes
avançados de graduação e pós-graduação, bem como especialistas interessados em aspectos conceituais do ele-
tromagnetismo.
Palavras-chave: equações de Maxwell, equação de balanço, densidade de força eletromagnética.

1. Introduction

Classical electromagnetism deals with the relation
between charges and currents and electromagnetic fi-
elds in a given region of physical space that may
contain material media. The fundamental equations,
Maxwell’s equations, give us the electromagnetic fields
if the charge and current densities are given as functi-
ons of space, usually in a defined finite region, and time.
These solutions constitute the inhomogeneous solutions
of the equations, but there are also homogeneous solu-
tions that are not related to the charge and currents
in the region. The homogeneous plus inhomogeneous
solutions must satisfy given boundary conditions and
constitute the solution to a given problem.

The question of how these fields act on charges and
currents is answered with the Lorentz force law

F = q
(
E+

v

c
×B

)
(1)

where the fields E and B are not produced by q and
are assumed known; these external fields are identified
with homogeneous solutions, i.e., external fields [1, 2
p. 236, 572).

This force law has been considered an additional
postulate to the Maxwell equations. However, in relati-
vity it has been considered a consequence of the Lorentz
transformations [1].

In the present work we show that the Lorentz law
can be deduced from Maxwell’s equations, but appea-
ring in the law the total fields, external and self-fields.
To this end we develop an electromagnetic momentum
balance equation, and show that in the static case this
balance equation contains, for gases, Helmholtz’s force
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density. This balance equation permits also analyze the
concept of test charges.

2. The momentum balance

Now we proceed to deduce the momentum balance
equation with the method used to deduce the energy
balance in a previous work [3]. The central point of the
method is to use only Maxwell’s equations and avoid
the use of Lorentz’s law, since the fields appearing in
the law are only the external fields, i.e., not produced
by ρ and J [1, 2 p. 236, 572]. Self-interaction appears as
the interaction of infinitesimal charges acting on other
infinitesimal charges of the charge distribution, as Lo-
rentz [4] (see also Refs. [2, 5, 6]) does in his treatment
of radiation reaction.

The derivation of the momentum balance equation
we present in this work is straightforward and, since we
do not use Lorentz’s law the fields involved are the total
fields. Thus the stress-energy tensor, which integrated
over a closed surface that contains a charge-current dis-
tribution gives the electromagnetic force on this distri-
bution, will include the fields associated to the charge
and current distributions outside the closed surface, as
well as the self fields of the charges and currents in-
side, i.e., the total fields. Then the present deduction
differs of the one usually given in standard texts, like
Jackson’s [2, 7].

We start with the macroscopic Maxwell equati-
ons [3]

∇ ·D = 4πρ , (2)

∇ ·B = 0 , (3)

∇×E = −1

c

∂B

∂t
, (4)

∇×H =
4π

c
J+

1

c

∂D

∂t
. (5)

Now we multiply Eq. (2) by E, Eq. (3) by H,
and multiply vectorially on the left, Eq. (4) by D,
and Eq. (5) by B. Adding these results and rearran-
ging terms leads to the expression

1

4π
[E (∇ ·D)−D× (∇×E) +H (∇ ·B)−

B× (∇×H)]− 1

4πc

∂

∂ t
(D×B) = ρE+

J

c
×B . (6)

Since we want to express this equation as a balance
equation it is necessary to rewrite the first four terms
on the left, and it is convenient to define

E (∇ ·D)−D× (∇×E) = T1 (7)

and

H (∇ ·B)−B× (∇×H) = T2 . (8)

It is important to note that these expressions exhibit
the symmetry between the fields E and H, and between
D and B inherent in the macroscopic Maxwell equati-
ons. The fields E and H appear in line integrals or in
rotationals, while the fields D and B appear in surface
integrals or in divergences. These features hold trough
the entire deduction, then it is enough to show how to
rewrite T1 since T2 can be rewritten in the same way.

We need the following vector identities,

∇ · (uv) = v (∇ · u) + (u · ∇) v, (9)

∇ (u · v) = (u · ∇) v+ (v · ∇)

u+ u× (∇× v) + v× (∇× u) , (10)

u× (∇× v) = (∇v) · u− (u · ∇) v, (11)

Equation (9) refers to a tensor or dyadic product.
With these identities we avoid Jackson’s [2, 7] proce-

dure, which uses Maxwell’s equations in terms of com-
ponents. If we use Eqs. (10) and (11) with u = D and
v = E, we have

T1 = E (∇ ·D)− 1

2
D× (∇×E)−

1

2
D× (∇×E) = E (∇ ·D)− 1

2
∇ (D ·E) +

1

2
[(D · ∇) E+ (E · ∇) D+E× (∇×D)]−

1

2
[(∇E) ·D− (D · ∇) E] . (12)

The trick of expressing D× (∇×E) as

1

2
(D× (∇×E)) +

1

2
(D× (∇×E))

is useful since this term appears both, in Eq. (10) and
Eq.(11), then we assign an equal contribution to each
equation.

Now, in order to avoid the term E× (∇×D) we use
the identity (11) with u = E, and v = D. This permits
us regrouping the terms obtaining

T1 = E (∇ ·D)− 1

2
∇ (D ·E) +

1

2
(D · ∇)E+

1

2
(∇D) ·E− 1

2
(∇E) ·D+

1

2
(D · ∇)E =

E (∇ ·D) + (D · ∇)E− 1

2
∇ (D ·E) +

1

2
[(∇D) ·E− (∇E) ·D] . (13)
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Finally we use Eq. (9), which permits us regroup
some terms and obtain the result we were looking for

T1 = ∇ ·
(
DE− 1

2
D ·EI

)
+

1

2
[(∇D) ·E− (∇E) ·D] , (14)

Proceeding analogously with the magnetic fields, we
obtain

T2 = ∇ ·
(
BH− 1

2
B ·HI

)
+

1

2
[(∇B) ·H− (∇H) ·B] . (15)

With the results obtained forT1 andT2 in Eqs. (14)
and (15) we can transform Eq. (6) into the expression

1

4π
∇ ·

{
DE+BH− 1

2
(D ·E+B ·H) I

}
−

1

4πc

∂

∂ t
(D×B) = ρE+

J

c
×B+

1

8π
{(∇E) ·D− (∇D) ·E+ (∇H) ·B−

(∇B) ·H} , (16)

which is the momentum balance equation we were loo-
king for. It is convenient to write it as

∇ ·T− ∂gM

∂ t
= fMaxwell , (17)

where, evidently,

gM =
1

4π c
D×B, (18)

which is the momentum density of the electromagne-
tic field proposed by Minkowski. The stress tensor in
terms of dyadics is

T =
1

4π

[
DE+BH− 1

2
(D ·E+B ·H) I

]
, (19)

and the force density happens to be

fMaxwell = ρE+
J

c
×B+

1

8π
{(∇E) ·D−

(∇D) ·E+ (∇H) ·B− (∇B) ·H} , (20)

which we call theMaxwell force density. This force den-
sity includes, besides the Lorentz force with total fields,
other force densities, like Helmholtz’s, for gases.

On the other hand, it can be shown that in static
conditions a finite point charge is acted on only by ex-
ternal fields. That the forces on charges and currents
are transmitted by stresses associated to the electro-
magnetic fields is Faraday’s original idea, later formali-
zed by Maxwell. This view can be illustrated by some
examples in electrostatics. We have so that Coulomb’s
force law can be derived by surface integration of the
stress tensor [5, p. 106-107 and p. 116, problem 1),
which contains the field of the charge inside the clo-
sed surface, the proper field, and the field asociated to
charges outside the closed surfaces i.e. the external fi-
eld thus the total field is involved. Another example is
given in Konopinski’s textbook [8, p. 164-166], where
a finite point charge is in an initially constant field.
Again the stress tensor involves the total fields, though
by symmetry the self field does not exert a force on
a point or spherically symmetric charge, and the usual
Lorentz force results. Thus, in electrostatics finite point
charges can play the role of test charges. Thus in elec-
trostatics the concept of test charge as an infinitesimal
point charge is unnecessary. Let us note that non elec-
tromagnetic forces are involved in the mechanical equi-
librium of a system of finite point charges. However for
charges in motion this is not the case due to the effects
of retardation.

3. The momentum balance equation
and the Helmholtz force density

Now we show what these general results obtained from
Maxwell’s equations imply in particular cases. Let us
consider the electrostatic case. In these static conditi-
ons the momentum balance equation reduces to

∇ ·
{

1

4π

[
ED− 1

2
(D ·EI)

]}
= ρE+

1

8π
{(∇E) ·D− (∇D) ·E} . (21)

Now, if we use the constitutive relation

D = εE (22)

in the right hand side of Eq. (21), while in the scalar
product in the left term we use the constitutive relation
now expressed as

D = E+ 4πP, (23)

we obtain immediatly

∇ ·
{

1

4π

[
DE− 1

2
E2I

]
− 1

2
(P ·E) I

}
=

ρE− 1

8π
E2∇ε (24)

or
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∇ ·
{

1

4π

[
DE− 1

2
E2I

]}
= ρE− 1

8π
E2∇ε+

∇
(
1

2
P ·E

)
. (25)

It is also satisfied that, for linear media,

P = χE, (26)

then, Eq. (25) can be written as

∇ ·
{

1

4π

[
ED− 1

2
E2I

]}
= ρE−

1

8π
E2∇ε+∇

(
1

2
χE2

)
. (27)

Furthermore, if we consider a fluid for which

χ =
1

4π
ρm

∂ε

∂ρm
(28)

holds [7], then we can write Eq. (27) in the form

∇ ·
{

1

4π

[
DE− 1

2
E2I

]}
= ρE−

1

8π
E2∇ε+

1

8π
∇
(
ρm

∂ε

∂ρm
E2

)
, (29)

which is the balance equation Eq. (24), but in the
right hand side appears the force density obtained by
Helmholtz.

Given the symmetry with which the fields E and H
appear in Eq. (16), it is immediate to see that for the
magnetic field H the following balance equation results,

∇ ·
{

1

4π

[
BH− 1

2
H2I

]}
=

1

c
J×B−

1

8π
H2∇µ+

1

8π
∇

(
ρm

∂µ

∂ρm
H2

)
. (30)

With these results we obtain that the original ba-
lance equation can be written as

∇ ·
{

1

4π

[
DE+BH− 1

2

(
E2 +H2

)
I

]}
=

= ρE+
1

c
J×B− 1

8π

(
E2∇ε+H2∇µ

)
+

1

8π
∇
(
ρm

∂ε

∂ρm
E2 + ρm

∂µ

∂ρm
H2

)
. (31)

These results are not free of criticisms, and authors
like Robinson [9] consider this kind of deductions

mere identities, and so he considers that the “cor-
rect” Helmholtz force density is the one deduced from
Maxwell’s equations and fluid mechanics [5, 10]. But
we can see that both expressions, Eqs. (29) and (30)
are contained in what we call Maxwell’s force density.
For a deeper discussion see Jiménez et al. [12].

Other authors, like Panofsky and Phillips [5] and
Jackson [2], try to incorporate the Helmholtz force den-
sity in a momentum balance equation of the type

∇ ·T∗ − ∂gA

∂ t
= fHelm (32)

by rewritting the stress tensor, as T∗ = T∗
ele + T∗

mag,
where

T∗
ele =

1

4π

[
DE− I

2
(E ·D)

(
1− ρm

ε

∂ε

∂ρm

)]
, (33)

and

T∗
mag =

1

4π

[
BH− I

2
(B ·H)

(
1− ρm

µ

∂µ

∂ρm

)]
. (34)

We can see from the present deduction that this is
not necessary, since the electromagnetic tensor T al-
ready contains the pertinent information for gases or
fluids obeying Eq. (28), and it is not necessary to re-
write it. This is an important point to note, and there-
fore the criticism by Robinson [9] is not well founded,
contrasting it with the generality of the present appro-
ach.

4. Conclusions

We have shown in the present work that, by using the
vectorial identities, Eqs. (9)-(11), it is possible to ob-
tain directly from Maxwell’s equations the momentum
balance equation, identifying in it a force density that
we have called Maxwell’s force density. Robinson’s cri-
ticism [9] that this type of deduction is a mere identity
does not constitute a demerit; otherwise we would have
to blame also the continuity equation of charge and cur-
rent, since it also results from an identity derived from
Maxwell’s equations. It is also clear from this deduc-
tion that the usual Lorentz force is an approximation for
very small charges and corresponding currents, which
permits to neglect the self fields. Therefore the genera-
lized Lorentz force, including total fields, is implicit in
Maxwell’s equations. The inclusion of total fields is es-
sential to the study of radiation reaction. On the other
hand such a general result like this must be tested with
particular models and experiments. In this sense is re-
markable that the Helmholtz force density for fluids is
contained, as a particular case, in the Maxwell balance
equation. This is a relevant result not appearing in the
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literature. A final point, relevant for teaching, is the use
of vector identities, not all familiar to students that per-
mit a straightforward deduction, avoiding in this way
the tricky deductions with components that obscure the
deduction and make it repellent to the reader.
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