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The motion of any material body after be launched from some point in Earth surface start to follow a
trajectory determined by two different interactions, the gravitational attraction and the resistance to his movement
caused by the contact with the molecules of the medium in which it travels. Considering that a huge amount of
physics problems remains not even mentioned on physics courses due to the requirements of strong mathematical
background or computational effort. The authors propose a new and easier approach to introduce the study of
complex problems in introductory physics courses, based on neural networks and machine learning. Through one
simple example of classical mechanics with artificial intelligence the authors are supposed to contribute with the
introduction of new technologies to physics learning.
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1. Introduction

The use of artificial intelligence has taken on consid-
erable proportions in our daily lives in recent years
and caused transformations with relevant social and
economic impact [1]. The increasing speed of information
processing combined with the development of efficient
data transmission and storage systems has leveraged
major advances in areas such as imaging diagnostics,
arts, economics, automation, pattern recognition, social
network analysis and data security, among others [2].
Adaptation to this powerful technological resource has
occurred quickly, which causes a need to introduce
artificial intelligence in the area of physics teaching
[3–5]. This demand has presented challenges to teachers
and educational institutions, which naturally occurs
when emerging technologies are aimed at innovation in
teaching [6].

The development of appropriate approach methods
and the availability of a specialized bibliography are
spaces to be filled in the current stage of this knowledge
area. This work seeks to present a contribution in this
sense by describing a method for studying the oblique
launch of an object in a viscous medium. The problem
was chosen with the didactic objective of using the
students’ familiarity with oblique launch without air
resistance, so that understanding the role of the viscous
friction force proportional to the speed of the object
becomes more direct and intuitive.
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A database was initially generated from mathematical
modeling of the addressed problem using conventional
numerical computing. This data was then used to train
a neural network built for the considered system. Our
objective is to present a proposal for innovation in the
computational approach to solving physics problems for
teaching purposes. By presenting this contribution, we
intend to contribute to disseminating artificial intelli-
gence as a teaching tool in the area of physics.

2. Oblique Launch

The oblique launch problem has numerous applications
from Olympic sports activities to the launch of georef-
erencing satellites and aerospace probes [7].

The dependence of the air damping force with velocity
is quadratic for objects moving with high velocities.
However, relatively small objects with velocities lower
than approximately 24m/s(86km/h) faces air damping
depending on −bv [17]:∑

F⃗y = ma⃗y (1)∑
Fy = mg − bvy = may (2)
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Substituting t found in the equation y(t), we have:
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But v0x = v0 cos θ0; v0y = v0 sin θ0
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Expanding function (3), the term which appears as
the logarithm, we will have:
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Substituting the expansion into the trajectory equa-
tion, we have:
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3. Neural Networks

Modern computers have the ability to simulate circuits
similar to networks. The basic principle of a neural
network is schematically depicted in Figure 1, given by
one or more input variables, hidden layers of different
sizes and quantities, which can change according to the
objective, and also the layer of one or more outputs.
The signals emitted by neurons are represented by the
formula:

Sk = f

((
n∑
1

xi · wik

)
+ bk

)
(14)

Sk: signal emitted by neuron k
f : activation function
n: number of entries from the previous layer
xi: i-th entry
wik: weight between presynaptic neuron i and postsy-
naptic neuron k
bk: bias associated with neuron k

Figure 1: Basic structure of a neural network with k inputs, l
neurons, and m outputs.

Random weights associated with all variables are
initially used to conduct the first iterations (epochs). An
epoch carried out with a batch of input values interacts
to the network and return a set of predicted ranges. Such
random weights lead to outputs far from the expected
values. The mean squared error is applied to evaluate
batch performance as follow:

MSE = 1
n

n∑
1

(yi − pi)2 (15)
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n: number of samples in the batch
yi: actual sample value
pi: predicted value

Based on the mean squared error found, the RMSProp
optimization algorithm [9, 10] is used to calculate the
new weights that will replace the current ones, as indi-
cated in Figure 2, so that the MSE value can be reduced
in the next epochs. The formula for this algorithm is
given by:

E[g2]t = βE[g2]t−1 + (1 − β)
(

δC

δw

)2

→ wt+1 = wt − η√
E[g2]t+1

δC

δw
(16)

wt+1: updated weight
wt: current weight
η: learning rate, example = 0.001
E[g2]: moving average of the quadratic gradient
β: moving average parameter
δC
δw : gradient of the cost function with weight

Figure 2: Update of all weights.

4. Method

Table 1 shows data from several tests carried out compu-
tationally using the Python programming language [11]
and the Sympy library [12], aimed at solving equations,
and all results were stored in a spreadsheet. With the
input variables (mass, initial velocity, gravity, angle and
damping constant), Figure 3 stands for the better range
calculated and the result (x) which is the correct range
calculated, we have a large table of information formed
by 4 columns of inputs and 1 for output.

From the launch equation:

tan θ0x − g

2v2
0 cos2 θ

x2 − bg

3mv3
0

x3 = 0 (17)

m: mass
v0: initial velocity
θ: launch angle
b: damping constant

Table 1: Empirical data for neural network training.

Mass Angle v0 b Range
0.02 10 15 1 1.65699250856122
0.02 10 16 1 1.83227485990107
0.02 10 17 1 2.01356601369026
0.02 10 18 1 2.20068717297175
– – – – –
– – – – –
– – – – –
0.09 89 22 4.8 0.131135770172690
0.09 89 23 4.8 0.140299594234527
0.09 89 24 4.8 0.149670151636403
0.09 89 25 4.8 0.159243089770685

Equations were calculated with all possible combina-
tions between values:

1 <= b <= 4.8 | Step = 0.2
10 <= θ <= 89 | Step = 1

0.02 <= m <= 0.09 | Step = 0.01
15 <= v0 <= 25 | Step = 1

The TensorFlow library [13], an open-source software
library was applied to build the network. Such appli-
cation offers high performance topological resources to
implement machine learning models and neural net-
works. In addition, it is designed to training complex
neural networks for tasks like image recognition, lan-
guage processing, numerical predictions and time series
analysis. It menages to handle with large data sets
and intense mathematical operations. One of the main
advantages of TensorFlow is its ability to handle large
volumes of data and intense mathematical operations.
It enables defining high-level models using abstractions
such as layers and computational graphs, and provides
a rich Application Programming Interface (API) for
customization and extensibility.

The first step in executing training is to pre-process
the data, initially separating it into training data and
testing data in an 80/20 ratio. After this, we must
also separate the target values (range) from the other
variables to be the supervised learning labels [14].

From this point on we can perform data normaliza-
tion, which consists of transforming the values into a
specific scale in a standardized way which facilitates
comparison with other batches of data in order to avoid
the existence of learning biases and improve model
convergence. The normalization formula is given by:

Z = x − µ

σ
(18)

Z: normalized value
x: value
µ: mean of the values
σ: standard deviation of the values

After normalizing the input data, we use the Keras
API which runs on top of Tensorflow [15]. It was possible
to create a network using the keras function. Sequential()
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Figure 3: Range depending on the parameters in Table 1.

Figure 4: Structure of the neural network adapted to the
problem.

is responsible for grouping the layers of the network
of Figure 4, defining only one internal layer with 100
neurons, all connected to an output, which represents
the predicted range. The activation function applied was
that which returns the maximum value between 0 and
the signal received by the neuron.

With the network parameters defined, we then use
the fit method added with normalized training data
and labels with the results of their combinations to
perform training for 1000 epochs, recalculating the
weights through backpropagation in each one.

5. Results

We created a neural network which learned from the data
that was delivered, as shown in Figure 5, and was then
able to predict the results of new launches with values
very close to those obtained when solving equations,
which can be observed in Table 2.

We can evaluate the performance of a neural network
with the root mean squared error evaluation metric
(RMSE) [16], which is very useful to check its prediction
quality. The lower the result, the better the network’s
ability to estimate values. It is widely used in machine
learning implementations, and its formula is:

The square root of the last MSE value obtained equals
the RMSE

√
0.00048722 ≈ 0.02207316

Such a small magnitude of the RMSE represents
how appropriate neural networks can be to make the

Figure 5: Comparison between the values found by the network
with the correct values that were labeled.

Table 2: Random empirical examples with their predictions.

Mass Angle v0 b Range Predicted
0.05 87 23 1.2 0.615001 0.679726
0.09 68 19 3 2.707170 2.725363
0.01 57 19 1.4 1.876964 1.886901
0.09 57 19 3.6 3.424880 3.418013
0.04 29 23 2.8 4.231864 4.242589
0.08 18 24 3.6 4.760582 4.760784

Figure 6: Evolution of MSE during epochs.

study of mathematically sophisticated physics prob-
lems much more easier to understand in learning
processes.
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6. Final Considerations

Considering the revolutionary paradigm shift now in
course, carried out by different ways of perform machine
learning and apply it to different branches of human
activity, allied to author’s intent of popularize artificial
intelligence in science education, the authors performed
the machine learning approach in a very simple classical
mechanics problem, and of course the results obtained
might be considered very good.
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