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The equivalence principle was explained by Einstein using the didactic ”mental experiment” of a uniform
gravitational field inside an elevator. The Earth gravitational field is not really uniform so the question about how
to create a uniform gravitational field is legitimate. To this aim, instead of using metrics depending on spatial
coordinates, we have studied a cosmological - like metric and we have found that, under suitable assumptions, it
is possible to measure a uniformly accelerated motion for the test particles moving inside the elevator.
Keywords: General Relativity, Equivalence principle.

1. Introduction

Albert Einstein constructed his General Relativity start-
ing from two postulates: the equivalence principle and
the principle of general covariance. Before and after the
enormous success of his theory these two principles were
the subject of studies and discussions. Still today, after
more than one century, the debate about their interpre-
tation, application and generalization is very fertile. We
have already written a pedagogical review [1], but a lot
of articles have been published in particular about the
violations of the Equivalence Principle. We have devoted
two previous papers to that subject, one from the classi-
cal point of view [2], and the other one [3] for quantum
regime. Different forms of this principle are used in text-
books, but we prefer the simple definition given by Pauli
”In Newtonian theory, a frame of reference located in a ho-
mogeneous gravitational field is perfectly equivalent, from
a mechanical point of view, to a uniformly accelerated
reference frame. The request that all physical processes,
in both systems, happen according to the same laws is
the Einstein equivalence principle” [4]. In order to ex-
plain his idea, Einstein invented the gedankenexperiment
of the elevator. An observer in an elevator cannot tell
whether he and the elevator are uniformly accelerated in
the free - field space (for example placing the elevator
inside an accelerating rocket) or whether the elevator is
at rest in a homogeneous gravitational field. Of course
a common gravitational field, as the one generated by
the Earth, is not really homogeneous and violations of
the equivalence between the two reference frames occur,
even if the smaller the elevator, the most negligible the
magnitude of the violation [2].

On journals devoted to the didactic of physics, the
debate about the construction of a real uniform gravita-
tional field has often found space [5] [6] [7] [8] [9]. For
example, in a series of papers, Desloge [5] [6] [7] faced
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the problem showing that [5] the ”observations made
inside a rigid enclosure at rest in a uniform gravitational
field are not identical to observations made inside a rigid
enclosure uniformly accelerating in field - free space” He
studied the properties of a metric

ds2 = e2gx/c2
c2dt2 − dx2 (1)

describing a homogeneous gravitational field and com-
pared the results with the behavior of a particle in an
accelerated frame of reference (where g is the constant
acceleration) in the absence of a gravitational field:

ds2 =
(

1 + gx

c2

)2
c2dt2 − dx2 (2)

In order to give an answer to the same problem faced
by Desloge, we want to take a different approach and to
construct a metric similar to the one used in cosmology.
Instead of studying metrics depending on space coor-
dinates, as it has been done until now, our idea is to
explore metrics depending on the time coordinate. In gen-
eral a massive body and the floor of the enclosure become
closer and closer, either because the body falls towards
the floor attracted by an external mass (in the elevator
on Earth), or because the floor moves towards the body
accelerated by an external force (in the rocket in the
space far from any massive object). In principle, a third
way can exist: the space between the floor and the body
can disappear if it undergoes a suitable contraction, that
is the contrary of the cosmological expansion. We want
to analyze this theoretical possibility suggesting a metric
that can simulate the effects of a uniform gravitational
field. Regardless of the final result, from the didactic
point of view, it may be enough to face the problem of
defining the properties of a uniform gravitational field
and to underline the differences with respect to the space
of uniformly accelerated observers, which we do in section
2 and 3 of the paper. In section 2 we in fact summarize
the dynamics of a uniformly accelerated test particle and
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the properties of the corresponding Rindler spacetime.
In section 3 we describe the assumptions necessary to
obtain a uniform gravitational field. Furthermore, in sec-
tion 4, we find a metric that, under suitable assumptions,
simulates the required effects and in section 5 we discuss
the obtained results.

2. Rindler Flat Spacetime and its
Generalization to Curved Space

A body moving with a constant acceleration in a flat
spacetime describes a hyperbolic trajectory. This fact
was first noted by Minkowski [10] and then by Born [11],
but today the metric of uniformly accelerated observers
is known as Rindler Spacetime. Rindler himself suggested
a generalization of this hyperbolic motion even to curved
spacetimes, applying his results to Schwarzschild and
de Sitter spacetimes [12] and then studying the relation
with Kruskal Space [13]. Briefly his analysis starts con-
sidering a particle’s world-line xµ(τ) and defining the
corresponding velocity Uµ = dxµ/dτ and acceleration
Aµ built through covariant derivative (for a definition
see Appendix) with respect to the proper time of the
accelerated observer τ

Aµ = DUµ

dτ
= d2xµ

dτ2 + Γµ
νσ

dxν

dτ

dxσ

dτ
(3)

Then he studies the dynamics of a uniformly accelerated
frame such that

AµAµ = −α2 = constant (4)

that is with a non vanishing covariant acceleration.
Rindler shows that the hyperbolic motion in curved

spacetime satisfies the equation

DAµ

dτ
= α2

c2 Uµ. (5)

with the solution

Uµ = c
(

cosh ατ

c

)
Lµ + c

(
sinh ατ

c

)
Mµ (6)

that represents the four velocity of the uniformly acceler-
ated test particle (the four-vectors Lµ and Mµ are such
that DLµ/dτ = DMµ/dτ = 0, LµLµ = 1, MµMµ = −1
and LµMµ = 0).

In curved spacetime one must find the right expres-
sion of these two four-vectors, while in flat spacetime
they assume the trivial form Lµ = (1, 0, 0, 0) and Mµ =
(0, 1, 0, 0). According to different initial conditions one
can find slightly different transformations which relate
the coordinates (t, x) of the inertial frame with the proper
time τ of the accelerated observer. From (6) the simplest
solution is:

t(τ) = c

α
sinh

(ατ

c

)
(7)

and
x(τ) = c2

α
cosh

(ατ

c

)
(8)

In terms of the coordinate of Minkowski spacetime the
velocity of the uniformly accelerated particle (equation
(8) of ref. [12]) is

V = αt√
1 + (αt/c)2

(9)

We can obtain the corresponding Rindler space using the
parametrization:

ξ = c

α
; η = ατ

c
; ξη = τ (10)

so that from the equations (7) and (8)

t = ξ sinh η (11)
x

c
= ξ cosh η (12)

and write the Minkowski metric in the form

dτ2 = ξ2dη2 − dξ2 − dy2 − dz2 (13)

that was called Rindler metric. We can immediately
calculate the corresponding Christoffel symbols of the
second kind [14] [15]

Γ1
00 = ξ; Γ0

10 = Γ0
01 = 1

ξ
(14)

Note that in Rindler coordinates the components of co-
variant acceleration are

Aµ = (0,
1
ξ

, 0, 0) = (0, α, 0, 0) (15)

satisfying the equation (4) and the components of the
Riemann tensor are vanishing so that the spacetime is
flat.

3. The Properties of a Uniform
Gravitational Field

In the spirit of the Equivalence Principle we want to
construct a spacetime geometry that in the Einstein ele-
vator induces a uniform gravitational field whose effects
are equivalent to the ones measured by an observer in a
uniformly accelerated frame. To this aim it is not enough
to require that the final equation of motion for a mas-
sive body falling in the uniform gravitational field is the
same as equation (9) of the previous section measured
by the observer in the accelerated frame. Actually we
must also require that the uniform gravitational field
is the effect of a real curvature of spacetime, so there
are nonzero components of the Riemann tensor (the con-
trary of Rindler spacetime) and, as a consequence, a free
falling body, moving in this field, follows a geodesic, so
its covariant acceleration must be zero (the contrary of
Rindler spacetime).

Furthermore, we must also assume that our ideal eleva-
tor is a ”rigid body” (even if we know [16] the ”difficulties
encountered in the search for a satisfactory definition of
rigidity in relativity”) and its size does not change if it
is embedded in whatever gravitational field.
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4. The Cosmological-Like Metric

Now we choose a particular form of the metric that,
following the idea explained in the introduction, can gen-
erate a contraction of the spacetime in only one direction
(for example the x − axis) due to a sort of scale factor
that plays a role opposite to the one of the cosmological
expansion:

ds2 = c2dt2 − S(t)2dx2 − dy2 − dz2 (16)

and we calculate (see Appendix) the corresponding Christoffel
symbols of the second kind [14] [17]

Γ0
11 = SṠ

c
; Γ1

10 = Γ1
01 = Ṡ

cS
(17)

where a dot denotes a derivative with respect to the time
t. We argue that the geometry is a good candidate to
describe a curved spacetime (first requirement), because
the Riemann tensor has, for example, a non vanishing
component

R1
001 = S̈

c2S
(18)

In order to satisfy the second requirement we calculate
the components of the four velocity that are solutions of
the geodesic equations for this metric and that make all
vanishing the components of the covariant acceleration.
The geodesic equations are:

A0 = Du0

ds
= d2x0

ds2 + Γ0
11

dx1

ds

dx1

ds
= 0 (19)

A1 = Du1

ds
= d2x1

ds2 + 2Γ1
01

dx0

ds

dx1

ds
= 0 (20)

that are satisfied (as in the cosmological case) by a
geodesic field comoving with the particles

uµ = dxµ

ds
= (1, 0, 0, 0) (21)

In this case we have particles that recede from (or ap-
proach to) each other only because of the scale factor
S(t).

As in the cosmological metric, in our space-time the
physical distance is defined as

D =
√

S(t)2x(t)2 + y2
0 + z2

0 = S(t)x(t) (22)

if we put for simplicity y0 = z0 = 0. The corresponding
”physical velocity” is

dD

dt
= Ṡx + Sẋ = HD + Sẋ (23)

The last term is often called peculiar velocity

Vpec = S(t)ẋ(t) (24)

and it is vanishing for the geodesic field (21). The sim-
plest choice is S(t) = (K − gt2/2)/` (where K and ` are

constants with dimension of a length) that gives the right
uniform acceleration field. However it causes a problem
in the corresponding D(t) and its initial conditions: the
constant K would acquire a different value for each differ-
ent initial position of the falling body. The metric would
depend on the initial space coordinate.

Hence we follow another approach, we assume that
u1 is non vanishing. In this case the solution of the two
geodesic equations (19) and (20) is:

uµ = dxµ

ds
=
(√

S2 + 1
S

, ± 1
S2 , 0, 0

)
(25)

Hence
dx

cdτ
= dx

dt

dt

cdτ
= dx

dt

√
S2 + 1

S
= 1

S2 (26)

This way the peculiar velocity is

Vpec = S(t)ẋ = ± c√
S2 + 1

(27)

Choosing
S(t) = c

gt
(28)

we obtain the typical velocity (9) of a uniformly acceler-
ated field

Vpec = ± gt√
1 + (gt/c)2

(29)

Taking into account also the cosmic contraction, the
velocity becomes

V = dD

dt
= Ṡ

S
D ± c√

S2 + 1
(30)

so for each point inside the elevator the local velocity
(the one measured by a static (21) observer that sees
the particle to pass near him D=0) is the right one of a
uniformly accelerated motion (29). There is also another
argument, found in several textbooks about cosmology
(see for example [18]), that leads to a similar result. We
consider two nearby comoving observers in P (position at
a distance d from the floor)) and Q (position of the floor).
A test particle passes observer P with a peculiar velocity
toward Q. If P and Q are close enough that Vpec >> VH

their separation remains almost constant for the time
tP Q = d/|Vpec| of travel toward Q. But relatively to the
observer Q the velocity of the particle is grater Vpec +VH

and it is increased at a rate
dVpec

dt
= −d|Vpec|

dt
= Hd

tP Q
= Ṡ

S
|Vpec| (31)

Integrating we obtain |Vpec| ∝ S−1 that is, using (28),
Vpec ' −gt, the required velocity for a uniform gravita-
tional field.

In order to avoid the divergence of the function S(t)
for t = 0, it is possible to add a small constant ε in the
equation (28) so (29) becomes

Vpec = ± ε + gt√
1 + (ε + gt)2/c2

(32)
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The class of geodesics we have found simulates well a
uniform gravitational field, when u1 of the test particle
is nonvanishing. In conclusion, we obtain our goal with
a metric of this kind:

ds2 = c2dt2 − c2

(ε + gt)2 dx2 − dy2 − dz2 (33)

but it simulates the effects of a uniform gravitational field
only under suitable assumptions, not in every possible
case.

Finally we examine the point of view of an observer
standing on the floor of the elevator. In the Einstein
gedanken experiment the elevator, in the Earth field, is
not free falling but is a rigid structure fixed at rest by
non gravitational forces that annul the gravitational field.
Hence, there are two possible scenarios. In the first, the
non gravitational forces acting on the floor can be chosen
such as to make the Hubble velocity vanishing. In this
case only the peculiar velocity survives and the motion of
a body with respect to the floor becomes automatically
uniformly accelerated. In the second case, we can imagine
that the elevator must keep the distance h between the
floor and the ceiling constant, through external forces
that are opposite to the cosmic contraction. In particular,
there will be an expansion acting on the floor with a
velocity Vw = Hh/2 and an equal expansion acting on the
ceiling. This way the velocity measured by the observer
at rest with the floor of the elevator will be

V = Ṡ

S
(D − h/2) − c√

S2 + 1
= − g

ε + gt
(D − h/2)

− ε + gt√
1 + (ε + gt)2/c2

(34)

The first term becomes negligible if the elevator is small
(h → 0) (an approximation analogue to the one that
makes the Earth field similar to a uniform gravitational
field) and if the time increases. In that case the velocity
reduces to the desired one (32).

5. Conclusions

We have shown that a uniform gravitational field in
an Einstein’s elevator, can be obtained starting from a
cosmological - like metric that generates a spacetime con-
traction. We have found a solution of geodesic equations
that leads to the right peculiar velocity for the particles
inside the elevator if a suitable choice of the scale factor
is made. Of course, the problem to really construct this
field remains still open. Using the words of Desloge [7]:
”Whether or not there exists a matter distribution that
would actually produce this gravitational field in some
region of space is a separate problem” that could be faced
in a forthcoming paper.
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Appendix

In this appendix we collect some useful definitions and
formulas of differential geometry that are well explained
in the already cited textbooks [14] [15] [17] and are often
used also in interesting papers published in journals
devoted to Didactic of Physics such as, for example, [19]
[20].

In order to define a suitable generalization of deriva-
tive in a curved spacetime, the comparison between two
vectors must be performed at the same point of the space-
time. In other words, it is necessary to transport one of
the two vectors to the position of the other one. A vector
field is parallel transported along a curve when it does
not change the angle with the tangent vector to the curve.
In curvilinear coordinates the parallel displacement from
a point P in xµ to a point P ′ in xµ + dxµ (Fig. 1) pro-
duces a change in the vector Aµ by the amount δAµ that
depends linearly on the infinitesimal displacement dxµ

and on the components Aµ itself:

δAµ = −Γµ
αβAαdxβ (35)

where Γµ
αβ are coefficients depending on the spacetime

coordinates.
Consequently, in P ′ we can compare the two vectors

Aµ + dAµ = Aµ(xµ + dxµ) and Aµ + δAµ corresponding
to the parallel transport of Aµ from P to P ′. We have

DAµ = Aµ + dAµ − (Aµ + δAµ) = dAµ − δAµ (36)

Figure 1: A vector field is parallel transported along a curve
from a point P to an infinitesimal close point P ′ leaving the
angle β with the tangent unit vector t̂ to the curve unchanged.
Only when it is in the point P ′, it can be compared with the
vector Aµ + dAµ.
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and the covariant derivative is defined as

DAµ

Dxν
= lim

dxν →0

Aµ(xµ + dxµ) − Aµ(xµ) − δAµ

dxν

= ∂Aµ

∂xν
+ Γµ

ανAα (37)

In Special Relativity the equation of motion of a free
particle is

d2xµ

dτ2 = 0 (38)

whose consequence is that the particle moves on a straight
line. In General Relativity we can define a covariant
acceleration deriving the four velocity uµ with respect
to the proper time τ using the equation (36), hence the
generalization of equation (38) is

Duµ

dτ
= duµ

dτ
− δuµ

dτ
= d2xµ

dτ2 + Γµ
αβ

dxα

dτ

dxβ

dτ
= 0 (39)

The result is that a particle, embedded in a gravitational
field, but in absence of other external forces, moves fol-
lowing a geodesic in spacetime. The geodesic equation
(39) can also be obtained by a minimal action principle

δ

∫
ds = δ

∫ √
gαβdxαdxβ = 0 (40)

hence the corresponding trajectory of the particle is
the shortest path between two given points, the same
property of a straight line in flat spacetime. On the
contrary, in Rindler space the covariant acceleration (39)
is non vanishing and there is a hyperbolic motion due to
the action of an external force.

Finally, the metric tensor used in section 4 is:

gµν =


1 0 0 0
0 −S2(t) 0 0
0 0 −1 0
0 0 0 −1

 (41)

while the tensor used in standard cosmology for the flat
space case is

gµν =


1 0 0 0
0 −S2(t) 0 0
0 0 −S2(t) 0
0 0 0 −S2(t)

 (42)

The Christoffel symbols of the second kind can be calcu-
lated using the formula

Γλ
µν = 1

2gλσ

(
∂gνσ

∂xµ
+ ∂gσµ

∂xν
− ∂gµν

∂xσ

)
(43)

and the Riemann curvature tensor is

Rλ
µνk =

∂Γλ
µk

∂xν
−

∂Γλ
µν

∂xk
− Γλ

σkΓσ
µν + Γλ

σνΓσ
µk (44)
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