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This paper proves the existence of the optimal all-pay auction when
signals are correlated. In an all-pay auction every bidder pays his
bid. The war of attrition is an auction in which every bidder but
the winner pays his bid. The winner pays the second highest bid.
Recently Krishna and Morgan showed that the war of attrition, if
signals are correlated, dominates the all-pay auction. Examples in
the paper show that the optimal all-pay auction may be optimal
among all auctions and may dominate the war of attrition.

Neste artigo demonstro a existéncia do leilao all-pay 6timo quando
os sinais sao correlacionados. Um leildo all-pay é um leildao no qual
cada licitante paga seu lance independentemente de ganhar o objeto.
A guerra de atrito é um leildo no qual cada licitante paga seu lance,
exceto o vencedor, que paga o segundo maior lance. Recentemente
Krishna e Morgan demonstraram que a guerra de atrito, se os sinais
sao correlacionados, domina o leildo all-pay. Exemplos neste artigo
mostram que o leildo 6timo all-pay pode ser 6timo entre todos os
leilGes e pode dominar a guerra de atrito.

1. Introduction

In an all-pay auction every bidder pays his bid and the highest bidder re-
ceives the object. Although not the most common auction, the all-pay auction
also happens in the practice. An all-pay auction can be seen as a tournament
where a participant’s bid is equal to his effort. A raffle is an all-pay auction
in which every participant buys one or more of a fixed number of tickets and
the winner is chosen randomly among the sold tickets. Alternatively we can
look at the all-pay auction as a generalized raffle.

The theoretical studies of all-pay auctions are not very numerous. For
example, Baye et alii (1996) study the all-pay auction with complete informa-
tion. Krishna and Morgan (1997) study the war of attrition and the all-pay
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auction. They calculate equilibrium strategies for both auctions and show that
the war of attrition, in general, dominates the all-pay auction. The purpose of
this paper is to find the optimal all-pay auction when signals are correlated.

The study of optimal auctions begun with Myerson (1981), who deter-
mined the optimal auction of one object when the bidders signals are stochas-
tically independent. In the symmetric case the optimal auction is a second
price sealed bid auction with a reserve price. However, not much is known
about optimal auctions if signals are not stochastically independent. Page
(1998) proves the existence of optimal auctions in a general setting. An ex-
plicit characterization of the optimal auction is, naturally, not possible in the
very general model of Page. The optimal all-pay auction is an optimal auc-
tion in the independent private values case. An example will show that the
optimal all-pay auction may dominate the war of attrition. Another example
(from Bulow and Klemperer, 1996) shows that the all-pay auction can extract
all the surplus.

2. The Model

The set of bidders is I = {1,2,...,I}. There is one object to be sold
at auction. Bidder’s 7 has a signal X; : @ — Ry, a random variable de-
fined on the probability space (2, A, P). The random vector of all signals is
X = (Xy,...,X7). It is possible to consider an unobserved signal S : 2 — ]Rl+
as in Milgrom and Weber (1988). This would permit the inclusion of common
value models. Though this generalization doesn’t present special difficulties
is notationally a bit uncomfortable. Therefore, I decided for the more con-
cise model. Finally bidder’s ¢ evaluation of the object is the random variable
Vi = u;(X), where u; : ]R{j—_ — R is a continuously differentiable function.
The distribution, F', of the random vector X has a continuously differentiable
density f : Z — Ryy, [, f(z)dz = 1. For each vector z = (z1,...,27)
I define the vector z_; = (x1,...,%i—1,%it+1,-..,27) obtained by the re-
moval of the i'" coordinate of z. I also write z = (z;,2_;). I suppose that
sup{u®(2);z € Z} > 0 and that the support Z of the distribution F is a
cartesian product: Z = Hle[mi, n;]. The bidder i signal X also has density
fi fi(z;) = fZ—i flzi,z_;)dx_;. Here Z_; = {z_;;z € Z}. The conditional

density of bidder ¢ given his signal is f(z_;|z;) = f{gg) It is convenient

to define u;(z) = wi(z)f(z_;|z;). It is useful to include the seller as bid-
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der 0. Thus, B = I U {0} is the set of bidders. If A # () is finite define
S(A) = {(da)aea; D 4ea o = 1 and for every a € A, g, > 0}.

Lemma 1. The densities f(z) and f(x_;|x;) are uniformly lipschitz in .

Proof. The density f is lipschitz since its support is compact and its derivative

1s continuous. From

(@) - Fi()] = ‘ [ r@a-gtri~ [ s0.0-as,

< [1f(a-) = f(bz_ldo—; < Lla

it follows that f? is uniformly lipschitiz too. Then, using that inf,czf(z) > 0
and the inequality:

f(a’7$—i) f(b,l‘_z)

B < |faz—i) = f(bz_i)] £ (b) — f*(a)]
- f(a)

f'(a) f1(b) f1(a) f(b)
_ _f@

the conditional density f(z_;|z;) = Fi(zyy 18 proved lipschitiz. QED

+ f(bvx—l)

The auction will proceed in the following way:

a) the seller publicly announces the functions' ¢ : RE. — S(B) and P =
(P,...,PH), P :BxR, >R, 1<i<I;

b) each bidder, knowing his signal X;, announces a number z; > 0 privately
to the seller; the seller forms the vector z = (z1,...,z1);

c) the objects are delivered accordingly to u € B drawn with probability
qu(z) = q(z)(u),u € B;

d) bidder i € I pays P*(u,z) if u happens.

As in Myerson (1981:62-3), the direct mechanisms (g, P) will be chosen
among those that satisfy individual rationality and incentive compatibility
constraints. Define the function T;(z;) as the expected utility of bidder i if
his signal is x;. Thus, defining P*(z) = Zi:o qu(z)Pi(z), we have that

Ti(wi) = [ a@)s(o)do_s ~ [ P(o)f(ailoda- (1)

! Henceforward called direct mechanisms. The mechanism P’ satisfies f [P ()| f(z—i|x:)

dr_;<oo for every x;.

Optimal All-pay Auction When Signals Are Correlated 191



If i has valuation z; and declares valuation z}, then we have the incentive

compatibility constraints:
Ti(w;) > /qi(xgax—i)ai(x) dz_; —/Pi(wgw—z‘)f(x—ﬂ%)dﬁﬂ—i (2)

The individual rationality constraints are:

Lemma 2. The following s true:

(u) T; is a primitive: T;(z) = r; + [ T{(u)du for every z > 0;

(v) for almost every z; € (m;,n;),

T! () = / 4:(2) D, (@ () ) dr—; — / P @)Dy fla_ilade_;  (4)

Proof. Suppose m; < a < b < n;. From the incentive compatibility con-

straints we have
T;(b) — Ti(a) > /qi(a,x—i) [w;(b,z_;) — Ui(a,z_;)] dw_;— (5)

/ P (a_) (f(2—b) — f(@ila))dec_s

From lemma 1 there exists K such that |u;(b,z_;) —u;(a,z_;)| < K|b—al
and |f(z_i|b) — f(z_ila)| < K|b— a| for every z_;. Since Zf:o gi(z) =1, we
have that

T,0) - Ti0) 2~ = of (K + & [ |Plao-ldos) 2 ~K'b

Changing places between a and b, we obtain T;(a) — T;(b) > —K'|b — al.
So |T;(b) = T;(a)| < K'|b—al. Therefore, T; is absolutely continuous since it is
lipschitz. Hence, it is almost everywhere differentiable and a primitive. This
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proves item (u). Suppose a € (m;,n;) is a point of differentiability of T;. If
b > a then

M > /qz'(a,zc_z‘)ai(bw_il),:Zi(mx_i)dx‘i_ ©)
/Pi(a7$—i)f($_i|bl)) : i(:v-ila) dz_;

Hence, using the dominated convergence theorem,?
T!(a) > /qi(a,x_i)Daﬂi(a,x_i)d:ﬂ_i — /Pi(a,x_i)Daf(x_Aa)d:I:_i (7)

Analogously, if b < a we obtain the inequality (7) reversed and therefore
(4). QED

3. The All-pay Auction
3.1 All-pay auction definition

The all-pay auction is an auction in which every bidder makes a payment
as a function only of his bid, independently of receiving the object. The
payment function is therefore of the form P(z) = Pi(z;). Formally the
auction proceeds as follows:

a) the seller publicly announces the functions ¢ : R, — S(B) and P =
(P,....,PT), PP: Ry - R, 1<i<I;

b) each bidder, knowing his signal X;, announces a number x; > 0, privately
to the seller; the seller forms the vector z = (x1,...,z71);

c¢) the object is delivered accordingly to u € B drawn with probability ¢(x)(u);
d) bidder i pays Pi(z;), 1 <4 < 1.

Equation (4) above is crucial. In the independent private signals case
the density f(z_;|z;) does not depend on z;. Therefore D, f(z_;|z;) = 0
for every z; and the payment function P® disappears from equation (4).
This property is preserved in the correlated signals case if the payment P°

2 The individual rationality constraints imply that f |Pi(a,w—i)|dw_i<oo‘

Optimal All-pay Auction When Signals Are Correlated 193



is a function of z; only, that is, if Pi(z) = P(z;). In this case, since
[ Dy, f(z_i|z;)dz_; = Dy, ([ f(z_i|lzi)dz_;) = D;_,1 =0, we have that

We have from lemma 2 that

T! (1) = / 4i(2) D () d_, (8)

Equation (8) and lemma 4 show that an all-pay auction mechanism is
determined by (g;);c;- The next lemma gives a sufficient condition for such
mechanisms to satisfy the incentive compatibility constraints.

Lemma 3. Suppose D,,(u;(x)) > 0 for every x € Z and g;(x) is increasing
i x;. If we define

ﬁz(z) = /qi(z,x_i)ﬂi(z,x_i)da:_i

- /OZ [/ ¢i (W, 2-i) Doy (Ui (w, ;) dz—i | dw

then the mechanisms (qi,ﬁi)ieﬂ satisfy the individual rationality (3) and the

incentive compatibility constraints (2).
Proof. If 2/, z > 0, we have to prove that

[ [ aterr-0m. @enn-na -

qi(z,z_;)ui(z,x_;)dx_; — ﬁz(z) >

—

qi(z Dz, z_;)dz_; — P(2') =

ft
/qZ ) @i (2, 2—;) — U (2 w_y)) do_i+

/0 [/q"""” i) Doy (Wi (w, 2_4)) do_, | dw
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Suppose first that z > 2’. Then we have to prove that

/Qi(zlax—i)(ai(zam—i) — (7, w_y))d

This is true since

/ [/ ‘”(“”‘”—¢>Dw@(wvw-i))dm_i] dw >
/ [/q"(zl’m—i)Dw(ﬁi(wvw—i))dx_i] dw =
[ 4l @) ~ -

The case 2/ < z is analogously proved. The individual rationality con-
straints follows from

/Qi(zaﬂf—i)@(z,ﬂf—i)dﬂ?—i — Pi(z) =

/oz [/q"(w’m“")DW(ai(wam—i))dx_i] dw > 0

3.2 The seller’s revenue

From the definition of T; we obtain the payment function, P*:

Pi(z) = / Gi (2,2 3)Ti (2, o) dw_s — 15 — /0 ’ T! (w)dw

Since the individual rationality constraint requires that T;(0) = r; > 0,

the seller will choose r; = 0. Therefore, the seller’s expected revenue from
bidder 7 is

/ Pi(e)f(2)dz = / Pi(a) () drs =

[ a@a@f @yds =[x, @) @) ds,

/ gi(@)us () f () des — / 4i(w,2_5) (1 = FH(@)) Dy (@s(w, 2—;))dv—; doo
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Above, equation (8) was used to eliminate 7. Define

1= Fi(z;) Dy, (thi(x))
fi(m)  flz_ilzi)

R (z) = us(z)

if i € Tand h°(z) = 0. The seller revenue is

[X @@= [3 a@hi@@ds = [3 a@h@)@ s w)

1=

The following hypothesis permits to obtain the optimal auction in analogy
with Myerson (1981):

(Ri(z) — K/ (z)) > 0 (11)

)

hi(z) = W/ (z) and i # j = 88

To understand condition (11) better, let us consider the particular case of

private independent values and that u;(z) = z;. Then hi(z) = z; — 1#?(;(93,)
Condition (11) is satisfied if (z; — 1_Fi(xi))’ > 0. This is the regular case in

fi(@i)
Myerson’s paper. Myerson also found the optimal auction in the non-regular

case. His method, however, doesn’t generalize, since the expected probability
[ ¢i(z) f(z—i|z;)dz_; may not be monotonic.

Theorem. Suppose (11) and that D, (a'(x)) > 0 for every z;. Then the
optimal auction mechanisms (q;, P*);c1 are the following:

) 4i() { 0 if  hi(z) < max; h'(z)
a) qi(z) = . i) — ()
9 #{i;hi(r):}rnax]- oy b (z) = max; b (z);

b) Pi(z;) = [ qi(z)a'(z)dy_, — foxi [qi(w, z_;) Dyt (w, z_;)]dw.

Moreover, the seller expected revenue is [ max; h'(z)f(z)dx.

Proof. Using equality (10) it is immediate that ¢;(z) defined above max-
imizes the seller revenue. In this case the seller’s expected revenue is
[ max; h'(z) f(z)dz. It remains to be checked if the mechanisms (g;, P*)ie;
satisfy the individual rationality and incentive compatibility contraints. How-
ever, this is clear from lemma (3).
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Let us consider, for example, the two bidder symmetric case. L.e. I = {1,2}
and f(z,y) = f(y,z). Then hl(z,y) = h?(y,x). If (11) is true, then bidder 1
wins the object if A'(x,y) > 0 and z > y.

In the next example the optimal all-pay auction is calculated with some
detail.

Example. There are two bidders with valuations u;(x1,22) = x;, 1 =
1,2.  The signals vector X = (X1,X3) has a distribution with density
flz,y) = M, 0 < z,y < 1. The first thing to calculate is the

marginal f fo z,y)dy = 4+52’”. The distribution of Xiis, there-

fore, Fl(x fo z)dz = 49“5”” . We now find the conditional density
Flylz) = f(fc,y) — 2(1+$y)
fi(x) 2tz

Thus, from (9) we have

(5 — 4z — 22) D, (z 25120

hl , — _ 24z
(z,9) =2 4(1 + zy)
L, (5 — 4z — 22)(2 + 4zy + 2%y)
B 22+ z2)(1 + zy)

We can see that (11) is true. The region in which bidder 1 never wins the
object, i.e., h*(z,y) < 0 is given by

2(z% + 2% 4+ 62 — 5) < yz(20 — 152 — 8x2 — 33)

If z is small, then h(z,y) < 0 for every y. If x is near 1, then h'(z,y) > 0
for any y. But, for ezample, if x = 3/4, then hl(z,y) < 0 if y >
0.42. Thus, in the region 0.42 < y < 3/4 = =z, the object is not deliv-
ered. The region in which bidder 1 predominates over bidder 2 is given by

hl(z,y) — h'(y,z) > 0. Equivalently x > y. The seller’s expected profit is

fOl max{hl(xvy)vhl(y:$)10}(1+$y)dmdy ~ 0.457.

To compare with the war of attrition, define F(y|z) = fo z|lz)dz and

Ay|z) = 1f§f(’3|)x). The expected payment of each bidder, if his signal is x, is
(Krishna € Morgan, 1997:352, eq. 13):

Wiy = [ fule) YD
@) = [ vt L dy

The seller’s expected revenue is 2f01 eV (z) fi(z)dr ~ 0.389.
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The following corollary will be used in the next section.

Corollary. The seller’s expected revenue is less than [ max;e;u’(z) f(z)dz if,
for every i, Dy Wt (z) > 0 for every z € Z.

Proof. Immediate, since hé(z) < u'(z) for every i € L.

4. Surplus Extraction

This section examines, briefly the issue of surplus extraction. It is easily
seen from the individual rationality constraints that the seller’s expected rev-
enue is never greater than [(maxi<;<r u;(z))f(z)dz. This supremum is never
achieved if signals are independent. Moreover, the corollary in the previous
section shows that the all-pay auction never extracts the full surplus when the
distribution of signals has a density. The “full surplus extraction” is, therefore,
not possible with independent signals or with the all-pay auction. However,
full surplus extraction is possible if signals are correlated. McAfee and Reny’s
paper (1992) gives necessary and sufficient conditions for full surplus extrac-
tion. The condition is on the conditional density f(z_;|z;). The optimal
mechanism charges a bidder a fee that is a function of the other bidders valu-
ations. Naturally, the optimal all-pay auction will not be, in general, optimal
among all auctions. However, sometimes the all-pay auction extracts all the
surplus and is, therefore, optimal among all auction mechanisms.The optimal
all-pay auction doesn’t extracts all the surplus when there are densities. In

the following example® the all-pay auction extract all the surplus.

Example. There are two bidders, whose values can be written as v1 = A+ B
and vo = C + B, where A, B and C are independent, uniformly distributed
in [0,1]. However, the bidders don’t know A, B and C. The mechanism that
charges P'(v;) = %", 1 = 1,2 and gives the object to the highest bidder extracts
all the surplus.

4 This exzample is from Bulow and Klemperer (1984).
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5. Conclusion

This paper has studied optimal all-pay auctions. The signals can be corre-
lated and bidders can be assymetric. The optimal all-pay auction is an optimal
auction in the independent private values case. It is not in general optimal
among all auctions. Although the all-pay auction is generally dominated by
the war of attrition, the optimal all-pay auction is not so dominated. Defini-
tion (9) is the appropriate generalization of Myerson’s marginal valuations to
the correlated signals case.
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