
325

Testing nonlinearities between Brazilian
exchange rate and inflation volatilities∗

Christiane R. Albuquerque†, Marcelo S. Portugal‡

Contents: 1. Introduction; 2. The theoretical model; 3. Data; 4. Tests with unconditional volatility;
5. Tests with conditional variance – Bivariate GARCH; 6. Conclusions; A. Tables & Graphs; B. Diagnostic
Tests for the Bi-Garch Model.
Keywords: Exchange rate, inflation, volatility, Garch models
JEL Code: E31, F41.

There are few studies, directly addressing exchange rate and inflation

volatilities, and lack of consensus among them. However, this kind of

study is necessary, especially under an inflation-targeting system where

the monetary authority must know well price behavior. This article analy-

ses the relation between exchange rate and inflation volatilities using a bi-

variate GARCH model, and therefore modeling conditional volatilities, fact

largely unexplored by the literature. We find a semi-concave relation be-

tween those series, and this nonlinearity may explain their apparently dis-

connection under a floating exchange rate system. The article also shows

that traditional tests, with non-conditional volatilities, are not robust.

Existem poucos estudos, e pouco consenso, sobre a relação entre as volatil-

idades cambial e da inflação. Todavia, tais estudos são necessários, especial-

mente em um regime de metas de inflação onde a autoridade monetária deve

conhecer detalhadamente o comportamento dos preços. Existem poucos estu-

dos, e pouco consenso, sobre a relação entre as volatilidades cambial e da in-

flação. Todavia, tais estudos são necessários, especialmente em um regime de

metas de inflação onde a autoridade monetária deve conhecer detalhadamente
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o comportamento dos preços. Este artigo analisa a relação entre aquelas volatil-

idades usando um modelo Garch bivariado, modelando, portanto, as volatil-

idades condicionais, enfoque pouco explorado pela literatura. Encontramos

uma relação semi-côncava entre as séries, e esta não-linearidade pode explicar

o aparente descolamento das mesmas em períodos de regime cambial flutu-

ante. O artigo também mostra que os testes tradicionais, com volatilidades

não-condicionais, não são robustos.

1. INTRODUCTION

The study of exchange rate volatility’s effects should be important for monetary policy decisions,
since higher volatility means higher uncertainty, which may affect inflation expectations, a crucial vari-
able in monetary policy decisions. Although the literature about the impact of exchange rate volatility
on inflation is not as extensive as the one available for its pass-through to prices, some authors high-
light such relation. Whether the impacts are significant or not remains controversial: some authors de-
fend the absence of connection between exchange rate and macroeconomic variables volatilities while
others state the opposite.1 According to the first group, exchange rate volatility is not important to
macroeconomic variables, since empirical evidence shows a substantial increase in the former during
floating exchange rate regimes, while the latter did not present a similar rise in their volatilities.2 The
second group finds evidence of such relation, being either positive or negative, in studies conducted
under different aims and approaches.

This paper seeks to check for the existence of a relation between exchange rate and inflation volatil-
ities for the Brazilian case, and our conclusions in this paper could be classified in the second group,
related especially with the findings of Dixit (1989) and Seabra (1996). By developing an optimization
model for the firm, the first author shows that trade flows and prices would depend on investment
made on a future basis and, consequently, on both expectations and higher moments of the distribu-
tions involved. In consequence, the macroeconomic environment affects the pattern of price changes.
Hence, not only the level of the devaluation but also the volatility of the exchange rate would affect
its pass-through to prices. Seabra (1996), on its turn, uses a model of intertemporal optimization with
asymmetric adjustment costs and shows that the critical value that leads a firm to invest is a function
of uncertainty. If uncertainty is high, the optimal decision will be to wait before making a movement
(wait-and-see strategy), even with the exchange rate at a level that makes investment profitable. This
attitude impacts on aggregate supply and, therefore, on inflation.

Other interesting works are those of Hausmann et al. (2001), who find a negative and significant
correlation in their tests between pass-through and measures of volatility, and Smith (1999), where
a reduction in inflation volatility as a result of an increase in exchange rate volatility was found in
approximately 31% of the cases. The welfare approach recalled by Ghosh et al. (1997) and by Sutherland
(2005) are also worth mentioning. The former show that inflation volatility is lower under floating and
intermediate exchange rate regimes for countries with low inflation, while the latter show that the sign
of relation between exchange rate and inflation volatilities will depend on the model’s parameters.

In this paper, we adopt a more sophisticated econometric methodology than those applied so far in
literature: instead of constructing exogenous volatility series (by computing the volatility of subsamples

1For the first group, see, for instance, Krugman (1988), Obstfeld and Rogoff (2000), Baxter and Stockman (1988), Flood and
Rose (1995), Rogoff (2001) and Duarte and Stockman (2002). For the second, Calvo and Reinhart (2000a,b), Barkoulas et al.
(2002), Wei and Parsley (1995), Andersen (1997), Smith (1999), Engel and Rogers (2001), Devereux and Engel (2003), Chen (2004),
Barone-Adesi and Yeung (1990), Bleaney (1996), and Bleaney and Fielding (2002).
2Obstfeld and Rogoff (2000) call the apparently disconnection between the exchange rate volatility and macroeconomic funda-
mentals.
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or rolling windows) we apply a bivariate GARCH model, working with conditional volatility series. The
purpose of this procedure is to adopt a measure not sensitive to individual selection criteria. Apart
from that, by modeling the conditional heteroskedasticity of exchange rates, it is also a more suitable
econometric technique. One of the contributions proposed by this paper is to verify whether exchange
rate volatility has impacts strong enough on inflation so that the monetary authority should monitor
it, an approach still scarce, especially in placecountry-regionBrazil. The other one is to show that
traditional tests are not robust for this type of study and that Garch-type models are more suitable for
such analysis.

The paper is divided into six sections, including this introduction. Section 2 introduces the theoret-
ical model that led to the econometric tests, while data is presented in section 3. The results obtained
by the use of traditional methods (i.e.: unconditional variance series) are presented in section 4. Section
5 shows the results of the bivariate GARCH model, and section 6 concludes.

2. THE THEORETICAL MODEL

We derive an equation relating inflation and exchange rate volatilities to test for the existence of
a significant relation between them. The approach to achieve such equation is based on Bleaney and
Fielding (2002), with slight modifications. The government has a utility function Z, of the Barro and
Gordon (1983) type, to be maximized. Z is given by equation 1, which represents the case where the
government of a country faces a trade-off between price stabilization and output growth above its
equilibrium level.

Z = −0.5π2 − 0.5b(y − y∗ − k)2 (1)

Where π is inflation, y is the output level and y∗ is potential output. The term b > 0 is incorporated
by the authors, meaning the relative weight given to output, and k > 0 represents the inflationary
bias of the government. The presence of b and k comes from the assumption that a government could
eventually attribute a higher weight to output growth to the detriment of price stability.

The restriction imposed by the authors upon function Z consists of an expectations-augmented
Phillips Curve, including the exchange rate. Here, we have the first difference to the model of Bleaney
and Fielding (2002) since we will focus not on the real but on the nominal exchange rate. Our restriction
will be a Phillips Curve for an open economy, including both the forward-looking and the backward-
looking term, as described in equation 2 below.

πt = a0π
e
t + a1πt−1 + a2(y − y∗) + a3∆(pext

t ) + a4st + εt (2)

where pext
t is the foreign price level, st, the nominal exchange rate and πe

t the inflation expectation
between period t and period t + 1.

We also assume the exchange rate following a random walk, as in many partial equilibrium studies.
Thus, we have

st = st−1 + ηt ηt ∼ N(0, σ2
η) (3)

applying (2) and (3) to (1), and obtaining the first-order condition for the maximization ofZ with respect
to π, we have

π = βa0π
e
t + βa1πt−1 + βa3∆pext

t + βa4st−1 + βa4ηt + βεt + K ′ (4)

where β = b
a2
2+b

and K ′ = −βa2k.
Some assumption also must be made concerning the behavior of πe

t . We, then, consider that infla-
tion expectations are of the form:

πe
t = πt−1 + νt (5)
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Thus, substituting (5) in (4) we get that

E[π] = (βa0 + βa1)πt−1 + βa3∆pext
t + K ′ (6)

The terms εt, ηt and νt are independents, therefore, inflation variance given by

var(π) = β2a2
0E(υt)2 + β2a2

4E(ηt)2 + β2E(εt)2 (7)

But, from (2), we have that E(εt)2 is the inflation variance. Hence,

var(π) = µ0E(υt)2 + µ1E(ηt)2 (8)

where µ0 = β2a2
0

(1−β2) and µ1 = µ0 ∗ a2
4

a2
0

Inflation variance is, therefore, a function of νt (the variance of the shock expected in t in relation
to t − 1 inflation) and of ηt (variance of the exchange rate process).

With (8), we may test for a relation between volatilities and we aim to do that by using a multi-
variate GARCH model. However, due to the small sample available – from the beginning of the floating
exchange rate system in placecountry-regionBrazil, i.e., January, 1999 to September, 2004 – the large
number of terms to be estimated does not allow us to estimate a multivariate GARCH model with
three variables. Aside from that, the inflation expectations research published by the Central Bank of
placecountry-regionBrazil started only on April, 2000, reducing our sample even further. Therefore, we
will assume that the variance measured by νt is constant and, hence, equation 8 becomes:

V ar(π) = µ′
0 + µ1var(ηt),

where µ′
0 = µ0 + var(νt) is the new constant.

Although the assumption that νt is constant is strong, we may consider it. Table 1 shows the
result of a regression of πe

t against πt−1 and a constant. If our hypothesis that the shock expected to
t + 1 in comparison with t − 1 is, on average, constant, then the residuals of this equation should be
homoskedastic. As we may see, we accept the null hypothesis of homoskedasticity, which supports our
assumption that νt is constant.3 Besides, if we compute vt = πe

t −πt−1 one can notice that almost the
entire series is within the interval of one standard deviation from the mean, as shown in Graph 1, with
the longest period in which it was outside that band being from December 2002 to April 2003.

The data for πe
t refer to the average market expectations for IPCA

4 inflation in month t+1 as in the
last business day of month t − 1, and they are published by the Investor Relations Group (Gerin) from
the Central Bank of Brazil.5

Table 1 – Estimation of Equation πe
t = c + πt−1

method: OLS; sample: 2000:03 to 2004:10
Variable Coefficient Standard deviation t − statistics p − value
πt−1 0.1593 0.0542 29.385 0.0049
C 0.4463 0.0555 80.351 0.0000

MA(1) 0.6576 0.1145 57.452 0.0000
R2 0.4584 Durbin-Watson 18.755

adjusted R2 .4376 White Test for homoskedasticity: (p-value) 0.4354

3Equivalent tests to πt and st from equations 2 and 3 accepted the alternative hypothesis of heteroskedasticity.
4Index of consumer prices considered by the Central Bank in the inflation targeting.
5�������������	��
����
������������
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Figure 1 – Evolution of νt = πe − πt−1

3. DATA

Our sample was computed on a monthly basis, from 1999:01 to 2004:09, and data used in our
estimations were the following:

(a) Price Index: Extended Consumer Price Index (IPCA), consumer price index published by the Brazilian
Institute of Geography and Statistics (IBGE),6 December/1993=100 and considered by the Central
Bank of Brazil as the reference index in the inflation targeting regime;

(b) Exchange Rate: Exchange rate R$/US$, selling prices, monthly average;

(c) External Prices: Producer price index (PPI), published by the Bureau of Labour Statistics7 (commodities,
final goods).

(d) GAP: output gap. It was computed by subtracting the industrial production series published by
IBGE (used as a proxy for monthly GDP) from the trend obtained by the Hodrick-Prescott filter.

All series were seasonally adjusted by the X-12 method and, afterwards, taken in logarithms (ln).
Next, unit root tests were performed. All series, except for gap have unit roots, as shown in Table 9 in
the appendix A, and, therefore, they were taken in first differences. The series in first difference of Price
Index, Exchange Rate and External Prices are henceforth referred to as IPCA, E and PPI , respectively.

4. TESTS WITH UNCONDITIONAL VOLATILITY

As a first step, we followed the main procedures found in literature and made tests using uncondi-
tional volatilities. In such cases, volatility is more often computed by the standard deviation from the

6�������������	
�	����


7���������������	�������
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mean in small samples, or by the variance within them. These samples are given either by splitting the
series into small subsamples or by adopting rolling windows.8

In this paper, we opted for three different methods to calculate the unconditional volatility series.
The first one is constructed by computing the standard deviation from the mean in rolling windows
with 4, 6, 8 and 12 observations in each window (series are computed as the first difference of the
natural logarithm of the variable on a monthly basis). The second one considers the variances, instead
of the standard deviation. Finally, we tested a VAR between the price index (IPCA) and the exchange
rate (E) and analyzed the resulting variance decomposition.

4.1. Rolling Windows with standard deviations

The volatilities computed by the standard deviations are presented in Graphs 2 and 3, where E_i
and IPCA_i are the volatilities of E and IPCA, respectively, within a window of size i. It is possible
to note that the series are sensitive to the size of the window. As Table 10 shows, the unit root test
for IPCA_i is also affected by window size: IPCA_4 is stationary and so is IPCA_6, although we
reject the presence of unit roots in the former at a level of significance of 10%. However, IPCA_8
and IPCA_12 have unit roots. Since E_i is always stationary, we computed the first differences of
IPCA_8 and IPCA_12, named d_IPCA_8 and d_IPCA_12, respectively.

Figure 2 – Variances of IPCA (standard deviations
from the mean) – Rolling Windows

Figure 3 – Variances of E (standard deviations
from the mean) – Rolling Windows

The estimation results also are very sensitive to window size, as it can be seen in tables 11 to 14 in
appendix A.9 In the four-month window, the lagged terms of a variable in its respective equation and
the effect of inflation variance on exchange rate variance are considered to be statistically significant.
With regard to the six-month window, there are significant cross-terms. However, the Wald test shows

8Carrera and Bastourre (2004) attribute the few macroeconomic studies about volatility to the lack of a pattern to define or
to measure volatility. According to them, the use of rolling windows, instead of subsamples, has the advantage of reducing
information loss (resultant from the reduced sample size). However, this procedure is also limited due to the difficulty in
determining the ideal number of observations in a window. In addition, it may imply a high correlation between the computed
series, which may affect the quality of estimators, and alter the true relation between the volatilities. For instance, once the
exchange rate regime varies over time, a certain window may contain two different regimes.
9The number of lags in each VAR was chosen by taking into consideration the information criteria, absence of residual autocor-
relation (LM test), absence of correlation between variables, and parsimony. In all models the dummy variable d2002_M11
– which assumes the unity value for November 2002 – was included, since in all series there is a peak in that month, proba-
bly associated with the political crisis. Its inclusion allowed us to correct problems of residual autocorrelation or correlation
between the variables found in the model. For similar reasons, the dummy variables d1999 in the four-month window and
d2003_M10 in the 12-month window were included. The latter assumes the unity value for April and May 1999 (peak inE_4)
while the former equals the unity value for October 2003 (peak in IPCA_12).
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that the sum of the lagged coefficients of E_6 in the IPCA_6 equation is not statistically different
from zero, and the same happens to the lagged coefficients of IPCA_6 in the E_6 equation. Only
the dummy and first lag of a variable are significant in the equation. In the eight-month window, only
E_8(−1) in the equation forE_8 is significant, while only the dummy is significant in theD_IPCA_8
equation. However, in this VAR, the correlation between IPCA_8 and E_8 equals −0.43, which may
jeopardize the OLS estimation. Finally, the VAR between d_IPCA_12 and E_12 reports the coefficient
of E_12(−1) as the only significant one in the E_12 equation. E_12(−1), E_12(−6) and E_12(−7)
are significant in the d_IPCA_12 equation and, according to the Wald test, their sum is statistically
different from zero at a 10% level.

In sum, the relation between those two endogenous variables is sensitive to window size. De-
pending on the size selected, we may accept or reject that the exchange rate variance affects inflation
variance and the other way round, as well as accept or reject that lagged values of inflation variance
will affect it.

4.2. Rolling Windows with variances

Once again, we have series that are very sensitive to window size, as shown in Graphs 4 and 5
(pi and ei are the volatility series for IPCA and E, respectively, computed as the variance of the sample
inside the window). Concerning stationarity, the only difference from the standard deviation case is that
the variance of IPCA in the six-month window is not stationary (table 15 in the appendix A). Hence, we
took the first difference of p6, p8 and p12, and named them as dp6, dp8 and dp12, respectively.

Tables 16 to 19 in the appendix A show the results of the four estimated VARs.10 For the four-
month window VAR, only the lagged terms of each variable are significant and, differently from the
previous case, the volatility of IPCA would not affect the exchange rate volatility. As for the six-month
window, contrary to what was observed in the standard deviation case, the only significant terms are
the dummy and the first lag of the exchange rate volatility in its own equation. In the eight-month
window, we do not find the correlation problem we found before but, again, the only term that is
significant is e6(−1) in the equation for the exchange rate variance. Finally, the VAR between dp12
and e12 indicates e12(−1) as the only significant variable in the equation for e12. In the equation for
inflation variance, the coefficients for e12(−1) and e12(−2) are significant and the Wald test shows
that their sum is statistically different from zero at a 10% level.

In sum, we notice that the results differ from the ones obtained in the case with standard deviations
concerning unit root tests, the number of lags in the VAR and the significance of some variances. None
of the models showed that inflation volatility is affected by its lagged term, differently from what
happens to exchange rate volatility. When it comes to cross-terms, we find that exchange rate volatility
is significant in explaining inflation volatility in the 12-month windows. Hence, one can realize that
results are sensitive not only to window size but also to the method chosen to compute volatility. In
addition, since there are lagged effects in the case of exchange rate variance, we reinforce the adequacy
of investigating a GARCH-type model.

4.3. Variance decomposition in a VAR model

The last exercise performed in this section was to test a VAR between the price index and the
exchange rate and to analyze variance decomposition. Since both series have unit roots, as shown in
Table 1, we first tested for the presence of cointegration vectors. As shown in Table 20 in the appendix A,
the Trace and Eigenvalue tests do not accept the null hypothesis of presence of a cointegration vector.11

10.D2002_M11 was included for the six-month window case
11The conclusion is the same if we consider only one lag.
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Figure 4 – Variances of IPCA (variances) – Rolling
Windows

Figure 5 – Variances of E (variances) – Rolling
Windows

For this reason, we will test a VAR between the first differences of price index (IPCA) and exchange rates
(E).

In the variance decomposition factorization by Cholesky method, we chose E preceding IPCA, since
we consider the former to be more exogenous than the latter. The Granger test may be used to give
further support in the ordering decision (table 21 in the appendix A. However, since the correlation
between the residuals is low (−0.17 < |0.20|) 12 the order does not have significant effects over the
results. Table 22 shows the VAR results, while Table 23 presents the variance decomposition.

By analyzing the variance decomposition in table 23, we find that about 3% of the movements in
IPCA in t + 1 may be explained by shocks in E in period t. There are increasing accumulated effects
over time, and shocks in E explain around 42% of the movements in IPCA after 12 months. A shock in
IPCA, in its turn, does not have an immediate effect on the sequence of E, however it has lagged effects,
although on a smaller scale.

Graphs 6 to 9 show these decompositions over time, as well as the interval of ±2 standard errors.
We notice that shocks to the variables have positive effects on their sequences, and apart from the
impact of IPCA on E, they are different from zero. Therefore, we cannot rule out the hypothesis that
shocks to the exchange rate – represented by ηt in equation 3 – might affect inflation.

Figure 6 – Percent E variance due to E Figure 7 – Percent IPCA variance due to E

12Enders (1995) suggests, as a rule-of-thumb, that a correlation between residuals of the variables < |0.2| is not strong enough
to affect the results in the Cholesky decomposition.
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Figure 8 – Percent IPCA variance due to E Figure 9 – Percent IPCA variance due to IPCA

Based on the results presented in this section, we may infer that the traditional measures used to
verify whether there is a relation between the volatilities of exchange rate andmacroeconomic variables
(standard deviations or variances in subsamples) yield results that are sensitive to the subsample size,
leading us to accept or reject the significance of the relation according to the window size we are
working with.

The variance decomposition, in its turn, indicates that shocks to the exchange rate affect inflation
variance. Since volatility is also a measure of uncertainty, this result sounds more intuitive than some
of those presented before: if the exchange rate affects inflation and has delayed effects (incomplete
exchange rate pass-through in the short run), shocks to that variable will affect the uncertainty about
future inflation. Besides, an adequate exchange rate model must consider the presence of conditional
heteroskedasticity, as illustrated in Table 24 in the appendix. In this case, it is necessary to generate
volatility series for both variables in the same way - hence, to consider conditional variance for both -
and not simply compare the variance series obtained from a GARCH (p, q)model for the exchange rates
with an exogenous measure of inflation volatility. Furthermore, we show that variance decomposition
reports that shocks to the IPCA affect its variance, just as well as some of the results obtained in the
rolling window procedure show us that IPCA volatility is affected by its past values, reinforcing the
application of the test for a bivariate GARCH model with E and IPCA.

5. TESTS WITH CONDITIONAL VARIANCE – BIVARIATE GARCH

Testing a GARCH model requires, first, some assumption about the mean equations. We considered,
therefore, three different cases. The first one is consisted of only lagged terms of each variable; the
second, of a Phillips Curve for the IPCA equation (according to equation 2 in Section 2) and the lagged
values for the exchange rate; the third, of the Phillips Curve for the IPCA and a random walk with
drift for the exchange rate (equation 3 in Section 2). According to unit root tests previously performed,
both variables were considered in first differences of their logarithms. Considering both the cross-
correlograms and OLS models, we chose the number of lags in the equations for IPCA and exchange
rate.13 With regard to variance specifications, we tested five different options: diagonal-Vec (Bollerslev
et al., 1988), constant correlation (CCORR, from Bollerslev 1990), full parameterization (Vec), the BEKK
restriction (Engle and Kroner, 1993) and the dynamic conditional correlation (DCC, from Engle 2002).
Only under the BEKK restriction convergence was achieved, and we consider some reasons for that
further ahead in this section.

The general form of mean, variance and covariance equations under the BEKK model are:

13When they pointed to different number of lags, we tested the highest one.
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Mean equations

IPCA = δ0 + δ1IPCAt−1 + δ2Et−1 + δ3Et−2 + +δ4GAPt−2 + δ5PPIt−1 + ε1,t

E = γ0 + γ1Et−1 + γ2Et−2 + ε2,t

Variance and Covariance equations14

h11 = c11 + a2
11ε

2
1,t−1 + 2a11a21ε1,t−1ε2,t−1 + a2

21ε
2
2,t−1 + g2

11h11,t−1 + 2g11g21h12,t−1 + g2
21h22,t−1

h22 = c22 + a2
12ε

2
1,t−1 + 2a12a22ε1,t−1ε2,t−1 + a2

22ε
2
2,t−1 + g2

12h11,t−1 + 2g12g22h12,t−1 + g2
22h22,t−1

h12 = c21 + a11a12ε
2
1,t−1 + (a12a22 + a21a12)ε1,t−1ε2,t−1 + a21a22ε

2
2,t−1

+ g12g11h11,t−1 + (g11g22 + g12g21)h12,t−1 + g21g22h22,t−1

In order to make the analysis clearer, we renamed the coefficients above as:

c11 = α0; a2
11 = α1; 2a11a21 = α2; a2

21 = α3; g2
11 = α4; 2g11g21 = α5; g2

21 = α6

c22 = β0; a2
12 = β1; 2a12a22 = β2; a2

22 = β3; g2
12 = β4; 2g12g22 = β5; g2

22 = β6

c21 = µ0; a11a12 = µ1; a12a22 + a21a12 = µ2; a21a22 = µ3; g12g11 = µ4; g11g22 + g12g21

= µ5; g21g22 = µ6

Hence, the variance and covariance equations can be rewritten as:

h11 = α0 + α1ε
2
1,t−1 + α2ε1,t−1ε2,t−1 + α3ε

2
2,t−1 + α4h11,t−1 + α5h12,t−1 + α6h22,t−1

h22 = β0 + β1ε
2
1,t−1 + β2ε1,t−1ε2,t−1 + β3ε

2
2,t−1 + β4h11,t−1 + β5h12,t−1 + β6h22,t−1

h12 = µ0 + µ1ε
2
1,t−1 + µ2ε1,t−1ε2,t−1 + µ3ε

2
2,t−1 + µ4h11,t−1 + µ5h12,t−1 + µ6h22,t−1

For each case, different simulations were made changing the convergence criteria and the number
of iterations. Therefore, it is possible that, for each case, we ended up with more than one result
achieving convergence. When this occurred, the choice was made based on the following criteria: LM
and the ARCH-LM tests (i.e. absence of residual serial correlation and of arch-type residuals), calculation
of the eigenvalues to assure that the condition of covariance stationarity was respected (see Engle and
Kroner (1993) for further details on conditions and tests), and, when all the previous were respected,
we chose the result that maximized, for the case considered, the likelihood function. The final results
are presented in table 2.

By analyzing Table 2, we notice that the results for the mean equations are quite similar, as well as
the values in the variance equation for cases (1) and (2). Case (3) differs from the other two but, since
that model has ARCH residuals for the equation of E and serial correlation of residuals for both mean
equations,15 it cannot be considered as a good model.

Comparing the variance equations in cases (1) and (2), we see that the differences lie in the signs of
g12 and g22, in the values of a11, a22 and a12 and in the significance of coefficients µ1, β1 and β2, that
is, the impact of ε21,t−1 on the conditional variance of E (first difference of the exchange rate) and in
the covariance and impact of ε21,t−1ε

2
2,t−1 on the conditional covariance of E.

14Variance and covariance equations are from Engle and Kroner (1993), equation 2.3, pages 5 and 6, without suppressing the
GARCH terms.

15We could not find any model that removed the autocorrelation in the mean equation of the exchange rate, which was expected
since there are no lagged terms in that equation.
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Table 2 – Bivariate GARCH Results (Monthly data from 1999:01 to 2004:09)

Variables Case 1 Case 2 Case 3a
Function Value 5.485.888.337 5.587.008.734 5.480.509.755

Constant 0.00282329* 0.00197323* 0.0011409*
(0.0005596) (0.00050458) (0.00051313)

IPCAt−1 0.55715402* 0.57849083* 0.68315183*
(0.07376155) (0.0609667) (0.05967424)

Et−1 - 0.03863824* 0.06380358*
(0.00980401) (0.00779833)

Equation for IPCA Et−2 - -0.00073484 -0.00920641
(0.00964137) (0.0073217)

GAPt−2 - 0.01673604** 0.01552899**
(0.00977043) (0.0095768)

PPIt−1 - 0.09498593** 0.10285839*
(0.05367548) (0.05499651)

Equation for E Constant 0.00669639 0.01229489* 0.01917512*
(0.00424251) (0.0043067) (0.00534423)

Et−1 0.8094822* 0.60752556* -
(0.11426506) (0.12549928) -

Et−2 -0.22750191** -0.16772685 -
(0.13597143) (0.10694474)

Conditional variance of IPCA α0 0 0 0
α1 + + +
α2 + + +
α3 + + +
α4 0 0 0
α5 0 0 0
α6 0 0 0

Conditional variance of E β0 0 0 0
β1 + 0 +
β2 + 0 +
β3 + + +
β4 + + +
β5 + + +
β6 + + +

Covariance m0 + + -
µ1 - 0 -
µ2 - - -
µ3 - - -
µ4 0 0 0
µ5 0 0 0
µ6 0 0 0

Notes: (a) case presents residual autocorrelation in both mean equations (LM test); residuals
of ARCH-type in the exchange rate equation; standard deviations in parentheses; * and **
denote significance at 5% and 10%, respectively.
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However, it can be seen from Table 3 that the significance of µ1, β1 and β2 is the only significant
difference between both cases. The difference in the signs of g12 and g22 does not affect the final result
because these coefficients are considered under three situations: (i) squared values; (ii) multiplied by
each other, (iii) multiplied by coefficients that are statistically equal to zero. The differences in a11, a22

and a12, in their turn, fall within standard deviation boundaries, thus, they may not be considered to be
significant. It is important to notice that for the inflation equation all cases provided the same signals
and the same significance (i.e. if statistically equal to or different from zero). Therefore, our results for
the response of IPCA to shocks in E are robust.

Table 3 – Estimated Parameters in Variance and Covariance Equations (Monthly data from 1999:01 to
2004:09)

g11 -0.1041899 -0.0513807 0.03980506*
(0.1348117) (0.11993625) (0.14292026)

g21 0.00810385 0.01085598 -0.00743866*
(0.01683404) (0.01418979) (0.0156595)

g12 12.52650218* -13.00132891* 13.12325566*
-155.221.793 -168.386.503 -198.208.477

g22 0.41076103** -0.43513845* 0.50120845*
(0.23448881) (0.21248228) (0.22752382)

a11 0.27491257* 0.40438372* -0.44434782*
(0.12289452) (0.13130784) (0.17146475)

a21 0.0595035* 0.05305404* -0.05393149*
(0.0131604) (0.01178906) (0.01283429)

a12 -3.42461647** -5.71185332* 74.208.698
-198.123.913 -210.969.805 -241.134.849

a22 -0.46199166* -0.59176609* 0.78655762*
(0.1406473) (0.14044079) (0.16694871)

c11 -0.00000016 -0.00000008 0.00000006
(0.007226) (0.00455714) (0.00519676)

c21 0.00211834* 0.00175652* -0.00189984*
(0.00037541) (0.00033542) (0.00031271)

c22 0.00366595 0.0038599 -0.00462995
(0.00836578) (0.00918004) (0.01001528)
(0.00836578) (0.00918004) (0.01001528)

The Wald Test was performed to decide between the cases considered. The unrestricted case – that
is, case (2) – was preferred to the detriment of cases (1) and (3), as shown in Table 4. Hence, we will
consider case (2) as our results from now on.

Tables 5 to 8 show the results of the Ljung-Box and LM tests for auto-correlation of residuals, the
Arch-LM test for Arch-type residuals, the multivariate Portmanteau test for cross-correlation and the
eigenvalue vector16 for case 2. As it can be seen from these tables, the model estimated in case 2
respects the conditions of no serial autocorrelation or cross-correlation of residuals, no Arch-type resid-
uals and is covariance stationary. Therefore, we can say that the dependence between exchange rate
and inflation volatilities was completely captured by the bivariate-Garch model.

By analyzing the results of case 2, shown in the second column of Table 2, one can notice that the
conditional variance of IPCA is affected (statistically significant) by shocks to the IPCA, E and shocks

16For a brief explanation of the eingevalue calculation, see Appendix B.
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common to both. However, since α1 and α3 are square coefficients, we cannot determine whether the
effects of IPCA and E shocks have a positive or negative sign, but we can affirm that they are statistically
significant. Lagged variances and covariances, however, do not play a significant role in explaining IPCA
variance.

Table 4 –Wald Testa

Cases tested Observed χ2
4 statistic Null hypothesis: Variables

added in case (2) are not jointly
significant

Case (1) vs Case (2) 20.22 Reject
Case (2) vs.Case (3) 21.30 Reject

aWald Test: −2(lr − lu) ∼ χ2
q , where q is the number of added variables, lr and lu are the log-likelihood of the restricted and

unrestricted cases, respectively. Under Ho, the added variables are not jointly significant.

Table 5 – Lung-Box Tests for Residual Autocorrelation

Ljung-Box E1 (residuals of inflation Equation) E2 (residuals of exchange rate equation)
Q-Statistics Significance Level Q-Statistics Significance Level

Q(1-0) 0.0041 0.9491 0.0934 0.7599
Q(2-0) 0.8666 0.6484 0.1501 0.9277
Q(3-0) 14.555 0.6926 0.1737 0.9817
Q(4-0) 18.807 0.7577 12.716 0.8662
Q(5-0) 19.857 0.8511 17.955 0.8766
Q(6-0) 32.571 0.7760 23.153 0.8885
Q(7-0) 36.674 0.8172 29.063 0.8935
Q(8-0) 62.370 0.6207 62.032 0.6245
Q(9-0) 65.844 0.6803 63.149 0.7080
Q(10-0) 68.781 0.7369 75.265 0.6750
Q(11-0) 75.425 0.7536 122.845 0.3426
Q(12-0) 138.282 0.3118 129.173 0.3751

As for the conditional variance of E, it is affected by its lagged values and by lagged values of
the conditional variance of IPCA – the latter goes undetected by almost all tests with unconditional
variances – although we also cannot make assertions about the sign. Shocks common to both variables
(ε1,t−1ε2,t−1) and in the covariance have a positive and significant sign. Graph 10 shows the estimated
conditional variances over time.

Finally, results show us that shocks in the exchange rate (E) and shocks common to exchange rate
and IPCA have negative and significant effects over the covariance between the two variables. This is
an important result in our model. It means that shocks that affect the exchange rate or the exchange
rate and IPCA simultaneously will cause a “disconnection” of these two variables. After all, everything
else the same, a reduction in the covariance means a reduction in the correlation coefficient between
the variables.

At first, we considered that the lack of convergence for specifications other than the BEKK model
would result from the small size of our sample (January, 1999 to September, 2004). However, this may
be questioned since the BEKK specification has more parameters than some of the other specifications
tested. The negative sign of shocks in E over the conditional covariance (µ1 < 0) and the dispersion
graphs presented below (graphs 11 to 14) suggest that the sign of shocks in E over the conditional
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Table 6 – LM and ARCH-LM Tests

Lags Qui-square critical level N*R2 valuesa

Inflation Equation Exchange Rate Equation
at 5% LM test Arch-LM test LM test Arch-LM test

1 38.415 11.927 0.9080 33.525 0.4656
2 59.915 49.930 21.524 41.045 30.632
3 78.147 55.838 65.384 27.580 33.708
4 94.877 62.760 78.664 53.360 36.771
5 110.705 78.937 80.904 72.583 34.554
6 125.916 85.463 89.747 93.236 42.765
7 140.671 121.124 89.349 130.569 47.729
8 155.073 146.820 91.488 185.930 49.308
9 169.190 149.107 95.050 181.027 54.148
10 183.070 148.134 99.457 183.225 53.254
11 196.751 151.475 113.772 207.173 57.317
12 210.261 197.229 97.259 202.341 100.397

aThe N*R2 value must be < than the 2 to accept the null hypotheses of no autocorrelation and arch residuals

Table 7 – Multivariate Portmanteau Test for Cross-Correlationa

M Test Statistics Significance Level
3 56.954 0.3370
5 122.948 0.5036
7 165.348 0.7389
10 250.132 0.8394
12 362.776 0.6803
15 452.643 0.7660

aH0 : ρ1 = ρ2 = · · · = ρm = 0 and Ha : ρi �= 0 for some i ∈ {1, . . . , m} (See Tsay (2002), for the multivariate
Portmanteau test for cross-correlation).

Table 8 – Eigenvalue Vector

Y= 0.6630
-0.4252
-0.0770
0.0637
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Figure 10 – Conditional Variances – IPCA and E

variance of IPCA may not be the same all the time. If this is true, then we may have a reason for the
non-convergence of specifications that, instead of working with squared terms (imposing the positivity
of the matrix), try to find a sign for the relation. In these specifications, if the signs of a coefficient in
the equations of exchange rate’s and inflation’s variances change from positive to negative, they will
not converge to a final value, since the model will have to establish whether the coefficient is positive
or negative. In the BEKK specification, however, this problem does not exist once it works with square
coefficients. However, further tests are necessary before we can make such assertion.

Graphs 11 to 14 are dispersion graphs with the conditional variances of E on the horizontal axis and
of IPCA on the vertical axis. Graph 11 plots the entire sample and one can clearly see four outliers in that
graph, which correspond to the period between February and May 1999 (i.e. the first months after the
change in the exchange rate regime, caused by the 1999 crisis, and before the adoption of the inflation-
targeting regime in June of that year). Hence, we excluded these observations and built Graph 12 .
Again, five outliers were removed to construct Graph 13 (June 1999, November 2000, December 2001,
December 2002 and January 2003). Graph 14, in its turn, was built using only the region with the
highest concentration of observations (57% of the sample).17

Graph 12 and, mainly, graph 13 suggest a semiconcave (if not concave) relation between the two
variables at stake (i.e. the conditional variances of exchange rate and of IPCA). To illustrate the relation,
a trend was included in those graphs and in graph 14, and the adjusted R2 of each trend equation was
reported (see graphs 15 to 17 in the appendix A). The semiconcave relation would imply that, although
the response of inflation volatility to exchange rate volatility is positive, the proportion in its variation
decreases as exchange rate volatility rises.

If we consider graph 14, which plots the region with the highest concentration of observations, we
find a clear concave relation. This would mean that, after a certain point, the positive relation between
volatilities becomes negative, as opposed to the convex form observed in financial variables (the so-
called smile of volatility). Also, it is possible that it is reflecting the existence of a regime switching in
the volatilities, since we are removing the extreme values of the sample. We need a longer sample to

17The observations removed from Graph 14 are, related to Graph 11: January to July 1999; November 1999 to January 2000;
March, August, October and November 2000; April 2001; December 2001 to March 2002; October 2002 to March 2003; May, July,
September and November 2003 and August 2004.
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test if this behavior would be reproduced over time. However, we can only use graph 14 to speculate
about these possibilities happening. Nonetheless, it is a question to be answered in future research,
since some works of other authors find, as we pointed out in the introduction, the sign may change
according to the model’s parameters.

Figure 11 – Exchange rate and inflation volatili-
ties (full sample)
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Figure 12 – Exchange rate and inflation volatili-
ties (reduced sample)
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Figure 13 – Exchange rate and inflation volatili-
ties (reduced sample)
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Figure 14 – Exchange rate and inflation volatili-
ties (reduced sample)

0,000003

0,0000035

0,000004

0,0000045

0,000005

0,0000055

0,000006

0,0000065

0,0007 0,0009 0,0011 0,0013 0,0015 0,0017 0,0019

Conditional Variance of E

C
o

n
d

it
io

n
al

 V
ar

ia
n

ce
 o

f 
IP

C
A

6. CONCLUSIONS

The analysis presented in sections IV and V show that the use of unconditional variances leads us
to results that are sensitive to the chosen measure of volatility, which is based on subjective criteria.
The multivariate GARCH model, dealing directly with the effects of conditional volatilities, finds a semi-
concave relation (differently from the case for financial series, where this relation has a convex form),
statistically significant, between exchange rate and inflation variances.

The results seem to be in line with the intuition obtained from other studies, especially Dixit (1989)
and Seabra (1996). When exchange rate volatility is very high, increasing uncertainty, inflation re-
sponse may be reduced, leading to smaller effects. This may explain why some studies to placecountry-
regionBrazil found a decrease in the short-run pass-through from exchange rates to consumer prices
after the floating regime.

The analysis based on the role played by uncertainty could also make a bridge between the two
different points of view concerning the existence of a relation between the volatilities of exchange
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rate and inflation. The relation would exist but, under certain conditions, the disconnection between
the variables would be too strong to be noticed. In periods of high volatility, agents will not respond
with the same intensity as they do in periods of stability due to the lack of knowledge concerning
the duration of the movements in the exchange rate (whether temporary or permanent). Therefore,
inflation volatility has smaller amplitude. On the other hand, when exchange rate volatility is lower,
inflation would answer more promptly.18 This disconnection becomes clearer in the negative sign found
in the answer of the conditional covariance to shocks in the exchange rate and would be reinforced if
the sign reversion found in graph 14 is verified in future studies.

The caveats of this paper basically lie in the small sample available for placecountry-regionBrazil,
since the floating regime for exchange rates having started only in 1999. Because of that, we cannot
establish with certainty whether the problems faced with convergence were due to the sign instability
or to the small period involved. Nonetheless, we tend not to rely too much in the small sample expla-
nation, since three out of the other four restrictions tested – diagonal VEC, CCORR and DCC – have less
parameters to be estimated. Nonetheless, a large sample is essential to corroborate the results.

However, this article innovates by (i) applying a multivariate GARCH model, thus, considering con-
ditional variances to analyze the relation between volatilities, (ii) trying to establish a relation between
exchange rate and inflation volatilities and its possible implications for monetary policy and (iii) show-
ing that traditional tests performed with exogenously constructed volatility series are sensitive to the
criteria chosen to construct such series and do not reveal relevant features of that relation.
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A. TABLES & GRAPHS

Table 9 – ADF Unit Root Test

sample: 2000:03 to 2004:10
Variable ADF test statis-

tics
Critical value at
5%

ADF test statis-
tics – first differ-
ence of the vari-
able

Critical value at
5%

Price Index -2.1704 (a) -34.783 -3.904127(a) -34.783
Exchange Rate -1.7097 (a) -34.783 -7.427513(a) -34.783
External Prices -1.5419 (a) -34.783 -8.014687(a) -34.793
GAP -97.018 -29.077 - -

Note: test performed with (a) trend or intercept and (b) without trend.
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Table 10 – ADF Unit Root Test – std. dev.

sample: 2000:03 to 2004:10
Variable ADF test statis-

tics
Critical Value at
5%

ADF test statis-
tics first differ-
ence of variables

Critical Value at
5%

IPCA_4 -34.697 -34.805 - -
IPCA_6 -1.8540(a) -19.461 - -
IPCA_8 -1.3046 (a) -19.463 -70.015 -34.865
IPCA_12 -0.8823(a) -19.465 -59.875 -34.921
E_4 -119.597 -34.816 - -
E_6 -10.8574 (b) -29.084 - -
E_8 -9.5054(b) -29.100 - -
E_12 -7.5521(b) -29.136 - -

Note: test performed with (a) trend or intercept and (b) without trend.

Table 11 – VAR for four-month windows

Variables E_4 IPCA_4 Variables E_4 IPCA_4
E_4(-1) 0.2790 -5.65E-05 D2002_M11 0.005 7.11E-05

(0.0449) (0.0004) (0.001) (8.7E-06)
[6.2085] [-0.1423] [5.1319] [ 8.1232]

IPCA_4(-1) 21.8600 0.7206 D1999 0.0121 1.59E-06
(7.7321) (0.0683) (0.0015) (1.4E-05)
[2.8272] [10.5446] [7.8898] [0.1177]

C 0.0004 2.27E-06 R-squared 0.8856 0.7384
(0.0002) (1.4E-06) Adj. R-squared 0.8779 0.7210
[2.2992] [1.5965] F-statistic 116.0581 42.3377

Note: standard deviations between parenthesis; t-statistics in brackets.
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Table 12 – VAR for six-month windows

Variables E_6 IPCA_6 Variables E_6 IPCA_6 Variables E_6 IPCA_6
E_6(-1) 0.9027 0.0034 E_6(-6) 0.0706 -0.0010 IPCA_6(-5) -265.070 -0.0059

(0.1118) (0.0018) (0.0482) (0.0008) (7.8289) (0.1248)
[ 8.0747] [ 1.9157] [1.4657] [-1.343] [-3.3858] [-0.0469]

E_6(-2) 0.0398 -0.0064 IPCA_6(-1) 0.4882 0.8246 IPCA_6(-6) 19.6540 -0.0141
(0.1483) (0.0024) (7.085) (0.1129) (6.1560) (0.0981)
[0.2684] [-2.7097] [0.0689] [7.3032] [ 3.1927] [-0.1434]

E_6(-3) 0.0239 -0.0002 IPCA_6(-2) 1.8361 0.1457 C 0.0002 1.86E-06
(0.1548) (0.0025) (9.0902 (0.1449) (0.0001) (1.8E-

06)
[ 0.1546] [-0.0727] [ 0.202] [ 1.0061] [ 1.8206] [ 1.0462

E_6(-4) -0.1345 0.0043 IPCA_6(-3) -43.719 -0.0721 D2002_M11 0.0028 4.59E-05
(0.1139) (0.0018) (8.7652) (0.1397) (0.0004) (6.8E-

06)
[-1.1809] [ 2.3814] [-0.4989] [-0.5159] [ 6.5062] [ 6.7698]

E_6(-5) -0.1018 0.0005 IPCA_6(-4) 7.9487 -0.0954 R-squared 0.88102 0.8588
(0.0874) (0.0019) (8.6463) (0.1378) F-statistic 25.0626 20.5897
[-1.1643] [ 0.3891] [ 0.9193] [-0.6920] Adj. R-

squared
0.8459 0.8171

Table 13 – VAR for eight-month windows

Variables E_8 D_IPCA_8 Variables E_8 D_IPCA_8
E_8(-1) 0.7930 0.0016 D_IPCA_8(-2) 53.804 -0.04323

(0.0987) (0.001) -91.884 (0.0900)
[ 8.0398] [ 1.6026] [ 0.5856] [-0.4790]

E_8(-2) 0.0097 -0.0006 C 0.0002 -1.79E-06
(0.0674) (0.0007) (0.0001) (1.1E-06)
[ 0.1439] [-0.9426] [ 1.8207] [-1.63756]

D_IPCA_8(-1) 18.755 0.09867 D2002_M11 0.0015 4.21E-05
-9.215 (0.0903) (0.0005) (5.2E-06)
[ 0.2035] [ 1.0922] [ 2.8223] [ 8.1145]

R-squared 0.721 0.5781 Adj. R-squared 0.6947 0.5383
F-statistic 273.886 145.247
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Table 14 – VAR for twelve-month windows
Variables E_12 D_IPCA_12 Variables E_12 D_IPCA_12 Variables E_12 D_IPCA_12
E_12(-1) 11.266 0.0066 E_12(-7) -0.01345 0.00166 D_IPCA_12(-6) 695.244 -0.0856

(0.1548) (0.0017) (0.0727) (0.0008) -81.141 (0.0874)
[ 7.2795] [ 3.9409] [-0.1849] [ 2.1149] [ 0.8568] [-0.9788]

E_12(-2) -0.0864 -0.0041 D_IPCA_12(-1) -73.151 0.1543 D_IPCA_12(-7) -81.538 0.0164
(0.2702) (0.0029) -99.846 (0.1076) -76.083 (0.082)
[-0.3197] [-1.394] [-0.7326] [ 1.4338] [-1.0717] [ 0.2005]

E_12(-3) -0.15121 0.0009 D_IPCA_12(-2) 53.827 0.107 C 8.75E-05 -1.55E-06
(0.2749) (0.003) -98.458 (0.1061) (9.6E-05) (1.0E-06)
[-0.5499] [ 0.3009] [ 0.5467] [ 1.0081] [ 0.9099] [-1.4988]

E_12(-4) 0.1970 -0.0028 D_IPCA_12(-3) -118.497 -0.0342 D2002_M11 -0.000391 2.64E-05
(0.2605) (0.0028) -105.016 (0.1132) (0.0003) (3.7E-06)
[ 0.7565] [-0.9924] [-1.12837] [-0.3018] [-1.1375] [ 7.1275]

E_12(-5) -0.1114 0.0021 D_IPCA_12(-4) -0.5193 -0.1149 D2003_M10 -0.0018 1.46E-05
(0.2391) (0.0026) -101.884 (0.1098) (0.0004) (3.8E-06)
[-0.466] [ 0.7939] [-0.051] [-1.0465] [-5.0760] [ 3.8268]

E_12(-6) 0.0218 -0.0040 D_IPCA_12(-5) 142.164 0.0848 R-squared 0.9317 0.8543
(0.1654) (0.0018) -92.135 (0.0993) Adj. R-squared 0.8986 0.7837
[ 0.1315] [-2.2462] [ 1.543] [ 0.8540] F-statistic 281.265 120.931

Table 15 – ADF Unit Root Test – variances

sample: 2000:03 to 2004:10
Variable ADF test statis-

tics
Critical Value at
5%

ADF test statis-
tics first differ-
ence of variables

Critical Value at
5%

p4 -3.2566(b) -29.069 - -
p6 -2.5156 (b) -29.084 -73.599 -3.484
p8 -0.8460 (a) -19.463 -73.398 -34.865
p12 -0.4167 (a) -19.467 -59.193 -34.922
e4 -65.715 -34.816 - -
e6 -5.8641 (b) -29.084 - -
e8 -5.4361 (b) -29.100 - -
e12 -4.5351 (b) -29.136 - -

Note: test performed with (a) trend or intercept and (b) without trend

Table 16 – VAR for four-month windows

Variable E4 p4 Variables E4 p4
E4(-1) 0.6525 0.002503 C 0.0088 0.0008

(0.0605) (0.00665) (0.0032) (0.0004)
[ 10.7898] [ 0.37628] [ 2.7471] [ 2.1113]

P4(-1) 0.0791 0.700972 R-squared 0.6643 0.4998
(0.8394) (0.09233) Adj. R-squared 0.6534 0.4837
[ 0.0942] [ 7.59224] F-statistic 613.330 30.976

Note: Std. deviations in parentheses and t-statistics in square brackets.
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Table 17 – VAR for six-month windows

Variable E6 dp6 Variable E6 dp6
e6(-1) 0.7630 0.0083 Dp6(-1) 0.7124 0.0221

(0.1127) (0.0136) (0.8625) (0.1044)
[ 6.7736] [ 0.6068] [ 0.826] [ 0.2116]

e6(-2) 0.0101 -0.0126 Dp6(-2) 0.43334 -0.1202
(0.0903) (0.0109) (0.8515) (0.1031)
[ 0.1113] [-1.1549] [ 0.509] [-1.1664]

C 0.0064 3.82E-05 D2002_M11 0.02998 0.0056
(0.0024) (0.0003) (0.0077) (0.0009)
[ 2.6605] [ 0.1319] [ 3.8767] [ 6.0109]

R-squared 0.7255 0.4332 Adj. R-squared 0.7006 0.3817
F-statistic 290.747 84.069

Table 18 – VAR for eight-month windows

Variable E8 dp8 Variables E8 dp8
e8(-1) 0.8994 0.0203 dp8(-1) 0.0669 0.0222

(0.1177) (0.0151) -10.564 (0.1351)
[ 7.6418] [ 1.3501] [ 0.0633] [ 0.1639]

e8(-2) -0.0595 -0.0136 dp8(-2) 0.1905 -0.007
(0.0988) (0.0126) -10.548 (0.1349)
[-0.6021] [-1.0740] [ 0.1806] [-0.0512]

C 0.0052 -0.0002 R-squared 0.7267 0.0338
(0.0025) (0.0003) Adj. R-squared 0.7064 -0.0378
[ 2.0663] [-0.6696] F-statistic 358.896 0.4722

Table 19 – VAR for twelve-month windows

Variables E12 dp12 Variables E12 dp12 Variables E12 dp12
e12(-1) 0.9752 0.0413 dp12(-1) -0.9046 0.1774 C 0.0028 -0.0004

(0.1086) (0.0124) -11.596 (0.1325) (0.0023) (0.0003)
[8.976] [3.3225] [-0.7802] [1.3391] [1.2268] [-1.5782]

e12(-2) -0.0543 -0.0290 dp12(-2) -0.1943 0.17707 R-
squared

0.8348 0.245

(0.1014) (0.0116) -11.187 (0.1278) Adj. R-
squared

0.8216 0.1846

[-0.5357] [-2.5057] [-0.1736] [1.3851] F-
statistic

631.833 40.552
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Table 20 – Cointegration test between exchange rate and consumer price index

Trend assumption: Linear deterministic trend
Series: ln (exchange rates) and ln (consumer price index); Lag interval (in first differences): 1 to 4

Unrestricted Cointegration Rank Test (Trace)
Number of coin-
tegration vectors
under H0

Eigenvalue Trace statistic Critical Value
(5%)

p-value **

None 0.1048 8.3109 15.495 0.4328
At most one 0.019 1.2275 3.8412 0.2679

Unrestricted Cointegration Rank Test (Maximum Eigenvalue)
Number of coin-
tegration vectors
under Ho

Eigenvalue Trace statistic Critical Value
(5%)

p-value **

None 0.1048 7.0834 14.2646 0.4793
At most one 0.019 1.2275 3.8415 0.2679

** MacKinnon-Haug-Michelis (1999) p-values

Table 21 – Granger Causality Test a

Null Hypothesis Number of Obs. F-statistic p-value
E does not Granger-Cause IPCA 66 9.0601 5.0E-05
IPCA does not Granger-Cause E 1.4686 0.2323

aIt is important to include as many lags as possible in variable x that may be significant over variable y. We tested an equation
with 13 lags in both variables and the highest significant lag of x over y was the third lag of E over IPCA. In the Granger
Causality test the null hypothesis that IPCA Granger-Causes E is rejected both with 3 and with 13 lags.
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Table 22 – VAR between E and IPCA

Variables E IPCA Variables E IPCA
E(-1) 0.6036 0.0356 IPCA(-1) 0.9185 0.6556

(0.1217) (0.0111) -12.735 (0.1163)
[4.9597] [3.201] [0.7213] [5.6392]

E(-2) -0.1168 -0.0037 IPCA(-2) -2.704 -0.2059
(0.1501) (0.0137) -15.498 (0.1415)
[-0.7780] [-0.2669] [-1.7447] [-1.4555]

E(-3) 0.1183 0.0220 IPCA(-3) 24.593 0.1452
(0.1239) (0.0113) -15.498 (0.1415)
[0.9547] [1.9463] [1.5868] [1.0260]

E(-4) 0.0827 -0.0051 IPCA(-4) -25.399 0.06289
(0.1033) (0.0094) -11.504 (0.1050)
[0.8007] [-0.5394] [-2.2079] [0.5988]

C 0.01652 0.0018 D2002_M11 -0.135 0.0143
(0.0084) (0.0008) (0.0344) (0.0031)
[1.9756] [2.3730] [-3.9256] [4.5682]

R-squared 0.4582 0.7168 Adj. R-
squared

0.3696 0.6704

F-statistic 51.688 154.665

Note: Std. deviations in parenthesis and t-statistics in square brackets.

Table 23 – Variance Decomposition (Cholesky ordering: place E IPCA)

Variance decomposition of E: Variance decomposition of IPCA:
Period Std. Error E IPCA Period Std. Error E IPCA
1 0.0306 100.000 0.0000 1 0.0028 30.385 969.616
2 0.0356 994.964 0.5036 2 0.0034 71.131 928.869
3 0.0370 982.151 17.849 3 0.0037 157.357 842.643
4 0.0374 982.384 17.616 4 0.004 270.031 72.997
5 0.0383 97.469 25.310 5 0.0042 323.807 676.193
6 0.0391 954.898 45.102 6 0.0043 363.763 636.237
77 0.0395 935.715 64.285 7 0.0044 392.664 607.336
8 0.0397 928.832 71.168 8 0.0045 413.734 586.266
9 0.0398 922.703 77.298 9 0.0046 423.243 576.758
10 0.0400 917.409 82.591 10 0.0046 425.519 574.481
11 0.0402 914.451 85.549 11 0.0046 424.477 575.523
12 0.0403 913.992 86.008 12 0.0046 422.399 577.601
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Table 24 – OLS Equation for E

Variable Coefficient Standard Error t-statistic p-value
C 0.0059 0.0092 0.6378 0.5258

AR(1) 0.4341 0.0964 45.041 0.0000
R2 0.2351 LM Test (1 lag) (a) 0.8708

Adjusted R2 0.2235 ARCH-LM Test (1 lag) 28.6673 (b)

Note: (a) null hypothesis of absence of autocorrelation accepted also for higher number of lags; (b) null hypothesis
of absence of ARCH residuals rejected at 1%.

Figure 15 – Exchange rate and inflation volatili-
ties (reduced sample)

y = -0.372x2 + 0.0064x - 3E-06
Adjusted R2 = 0.6915
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Figure 16 – Exchange rate and inflation volatili-
ties (reduced sample)

y = -1.1874x2 + 0.0073x - 2E-06
adjusted R2 = 0.4842

0

0,000002

0,000004

0,000006

0,000008

0,00001

0,000012

0,000014

0,0005 0,001 0,0015 0,002 0,0025 0,003

Conditional Variance of E

C
o

n
d

it
io

n
al

 V
ar

ia
n

ce
 o

f 
E

Graph A.3

Figure 17 – Exchange rate and inflation volatilities (reduced sample)

y = -4.2952x2 + 0.0114x - 3E-06
Adjusted R2 = 0.1339
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B. DIAGNOSTIC TESTS FOR THE BI-GARCH MODEL

This appendix brings a brief explanation about the test of covariance stationarity in the multivariate
Garch model under the BEKK restriction. For details, see Engle and Kroner (1993).

In a bivariate GARCH (1,1), the conditional variance has the form:


 u2

11t

u2
12t

u2
22t


 =


 c11

c12
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
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Without exogenous variables, the BEKK restriction has the form:

Ut = C∗′
1 C∗

1 +
[

B∗
11 B∗

12

B∗
21 B∗

22

]′ [
σ2

1,t−1 σ1,t−1σ2,t−1

σ2,t−1σ1,t−1 σ2
2,t−1

] [
B∗

11 B∗
12

B∗
21 B∗

22

]
+

[
A∗

11 A∗
12

A∗
21 A∗

22

]′

[Ut−1]
[

A∗
11 A∗

12

A∗
21 A∗

22

]

To assure the process is covariance stationary, the eigenvalues of
q∑

i=1

K∑
k=1

(B∗
ik⊗B∗

ik)+
p∑

i=1

K∑
k=1

(Aik⊗
Aik) must be minor than the unity, in absolute values. In other words, we have to calculate the eigen-
value of matrix X below:

X =

[
(a11 ∗ a11) + (g11 ∗ g11) (a11 ∗ a12) + (g11 ∗ g12) (a12 ∗ a11) + (g12 ∗ g11) (a12 ∗ a12) + (g12 ∗ g12)
(a21 ∗ a11) + (g21 ∗ g11) (a11 ∗ a22) + (g11 ∗ g12) (a12 ∗ a21) + (g12 ∗ g21) (g12 ∗ g22) + (g12 ∗ g21)
(a21 ∗ a11) + (g21 ∗ g11) (a21 ∗ a12) + (g21 ∗ g12) (a22 ∗ a11) + (g22 ∗ g11) (a22 ∗ a12) + (g2 ∗ g12)
(a21 ∗ a21) + (g21 ∗ g21) (a21 ∗ a22) + (g21 ∗ g22) (a21 ∗ a22) + (g21 ∗ g22) (a22 ∗ a22) + (g22 ∗ g22)

]

Calculating the eigenvalues of X using the coefficients for case 2 presented in table 3 along the text,
we find the following vector y of eigenvalues:

y =




0.6630
-0.4252
-0.0770
0.0637




As we may see, all absolute values are minor than one. Hence, the case chosen respect the condition
of covariance stationarity.
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