Acessibilidade / Reportar erro

Rice growth as affected by combined ammonium and nitrate supply

In rice cultivated under flooded conditions, the anaerobic condition favors the formation of NH4+ in the soil, and is therefore considered the main available N source for this crop. However, the process of O2 transport through the aerenchyma and its release by roots, create a favorable environment for nitrification in the plant rizosphere. Nitrification intensity determines the proportions between available NH4+ and NO3- . In this case, it is believed that the presence of NO3- can favor rice growth and simultaneously avoid NH4+ toxicity. This experiment was carried out to evaluate the effect of different proportions between NH4+ and NO3- in nutrient solution on rice growth. The experiment was performed in a greenhouse, from September to November 2007, in a nutrient solution with the following NH4+ and NO3- proportions: 100:0, 75:25 and 25:75, in a 10.0 mmol L-1 N concentration. The plots were fulfilled with a inert substrate to create conditions to root growth. The genotypes IRGA 417 and Sasanishiki were compared and the biomass production, root length, root distribution and the N, Ca, Mg and K uptake were evaluated. The presence of NH4+ in the 100:0, 75:25 proportions resulted in plant toxicity, however, as the NO3- proportion increased, toxicity was reduced. The combined supply of NH4+ and NO3- increased biomass production compared to solely NH4+ supply. The rice root system of the two cultivars developed mainly in the 0-10 cm layer and the - greatest root length was observed in the treatment NH4+ 75:25 NO3- for IRGA 417. The presence of NH4+ in soil solution affected negatively calcium absorption, whereas no affect was observed on N, Mg or K absorption. The total absorbed N, K, and Ca indicated a higher absorption efficiency with the combined supply for IRGA 417, but for cultivar Sasanishiki no differences were verified. It was concluded that NH4+ is toxic to rice plants, and is not the main available source of nitrogen. Nitrate is indispensable to increase the N uptake, normal plant growth and total cation absorption.

nitrogen; toxicity; Oryza sativa L.; roots


Sociedade Brasileira de Ciência do Solo Secretaria Executiva , Caixa Postal 231, 36570-000 Viçosa MG Brasil, Tel.: (55 31) 3899 2471 - Viçosa - MG - Brazil
E-mail: sbcs@ufv.br