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ABSTRACT: The Jaguarí River Basin forms the main water supply sources for the São 
Paulo Metropolitan Region and other cities in the state. Since the kinetic energy of rainfall 
is the driving force of water erosion, the main cause of land and water degradation, 
we tested the hypothesis of correlation between the erosive potential of rainfall (erosivity) 
and geographical coordinates and altitude for the purpose of predicting the spatial and 
temporal distribution of the rainfall erosivity index (EI30) in the basin. An equation was 
used to estimate the (EI30) in accordance with the average monthly and total annual 
rainfall at rainfall stations with data available for the study area. In the regression 
kriging technique, the deterministic part was modeled using multiple linear regression 
between the dependent variable (EI30) and environmental predictor variables: latitude, 
longitude, and altitude. From the result of equations and the maps generated, a direct 
correlation between erosivity and altitude could be observed. Erosivity has a markedly 
seasonal behavior in accordance with the rainy season from October to March. This 
season concentrates 86 % of the estimated EI30 values, with monthly maximum values 
of up to 2,342 MJ mm ha-1 h-1 month-1 between December and January, and minimum of 
34 MJ mm ha-1 h-1 month-1 in August. The highest values were found in the Mantiqueira 
Range region (annual average of up to 12,000 MJ mm ha-1 h-1), a region that should be 
prioritized in soil and water conservation efforts. From this validation, good precision and 
accuracy of the model was observed for the long period of the annual average, which 
is the main factor used in soil loss prediction models.
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INTRODUCTION 
The Jaguarí River Basin has a drainage area that forms the main sources of water supply 
for the metropolitan areas of the state of São Paulo, such as the Cantareira System and 
the Piracicaba River. Due to the severe drought in 2013 and 2014 in the southeast region 
of Brazil (Coelho et al., 2016), the issue of water security has gained even more relevance 
in these regions. However, the problems of land use and occupation historically and 
continuously threaten the quality of surface water, the useful life of reservoirs, and the 
productive capacity of the soil, and the greatest cause of degradation is water erosion 
(Telles et al., 2011). Effective control of erosive processes in river basins depends on 
studies of the spatial and temporal behavior of erosive factors, especially rainfall erosivity 
(Martins et al., 2010; Silva et al., 2010).

The kinetic energy of rainfall is the driving force of water erosion, with a direct effect 
on detachment of soil particles, breaking the aggregates and transporting particles 
through surface runoff (Wischmeier and Smith, 1978; Panagos et al., 2015). Wischmeier 
(1959) proposed the EI30, which relates the kinetic energy to the maximum intensity in 
30 minutes of rain events, to represent the erosivity or erosive potential of the rains.

Traditionally, the EI30 is estimated through rainfall data with a minimum temporal resolution 
of 30 minutes, but historical series with this information are rare and, therefore, alternative 
approaches have been used. Equations that relate monthly and annual total rainfall 
data with the EI30 generated for locations with data availability allow the use of 24-hour 
resolution information, which is easier to access and to estimate erosivity in adjacent 
locations (Renard et al., 1997; Silva, 2004; Oliveira et al., 2012).

The spatial distribution of erosivity in river basins is indispensable information for modeling 
critical scenarios in conservation planning and in adoption of soil and water conservation 
practices on this scale (Martins et al., 2010). Studies demonstrated that geostatistical 
techniques have an advantage over traditional interpolators in the spatialization of 
environmental data (Hengl et al., 2007; Akkala et al., 2010) because the prediction model is 
composed of a deterministic part (overall average) and a stochastic part, provided by spatial 
autocorrelation, in order to obtain the Best Linear Unbiased Prediction (BLUP) (Hengl, 2007).

In regression kriging (RK), the deterministic part of spatial variance is obtained externally, with 
a regression model between the response variable and environmental factors as predictor 
variables (Hengl, 2007; Lark, 2012). These predictor variables should preferably be easy to 
obtain and have a better spatial distribution than the variable to be estimated. The rainfall and 
erosivity show correlation with continental (coordinate) and topographic (altitude) properties 
(Meusburger et al., 2012; Mello et al., 2013; Panagos et al., 2015), which can be used in the 
regression model. These properties are easily acquired through remote sensing images.

The use of regression methods combined with geostatistical methods has shown good 
results for large regions with complex atmospheric conditions and a limited sampling 
network. Meusburger et al. (2012) used regression kriging to estimate the monthly erosivity 
average in Switzerland and obtained rainfall regression models with a determination 
coefficient of 0.68 and 0.76. Mello et al. (2013), in a study regarding annual erosivity in 
Brazil using regression kriging, used latitude, longitude, and altitude and their 2nd and 
3rd order terms to predict erosivity and obtained equations with up to 18 terms, with a 
coefficient of determination above 0.68 in all cases.

Studies of erosivity mapping on a national scale (Silva, 2004; Oliveira et al., 2012; Mello et al., 
2013) and for the states of Minas Gerais (Mello et al., 2007; Moreira et al., 2008), with specific 
details for the south of the state of Minas Gerais (Aquino et al., 2012), and São Paulo (Vieira 
and Lombardi Neto, 1995; Moreira et al., 2006) showed analysis on a regional scale with 
low spatial resolution. However, river basins are the basic unit of planning and management 
of water resources, and the planning and implementation of soil and water conservation 
practices require a level of spatial detail consistent with their scale (Silva et al., 2010).
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The hypothesis of correlation between the erosive potential of rainfall (erosivity) and 
geographical coordinates together with altitude was tested. The objective of this study 
was to present a technique to determine spatial prediction from measures of precision 
and accuracy and the seasonal rainfall erosivity standard, using the EI30, for use in studies 
that seek to identify the areas most susceptible to erosion in the Jaguarí River Basin.

MATERIALS AND METHODS

Study Area

The study covers the Jaguarí River Basin, with a drainage area of 4,320 km2, of which 
74 % are in the state of São Paulo and the highest part, with 1,140.80 km2, in the state 
of Minas Gerais (Figure 1).

The climate in the basin is humid subtropical (C) and was divided into four classes, 
according to the Köppen classification system. The Mantiqueira Range region has a 
Cwb climate (dry winter and temperate summer); the Jaguari middle region has a Cfb 
climate (temperate summer and no dry season); and the lower part of the basin has 
Cwa (dry winter and hot summer) and Cfa (hot summer and no dry season) classes 
(Alvares et al., 2013). The average annual rainfall in the basin is 1,488 mm, with more 
than 70 % concentrated in the rainy period from October to March.

Estimation of erosivity

The EI30, which correlates kinetic energy with the maximum intensity of rainfall in 
30 minutes, was used to represent the rainfall erosivity. Originally, this index was 
calculated by equations proposed by Wischmeier and Smith (1978). However, due to the 
scarcity of adequate historical rainfall series, erosivity has been estimated by equations 

Figure 1. Jaguarí River Basin digital elevation model (DEM) and the rain gauge station locations and municipalities. DEM data: 90 m 
spatial resolution SRTM image between coordinates -23.24° and -22.31° S and 47.74° and 45.39° W.
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that relate the EI30 to monthly rainfall values and annual rainfall (Oliveira et al., 2012). 
In this study, the equation 1, obtained for the region of Campinas, São Paulo (Lombardi 
Neto and Moldenhauer, 1992) was used:

EI30 = 68.730 (p2/P)0.841	 Eq. 1

in which the EI30 is the index that represents rainfall erosivity in MJ mm ha-1 h-1; p is 
the total monthly rainfall in mm; and P is the annual rainfall in mm. The choice of this 
equation was based on the proximity to the study region and because of the absence of 
data with the necessary temporal resolution for direct calculation of the EI30 in the rain 
gauge stations located in the hydrographic basin.

In addition, the precipitation concentration index (PCI) (Oliver, 1980), used to select the 
EI30 equations most suitable for a local data set, indicated that the data of the rain gauge 
stations of the basin show a monthly distribution similar to that observed in Campinas, SP. 
The correlation between the monthly rainfall data of the Campinas station with those of 
the other stations used in the study showed a correlation coefficient always above 0.94.

The data of the rain gauge stations used were those of the National Water Agency (Agência 
Nacional de Águas). Double mass analysis was carried out to evaluate the consistency of the 
data, and the Spearmann and Mann-Kendall statistical tests were applied to verify trends. 
Thus, 66 rain gauge stations were selected (Figure 1) with stationary and consistent data 
for the period from 1970 to 2010. Some stations do not have information for the entire 
period, and in these cases, the largest available series was used, with stations with less 
than 20 consecutive years of data being discarded within the period mentioned.

The monthly and annual totals were calculated from the daily data, and the monthly gaps 
were filled using the Weighted Regionalization method. After that, the rainfall averages 
were reevaluated for each month, as well as the annual total, with which the EI30 was 
calculated, according to equation 1.

Regression Kriging

Spatial prediction of erosivity values using the EI30 was carried out using the technique 
known as regression kriging (RK) (Hengl et al., 2004; Hengl et al., 2007). In this study, 
this technique was divided into three main steps: principal component analysis, stepwise 
multiple linear regression, and kriging of the residues.

Principal component analysis (PCA) was carried out for the altitude (DEM), latitude, and 
longitude variables used to solve the multiple collinearity problem (Hengl et al., 2003; 
Panagos et al., 2014). The three variables were normalized before being used in the PCA, 
for which the average of each variable was subtracted from the respective original data 
and then divided by its standard deviation.

Stepwise multiple linear regression was adjusted between the major components 
(eigenvectors) and the EI30 monthly values and annual average. In this step, a random 
sampling of the stations was carried out, of which 46 (70 %) were used in the regression 
(calibration samples) and the rest (20 stations) were used to validate the predicted values 
with RK. The PCA and the regression were performed with the SAGA GIS 2.1.4 program 
(Conrad et al., 2015). The use of the 2nd and 3rd order terms in the PCA and in the 
regression was tested, but because they did not show improvement in the coefficient of 
determination (R2), the simpler model was chosen.

The difference between the EI30 values observed in the calibration stations and the values 
estimated by the regression was calculated for each rainfall station used in the regression, 
constituting the regression error or residue. These residues were spatialized by ordinary 
kriging and then added to the regression result, which characterizes the method known as 
regression kriging (Hengl et al., 2004). The sum of the regression surface with spatialized 
errors by kriging resulted in maps of the spatial distribution of erosivity. 
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For kriging of the residues, the spherical, Gaussian, potential, and exponential semivariogram 
models were tested, adjusted by minimization of the residual square sum (RSS) of the 
geoR (Ribeiro Junior and Diggle, 2015). The adjusted semivariogram model was selected 
according to external validation; the models with the lowest average error were selected.

External validation was performed with data from 20 randomly selected stations, 
as mentioned above, so these data were not used in the regression and kriging steps. 
After generating the regression kriging results, the data from the external validation 
stations were used to calculate the average error (ME) according to equation 2:

ME = Ʃ Z (xi) - Ẑ (xi) 
1

i = 1
�

� 	 Eq. 2

in which n is the number of stations used in the external validation (20); Z(xi) is the 
erosivity data observed at point xi; and Ẑ (xi) is the erosivity value predicted by Kriging at 
point xi. The average error is used as a measure of precision, so the t test was performed 
to verify if the ME was null at the significance level of 5 %. To evaluate the accuracy, the 
mean squared deviation ratio (MSDR) was used according to equation 3:

MSDR = Ʃ
{Z (xi) - Ẑ (xi)}

2

σ2(xi)k

 
1

i = 1
�

� 	 Eq. 3

in which  σ
2(xi)k  is the variance of kriging, and the other terms are the same as those 

indicated above. Ideally, the ME is zero, and the MSDR should be equal to or close to 1 
(Oliver and Webster, 2014).

RESULTS AND DISCUSSION
The monthly average rainfall and estimated erosivity of the 66 rainfall stations used are 
shown in figure 2.

The region is characterized by climatic seasonality, with a predominance of dry winter 
and rainy summer, which directly influences the seasonal distribution of erosivity. This 
characteristic is common to all the rainfall stations used in this study, which justifies the 
use of only one equation to estimate the erosivity index (EI30) in accordance with the 
average monthly rainfall (Michiels et al., 1992).

Longitude and altitude showed a moderate correlation (0.57); that is, the altitude increases 
from west to east in the basin. Thus, it is important to avoid collinearity to adjust stepwise 
regression; otherwise, altitude could be disregarded and only the geographic coordinates 
(latitude and longitude) would be used to predict erosivity. 

Figure 2. Monthly means of rainfall and erosivity data from 1970 to 2010 for the 66 rain gauge 
stations used in regression kriging.
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Thus, PCA between the coordinates and the altitude results in components orthogonal 
to each other, in which the variables appear independently combined, which allows 
multiple regression to be adjusted without the bias of multiple collinearity. The principal 
components (PCA) of the altitude, latitude, and longitude variables, with the explained 
variance, eigenvalues, and eigenvectors, are shown in table 1.

The eigenvectors are the multiplier weights of each original variable (altitude, latitude, 
and longitude) used to obtain each PC (principal component), which are then used in 
stepwise regression. The eigenvalues provide the amount of variance explained by 
the respective component, such that PC1 has the highest eigenvalue, PC2 the second 
highest, and so on.

Component 1 is a combination of the three variables explaining 54 % of the variance. 
Component 2, which explains 33 % of the variance, is given by a combination between 
latitude and longitude. Together, components 1 and 2 explained 87 % of the variance 
and, therefore, obtained significant angular coefficients in stepwise regression (Table 2).

The EI30 values estimated by the regression are given by the sum of the intercept with 
the angular coefficients multiplied by the eigenvector of the principal components. 

The results of stepwise multiple linear regression obtained intercepts, angular coefficients, 
and coefficient of determination (R2) at a significance level of 5 % (Table 2). The coefficient 
of determination (R2) showed values greater than 40 % for the months of October, 
December, April, August, and September and for the annual average. The months of 
January, March, and June showed R2 lower than 20 %, but all significant at the 5 % level.

Table 1. Results of principal component analysis (PCA) on elevation, latitude, and longitude

PC Cumulative 
Variance Eigenvalue

Eigenvector
Elevation Latitude Longitude

%
1 53.70 1.611 -0.358078 -0.660220 -0.660220
2 87.03 1.000 0.000000 0.707107 -0.707107
3 100 0.389 0.933692 -0.253199 -0.253199

PC: principal component.

Table 2. Results of multiple linear regression (intercept and coefficients) between rainfall erosivity 
and principal components (PC)

Period
Coefficient*

Adjusted R²
F-statistic

Intercept PC1 PC2 PC3 F; p-value
Annual 7867.5 95.4 - - 49.4 44.9; 3.1 × 10-8

Oct 615.1 97.2 - - 46.1 39.5; 1.3 × 10-7

Nov 823.0 112.6 - - 33.1 23.3; 1.7 × 10-5

Dec 1505.3 187.5 -90.3 - 44.9 19.3; 1.0 × 10-6

Jan 1717.5 120.6 - - 18.7 11.3; 0.002
Feb 1159.2 136.8 - - 24.8 15.9; 0.0002
Mar 917.4 110.9 - - 19.0 11.6; 0.001
Apr 310.3 72.5 - - 45.7 38.9; 1.5 × 10-7

May 231.2 25.8 20.5 - 32.6 11.9; 7.9 × 10-5

Jun 131.8 -4.9 - - 11.0 6.6; 0.01
Jul 96.4 12.0 18.3 - 34.1 12.6; 4.8 × 10-5

Aug 80.8 17.0 12.7 - 42.1 17.4; 3.0 × 10-6

Sep 280.3 50.4 33.3 - 49.5 23.0; 1.6 × 10-7

* Significant intercepts and coefficients (p<0.05).
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The coefficient of determination indicates the spatial variation of erosivity explained only 
with the regression models, that is, how much of this variation is due to the spatial trend. 
The difference between the values estimated by the regression and the values obtained 
for the calibration stations constitute the errors or residues. The residues preserve only the 
structure of the spatial autocorrelation of this phenomenon since the trend was withdrawn 
in the regression step. Thus, the errors were spatialized through the ordinary kriging, 
according to the study of the semivariogram for each period (Figure 3 and Table 3).

For the months with the low rainfall rates, May and June, the experimental semivariograms 
did not show a defined structure, characterizing the pure nugget effect (Table 3).

The pure nugget effect model, adjusted for the months of May and June, shows only the 
value of the C0 parameter (nugget), constant for the entire sampling area. This can be 
explained by the low rainfall in these months throughout the basin, which may bring 
about a low spatial correlation for erosivity due to the randomness of the process.

For the other months, Gaussian, spherical, and exponential models were adjusted, for 
which the threshold values (C0 + C1) were close to the overall variance of the erosivity 
data, as expected.

The range of the adjusted models was from 12.33 km (July) to 159.08 km (August). Thus, 
the minimum spacing between stations should be 12 km so that the spatial distribution 
effect of rainfall and erosivity can be detected in semivariogram studies. The average 
range for the monthly semivariograms was 72.67 km, similar to that found by Vieira and 
Lombardi Neto (1995) for the state of São Paulo (70 km).

For the annual average, the semivariogram model was of the potential type, characterized 
by not having a defined threshold. Therefore, the A and C1 parameters cannot be interpreted 
as reach and contribution as in the other models. In this case, A and C1 are the exponent 
and the angular coefficient of the potential equation, respectively (Equation 4).

γ(h) = C0 + C1 × hA	 Eq. 4

in which C1 >0, 0< A <2.

These situations can be explained by the phenomenon of infinite dispersion, or by the 
area of study being smaller than the reach of the spatial dependence of the process, 
or by insufficient sampling of the area (Oliver and Webster, 2014). 

Concerning the number of sampling locations, in the Mantiqueira Range region, there 
are only two stations with data available and that were used in the study, and only one 
of them, the Ponte Nova station, at 1,300 m altitude, is inside the basin. The Campos de 
Jordão station, located at 1,642 m altitude, is outside the limits of the basin. Therefore, 
in areas of higher altitude, the sampling is poor, which increases the uncertainties 
involved in modeling and results in larger errors in these areas (Mello and Silva, 2009). 

The use of the erosivity regression model in accordance with altitude provides a measure 
of information that complements, even if in small degree, the lack of sampling at higher 
altitudes. However, the existence of this regression does not make better sampling in 
these sub-sampled regions unnecessary. The existence of a regression model between 
erosivity and altitude is corroborated by the fact that the increase in altitude from west 
to east leads to an increase in rainfall and erosivity in the same direction.

Regarding temporal variation, the results of external validation (Table 4), allow us to 
ascertain the quality of the predicted EI30 values.

With the exception of October, where there is a significant overestimation of the EI30, the 
average error of the external validation results was not significantly different from zero at 
the 5 % level in most months, which suggests a satisfactory adjustment. Yet, in general, the 
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monthly models showed low accuracy, with MSDR values above 2 for most months. However, 
the annual average of long duration showed good accuracy, with an MSDR close to the unit 
value (1.0245). This is important because the annual average is the value most used for 
estimating erosivity; it is the main variable used in models for prediction of water erosion.

The months of highest rainfall, November, December, and January, showed MSDR close 
to 1. These months account for 52 % of annual erosivity, so it is important to have 
greater accuracy.

The spatial and temporal distributions of the EI30 for the Jaguarí River Basin are shown 
in figure 4.

The average annual erosivity estimated for the basin area is 7,746 MJ mm ha-1 h-1 
yr-1, with a standard deviation of 1,265, a minimum of 5,566, and a maximum of 
11,955 MJ mm ha-1 h-1 yr-1. Of this annual total, 86 % occurred between October and 

Table 4. Validation results

Period Mean error
t-statistic MSDR
t;p-value accuracy

Annual -197.15 -1.2124; 0.24 1.0245
Oct -63.78* -2.44; 0.024 3.0368
Nov -24.51 -0.8358; 0.41 1.6464
Dec -57.91 -1.3996; 0.18 1.4920
Jan 38.95 0.733; 0.47 1.3805
Feb 18.04 0.3765; 0.71 2.1047
Mar 41.41 1.7892; 0.089 0.8411
Apr 9.34 0.5772; 0.57 2.0306
May -21.93 -1.5764; 0.13 -
Jun -7.82 -1.1415; 0.27 -
Jul -2.20 -0.4111; 0.68 2.4263
Aug -12.05 -2.0569; 0.056 3.1351
Sep -26.78 -1.3677; 0.19 3.7613

* Significantly different from zero (p-value<0.05).

Table 3. Parameters of models fitted to experimental semivariograms of rainfall erosivity

Period Model(1) R C0 C1 C0 + C1

Annual Pow 1.689 517067.2 0.000907 -
Oct Gau 58200.68 4779.538 1681.449 6460.987
Nov Gau 72845.41 8715.848 19317.02 28032.87
Dec Gau 77429.81 20992.01 15182.7 36174.7
Jan Sph 31188.34 21292.64 24036.55 45329.19
Feb Sph 65150.29 11101.72 23682.92 34784.64
Mar Sph 131592.7 7721.69 35431.09 43152.78
Apr Sph 98422.44 1719.88 2513.15 4233.03
May Nugget 0 1588.554 0 -
Jun Nugget 0 643.3894 0 -
Jul Sph 12330.42 139.93 495.81 635.73
Aug Sph 159075.1 181.91 334.38 516.2931
Sep Exp 20463.84 1082.501 1640.578 2723.078

(1) Power (Pow), Gaussian (Gau), Spheric (Sph), and Exponential (Exp) models. Range (R), nugget (C0), sill (C1), 
and sill variation (C0 + C1).
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January (Figure 4). During this period, maintenance of plant cover on the soil is essential 
to reduce erosive actions of the rain and, consequently, high soil losses.

The southeast region of Brazil is marked by two distinct periods in relation to rainfall: a rainy 
period from October to March, and a dry period from April to September. In the Jaguarí 
River Basin, the same pattern is observed in the data analyzed, with average monthly 
rainfall of 185 mm per month in the rainy period and 62 mm per month for the dry period.

In the dry period (April to August), the maximum erosivity are displaced to the south and 
east of the basin. Vieira and Lombardi Neto (1995) observed the same pattern for the 
state of São Paulo, with increased erosivity in the south region of the state during the 

Figure 4. The EI30 maps (MJ mm ha-1 h-1) for annual e monthly erosivity obtained with regression kriging in the Jaguarí River Basin.
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dry period, which may be due to the higher average rainfall in this sector of the state 
during the dry quarter, June-August (Prado et al., 2010).

The highest values were observed in the Mantiqueira Range region, where altitudes 
up to 2,066 m bring about high rainfall rates due to the orographic effect combined 
with the frontal (SACZ) and summer convective systems. In this region, erosivity 
values close to 12,000 MJ mm ha-1 h-1 yr-1 were estimated, in agreement with Vieira and 
Lombardi Neto (1995), who studied the spatial distribution of erosivity in the state of São 
Paulo and reported maximum values of up to 12,000 MJ mm ha-1 h-1 yr-1, mainly in the 
Mantiqueira Range and Serra do Mar areas. Similar results and estimated values of up to 
12,000 MJ mm ha-1 h-1 yr-1 in the state of Rio de Janeiro were reported, with the highest 
values in the mountain region located between latitudes of 20 and 22 °S.

Aquino et al. (2012) concluded that the erosivity of the south region of the state of Minas 
Gerais was considered high and strongly influenced by altitude in association with climatic 
characteristics. Higher erosivity is associated with higher altitude areas, such as along 
the Mantiqueira Range and high plateaus and mountains in the north-central part of the 
region. The annual erosivity values estimated by Mello et al. (2013) are also consistent 
with the estimates of erosivity in this study. These authors highlight the orographic effect 
found in mountainous regions in the southeast of Brazil, for which they reported values 
from 8,000 to 12,000 MJ mm ha-1 h-1 yr-1.

The west portion of the basin, where the Jaguarí River flows into the Piracicaba 
River, shows the lowest annual and monthly values of the EI30, with values above 
500 MJ mm ha-1 h-1 month-1 only for the months from November to March, a value considered 
critical because above this threshold, soil losses above the limit of tolerance may occur.

The study of the spatial and temporal distribution of rainfall erosivity assists conservation 
planning and soil and water use and management, which are of great importance in 
areas of intense human occupation, such as the Jaguarí River Basin. We highlight the 
importance of soil and water conservation efforts in the Mantiqueira Range region, where 
the highest values of rainfall erosivity were found, as well as the predominance of steep 
slopes and shallow soils very susceptible to erosive processes.

CONCLUSIONS
Rainfall erosivity in the Jaguarí River Basin shows an increasing pattern from west to 
east, which is related to the increase in altitude in the same direction; the highest values 
occurred in the vicinity of the Mantiqueira Range. 

Erosivity shows a marked seasonal behavior together with the rainy period from October 
to March, concentrating 86 % of the estimated EI30 values. Monthly maximum values 
were up to 2,342 MJ mm ha-1 h-1 month-1 from December to January, and there was a 
minimum value of 34 MJ mm ha-1 h-1 month-1 in August.

Principal Component Analysis, together with stepwise multiple linear regression, allows 
simplification of the regression models obtained without losing accuracy (R2). Regression 
kriging resulted in non-skewed values, good accuracy, and accuracy in prediction of 
average annual erosivity for the Jaguarí River Basin.
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