Acessibilidade / Reportar erro

Least limiting water range in the evaluation of continuous and short-duration grazing systems

Soil physical quality in continuous and short-duration rotational cattle grazing systems was evaluated using the Least Limiting Water Range (LLWR) approach. Soil samples were collected on an experimental site at the Embrapa - Beef Cattle Research Center (Campo Grande, MS, Brazil). The studied soil was a Typic Acrudox. Four sampling sites were selected: two under a short-duration continuous grazing system and two under intensive short-duration rotational grazing system. Thirty soil cores were collected in each site under the continuous grazing system, planted with Brachiaria decumbens cv. Basilisk grass. One of the continuous grazing sites had received biannual fertilization (Cc) while the other had not been fertilized (Cs). Thirty soil cores were also collected in each site under the intensive rotational grazing system, planted with Panicum maximum cv. Tanzania grass. In the intensive rotational grazing system the two sites differed in relation to the post-graze residue level left. In one site (R1) it varied from 2.0 to 2.5 t total dry matter (TDM) ha-1 and in the other R2 it varied from 3.0 to 3.5 t TDM ha-1. The cores were subjected to a soil water suction gradient, and then used for soil bulk density (Db), soil resistance to penetration (SR), volumetric water content (thetav), and LLWR determinations. The intensive short-duration rotational grazing system presented the worse physical soil conditions for plant growth, as evaluated by the LLWR. The highest Db and the lowest LLWR were found in R1, which could be a consequence of the heavier stocking rates used on this site.

Brachiaria grass; Tanzania grass; water retention; soil resistance to penetration; nonlinear regression


Sociedade Brasileira de Ciência do Solo Secretaria Executiva , Caixa Postal 231, 36570-000 Viçosa MG Brasil, Tel.: (55 31) 3899 2471 - Viçosa - MG - Brazil
E-mail: sbcs@ufv.br