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ABSTRACT: The measurement method (MM) and the land-use (LU) are two soil 
structure-related attributes that are available in infiltration experiments. This study aims 
to hypothesize that measurement technique and land-use might be good predictors of 
the performance of infiltration parameter values and models. The Soil Water Infiltration 
Global (SWIG), which includes about 5000 experiments worldwide and assembled in the 
Institute of Agrosphere in Jülich, Germany, was used. Except for the known properties 
such as texture, measurement method, and land-use, changes were observed in 
organic carbon content, saturated hydraulic conductivity, bulk density, pH, initial water 
content, and the electrical conductivity of saturated paste. Horton and Mezencev models 
outperformed from Green and Amp and Two-term Philip models, hence it has been seen 
that Horton and Mezencev models could be preferred according to the measurement 
method. To determine the most influential predictors of these two models’ parameters, 
the machine learning method “regression trees” was applied. In 80 % of cases for both 
models, the textural class, the MM (40 % of cases), and the LU were found as the most 
influential predictors. The accuracy of parameter estimates increased when a subset 
of measurements was used with the same method to estimate infiltration parameters. 
Textural class, LU, bulk density, and Ksat were determined as the most influential predictors 
for the parameters of the Horton. However, textural class, LU, and organic carbon content 
became most important in the case of the Mezencev model. Overall, estimates of the 
infiltration equation parameters can be more accurate if they have been developed 
for the same MM as in the task at hand. The MM and the LU provide useful surrogate 
information about the effect of soil structure on infiltration.

Keywords: water infiltration, soil structure, modeling, regression trees, measurement 
method.
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INTRODUCTION
Infiltration is one of the major processes that control soil water flow and storage in 
soil-plant-atmosphere systems and runoff and groundwater recharge (Hillel, 1980; 
Brutsaert, 2005). Infiltration depends on soil properties, wetting rates, rainfall and 
irrigation characteristics, soil and crop management, and vegetation cover and type 
(Vereecken et al., 2019). Infiltration rate is highly dependent on texture of soils (Rawls, 
1992; Mohammadi and Refahi, 2006); and soil texture and structure affect the water 
holding capacity of the soil that controls the water accessibility in the soil (Al-Azawi, 1985; 
Mirzaee et al., 2014). The contribution of macropores associated with the soil surface to 
the infiltration rate is determined by their origin, shape, structure, and twistiness (Edwards, 
1982). Therefore, the high infiltration rate in uncultivated soils is due to the macro-pore 
networks extending up to the surface, subjecting the macropore networks’ continuity 
in these soils (Erşahin, 2001). Soil organic carbon and soil bulk density are often highly 
related, and an increase in total soil organic carbon content reduces soil bulk density and 
improves water infiltration (Franzluebbers, 2002). Modeling infiltration dynamics has a 
long history (Green and Ampt, 1911; Kostiakov, 1932; Horton, 1939; Philip, 1957a,b; Mein 
and Larson, 1973; Kao and Hunt, 1996; Argyrokastritis and Kerkides, 2003; Dashtaki et al., 
2009). Two groups of empirical infiltration equations were developed. One of the equation 
groups originated from the formulation of Horton (1941), and another group was based 
on the Kostiakov (1932) approach (Vereecken et al., 2019). Later, these equations were 
modified and extended to be suitable for various initial and boundary conditions (Lewis, 
1937; Mezencev, 1948; Smith, 1972; Furman et al., 2006; Parhi et al., 2007). 

Physics-based infiltration equations were developed along with empirical ones. The 
Green-Ampt model originally occurred to measure the ponded infiltration into uniform 
soil columns (Green and Ampt, 1911) and is the earliest physically based conceptual 
infiltration model (Mirzaee et al., 2014). This model calculates many variables that 
indicate in-situ conditions and captures the water movement’s macroscale behavior in 
soils during infiltration (Assouline, 2013; Putte et al., 2013). Philip (1957a) solved the 
one-dimensional Richards equation by assuming that the soil’s hydraulic conductivity 
and diffusivity are soil water content functions (Jhaa et al., 2019). This solution applies 
to the first infiltration stages into a relatively dry soil profile where gravity plays only a 
minor role (Assouline, 2013). 

Many researchers have analyzed the accuracy of infiltration models by comparing the 
computed and observed infiltration rates or cumulative infiltration volumes for various 
soil textures, infiltration MMs, and region-specific soil properties (Shukla et al., 2003b; 
Chahinian et al., 2005; Dashtaki et al., 2009; Haghighi et al., 2010; Mirzaee et al., 2014; 
Philip et al., 2018; Bayabil et al., 2019; Wang and Chu, 2020). Substantial differences in 
model performance were reported (Sihag et al., 2017). For example, the Horton model 
has been the best predictor for the infiltration under different tillage and rotations in 
a soil clay-loam in north-west Iran (Mohammed, 2006). Sihag et al. (2017) reported 
that Philip’s model provided the best fit in a wasteland in India (Machiwal et al., 2006). 
Dashtaki et al. (2009) evaluated Kostiakov, Mezencev, Horton, and Philip’s performance 
by the double-ring method under 123 different soil moisture, temperature regimes, 
and land-use in Iran. They concluded that the Mezencev model could provide the best 
site-independent performance. Haghighi et al. (2010) used a double-ring infiltrometer 
at 48 sample points in Iran. They found that the Horton model overperformed the 
Mezencev and Philip models, and attributed that to differences in soil conditions such 
as soil particle size distribution. They noted that infiltration rate had a high dependency 
on the soil texture (Rawls, 1992; Mohammadi and Refahi, 2006). Shiraki et al. (2019) 
evaluated five infiltration models (Philip, Swartzendruber, Brutsaert, Mezencev, and 
Horton). They noted that the Mezencev model exhibited the highest fitting performance, 
but fitted parameters sometimes had non-physical values. These authors reported that 
the Horton model was the most effective. Shukla et al. (2003a) analyzed ten infiltration 
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models, and assessed the time dependence of infiltration parameters and the model 
accuracy precision using infiltration data from double-ring infiltrometer tests. The 
conclusion of this study stated that overall the three-parameter Horton model gave 
the best fit of infiltration data for most land-use types, including forest. 

Modeling infiltration is an essential component of hydrological modeling in a wide range 
of applications. Therefore, predicting which infiltration model will perform better in 
site-specific conditions presents substantial interest. Developing such predictions belongs 
to the field of pedotransfer function development (Van Looy et al., 2017). We note that 
both measurement method and land-use are categorical variables that serve as predictors 
in the pedotransfer development for infiltration parameters. The ample examples show 
that the accuracy of pedotransfer functions (PTFs) relying on the categorical input 
variables (class PTFs) can be high, especially when they are developed for large regional 
or interregional databases. Rawls and Pachepsky (2002) developed accurate PTFs for 
the soil water content at -33kPa matric potential using mostly categorical variables such 
as textural class and hillslope position along with slope value. Lilly (2000) presented 
class pedotransfer functions for saturated hydraulic conductivity where soil structural 
class served as one of the inputs. Nguyen et al. (2014) were successful in using the 
categorical soil structure information to improve the water retention estimation. This type 
of pedotransfer function has the advantage of direct inputs from soil maps that contain 
the class rather than continuous information about soil basic properties. Developing 
PTF for infiltration parameters with all or the majority of inputs as categorical variables 
appears to be an exciting research avenue to explore. The main objective of this study 
was to determine which attributes may serve as predictors of the performance of different 
infiltration models and the parameter values in those models.

MATERIALS AND METHODS

Database

The database SWIG has been assembled in the Institute of Agrosphere in Yülich, Germany 
(Rahmati et al., 2018). Site-measurements (n = 5023) were obtained from more than 
90 sources. Each dataset includes some soil properties from the following list: texture, 
organic carbon content, bulk density, particle density, saturated hydraulic conductivity 
(Ksat), saturated volumetric soil water content (WCs), initial volumetric soil water content 
(WCi), wet-aggregate stability (WAS), the electrical conductivity (EC), and pH. Most 
datasets include the infiltration measurement method (95 %) and land-use (76 %). 
Textural distributions of soils are given in figures 1a and 1b, and land-use types in 
figures 2c and 2d, and table 1. Methods used for infiltration measurement of soils are 
presented in table 1.

Infiltration equations and their comparison and parameterization

Four selected infiltration models differ by their mathematical structure and the number 
of fitting parameters (Table 2). The database analysis was exploratory and aimed to 
find the subdivision of the database into the most homogeneous groups of datasets 
with simultaneous determination of factors controlling the separation of those groups. 
Classification and Regression Trees (CART) algorithms are very efficient for that purpose 
as they create grips that are not only most homogeneous but also separated as far as 
possible from each other. Also, these algorithms provide very transparent results that 
are easy to interpret. In this study, we used the CART algorithm implemented in the R 
package ‘rpart’ with default control parameters, i.e., without setting the ‘control’ list 
in the call to the ‘rpart’ routine (R Development Core Team, 2019). This facilitated the 
exploration of the database structure. This algorithm splits datasets into two groups that 
are the most homogeneous internally and most dissimilar to each other with respect 
to the target variable (De’ath and Fabricius, 2000). The whole dataset is split into two 
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Figure 2. Percentage of cases for the model being the best (a), and the average rank of models 
(one is the highest and four is the lowest) (b). RMSE: Root Mean Square Error; AICc: Akaike 
information criterion.

Figure 1. Histogram of textural distribution (a) and land-uses of the soils (b) (Rahmati et al., 2018). 
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subgroups, which, in turn, are divided into two subgroups each, etc., until groups become 
small and the algorithm ends. The predicted value of the target variable is the average 
within each of the final small groups when the algorithm is used as a regression tool. 
The algorithm works as a classifier if the target variables are categorical. In such a case, 
the target variable for the final small groups is found by voting among the datasets in 
these groups. 

The Akaike information criterion AICc (Burnham and Anderson, 2002) was applied to select 
the best infiltration equation for each dataset (Equation 1). This criterion was used in 
past pedotransfer studies of soil water retention curves and the comparison models of 
particle-size distribution data (Minasny et al., 1999; Hwang et al., 2002; Hadzick et al., 
2011). This statistic was computed as:

AICc = 2p + n  ln  2π          + 1  +RSS
n

2p(p + 1)
n – p – 1

         Eq. 1

in which: p is the total number of the model parameters; n is the total number of 
observation times in the dataset; and RSS is the residual sum of squares for the cumulative 
infiltration. The determination coefficient (Equation 2) and the root-mean-squared error 
(Equation 3) were also computed.

R2 = 1 –
∑n

i = 1 (xi – x̅)2

∑n
i = 1 (xi – yi)2

           Eq. 2

Table 1. Methods used in measurement and land-use types of soils (Rahmati et al., 2018)

Methods N Methods N Land-use N
Mini infiltrometer 1141 Guelph permeameter 181 Agriculture 2018
The double ring 
infiltrometer 828 Aardvark permeameter 50 Grass 821

Tension infiltrometer 753 Micro infiltrometer 37 Urban 405
Disc infiltrometer 607 Hood infiltrometer 23 Pasture 229
The single ring 
infiltrometer 570 The linear source 

method 10 Forest 204

Rainfall simulator 374 The point source 
method 4 Garden 152

The Beerkan (BEST) 197
N: number of uses.

Table 2. Infiltration equations that were used in this study

Authors Original Infiltration Equations Used Forms of Infiltration Equation

Green and Ampt (1911) F(t) = Kt + ψ∆θ ln 1 +
F(t)
ψ∆θ

F(t) = b1t + b2 ln 1 +
F(t)
b2

Horton (1939) F(t) = fct + (1 – e–kt)
f0 – fc

k
F(t) = b3t + b1 (1 – e–b2t)

Mezencev (1948) F(t) = kta + f0t F(t) = b1tb2 + b3t

Two-term Philip (1957a) F(t) = St0.5 + ct F(t) = b1t0.5 + b2t
F(t) is the cumulative infiltration capacity at time t (mm h-1). In the Green and Amp equation, K is unsaturated hydraulic conductivity; ψ is the wetting 
front soil suction head; and θ is the water content. In the Horton equation, fc is the final or equilibrium infiltration rate (mm h-1); f0 is the initial infiltration 
rate (mm h-1); k is the a constant representing the rate of decrease in f capacity. In the Mezencev equation, k and a are empirical constants (unitless) 
(k > 0 and 0 < a < 1). In the Two-term Philip equation, S is the sorptivity (cm min0.5); c is the constant. b1, b2, and b3 are the fitting parameters.
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RMSE = ∑n
i = 1 (x – y)21

n
           Eq. 3

In equation 2, xi and yi represent the actual and predicted values of the observed 
cumulative infiltration, respectively, and n is the number of observations. 

RESULTS
The exploratory statistics of soil properties (Rahmati et al., 2018) are given in table 3. 
The Ksat, SAR (sodium adsorption ratio), EC, and OC values showed the highest coefficient 
of variation (CV%) compared with other soil variables. Soils in the database contain, 
on average, a relatively high percentage of OC (3.1 %), and sand and silt with 38.5 and 
35.8 %, respectively (Table 3). 

Comparing the four infiltration models’ performance showed that Horton and Mezencev 
models outperformed the two others (Figure 2), and Horton or Mezencev models could 
be preferred according to the measurement method. 

The regression tree algorithm showed that the measurement method, the textural 
class, and the land-use were the most influential predictors in 80 % of cases for both 
Horton and Mezencev models (Figure 3), and clay, silt, and sand contents were used 
instead of the texture class (Figure 4). Cumulative probability functions of the Horton 
and Mezencev models parameters across all datasets and across the datasets where 
Horton and Mezencev models were the best are given in figures 5 and 6, respectively. 
According to the probability functions of the Horton and Mezencev models parameters, 
b2 for Horton and b1 for the Mezencev model (Table 2) are found to be better than other 
parameters (Figures 5 and 6).

The accuracy of regression trees relating to infiltration parameters to the site-specific 
data is characterized in figure 7 and table 4. The best explanatory variables for Horton 
and Mezencev models are given in table 5. The most influential variables to build the 
trees given missing data command imputation for Horton and Mezencev models are 
shown in table 6.

Table 3. Exploratory statistics of some properties in SWIG database (N = 5023)

Soil properties N Fr Max. Min. Mean SD CV
% %

Sand (%) 3842 76 100.0 1.0 38.5 23.8 61
Clay (%) 3842 76 80.0 0.0 23.6 15.1 64
OC (%) 3102 62 87.9 0.0 3.1 6.2 200
Db (g cm-3) 3295 66 2.8 0.1 1.3 0.8 21
Ksat (cm h-1) 1895 38 3004.3 0.0 41.0 174.9 426
WC_s (cm3 cm-3) 1400 28 0.9 0.0 0.4 0.1 24
WC_i (cm3 cm-3) 1569 31 0.6 0.0 0.2 0.2 67
WC_r (cm3 cm-3) 263 5 0.4 0.0 0.1 0.1 85
FC (cm3 cm-3) 74 1 0.5 0.1 0.3 0.1 33
pH 1081 22 8.6 4.7 7.4 0.1 12
CEC (cmolc kg-1) 357 7 26.0 3.0 17.0 3.5 21

N: Number of samples; Fr: frequency (%); SD: standard deviation; CV: coefficient of variation; OC: organic 
carbon content; Db: bulk density; Ksat: saturated hydraulic conductivity; WC_s: saturated volumetric soil water 
content; WC_i: initial volumetric soil water content; WC_r: residual volumetric soil water content; FC: water 
content at field capacity; CEC: cation exchange capacity.



Karahan and Pachepsky Parameters of infiltration models affected by the infiltration measurement...

7Rev Bras Cienc Solo 2022;46:e0210147

DISCUSSION
According to the evaluation of selected four infiltration models by AICc (Akaike information 
criterion) and regression trees, Horton and Mezencev models were found to be the best 
predictors and could be preferred according to the measurement method (Figure 2). The 
MM and the LU, which are two soil structure-related attributes, were good predictors of the 
performance of selected infiltration models and of the parameter values in those models. 

Many studies conducted under different soil conditions with double-ring and mini-disc 
infiltrometers are compatible with our results. Lei et al. (2020) reported that Ahuja et al. 
(2007), Mirzaee et al. (2014), Nie et al. (2017), and Jhaa et al. (2019) compared 
infiltration models using data obtained from different regions (Iran, China, India, etc.) 
with various soil’s textures and bulk density. Their results showed that the Mezencev 
model gave high prediction accuracy for the cumulative infiltration. Li et al. (2020) 
evaluated four models’ accuracy (Horton, Kostiakov, Mezencev, and Philip) in simulating 
the infiltration process. They reported that the Horton model, which considers the 
initial infiltration rate, had higher accuracy. Hajabbasi (2006) evaluated the Kostiakov, 
Horton, and Philip’s infiltration models under different tillage and rotations in a clay 
loam in Northwest Iran and reported that the Horton model gave the best prediction 
of infiltration rate in that region. 

The reason why the measurement method is the best predictor may be the differences 
in the contact area of the instrument used in the measurement. Studies report that the 
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contact areas of the infiltrometers have substantial effects on hydraulic conductivity 
and infiltration measurements (Ciollaro and Romano, 1995; Lai and Ren, 2007; 
Pachepsky et al., 2014).
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Table 4. Performance of regression tree models relating to infiltration parameters for Horton and 
Mezencev models

Dataset
RMSE r

Horton equation  F (t) = b3t + b1 (1 – e–b2t)
b1 b2 b3 b1 b2 b3

H all (958)(1) 0.49 0.43 0.28 0.64 0.71 0.70
H the best (504) 0.48 0.42 0.27 0.65 0.72 0.72
H MDI (142) 0.08 0.07 0.05 0.45 0.54 0.70

Mezencev equation  F (t) = b1tb2 + b3t
M-all (728) 0.48 0.35 0.21 0.63 0.86 0.93
M-best (378) 0.22 0.29 0.26 0.44 0.46 0.51
M-DRI (45) 0.64 0.49 0.31 0.56 0.77 0.82

(1) Total number of measurements in the dataset; RMSE: Root Mean Square Error; H: Horton model; M: Mezencev 
model; MDI: Minidisc infiltrometer; DRI: Double Ring Infiltrometer.

Table 5. Parameters of the Horton and Mezencev model across the Horton and Mezencev model-specific datasets

Horton Dataset
b1 b2 b3

Topsplit Second split Topsplit Second split Topsplit Second split
H all Method Ksat Db Method OC Ksat Method Method
H the best Method Method Ksat Method WC_i Ksat Method Method TClas
H MDI Db Ksat TClas Ksat TClas OC Db Db OC

Mezencev Dataset
b1 b2 b3

Topsplit Second split Topsplit Second split Topsplit Second split
M all Method TClas Ksat Method TClas Method Method Ksat

M the best Method Method Method Method TClas Db Method TClas Ksat

M MDI Landuse WC_i WC_i OC Db Landuse TClas TClas
H: Horton model; M: Mezencev model; OC: organic carbon content; Db: soil bulk density; Ksat: soil saturated hydraulic conductivity; WC_i: initial 
volumetric soil water content; TClas: texture clas; MDI: minidisc infiltrometer; b1, b2 and b3 are empirical parameters of the models.
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Both meta-analysis and site-specific studies in different regions demonstrated substantial 
changes in the infiltration process as land-use changed. Sun et al. (2018) summarized 
a large number of studies in China and showed that initial and steady infiltration rates 
increased after land-use changes from grassland to the forest (+41 %), shrubland to 
the forest (+43 %), and cropland to agroforestry (+70 %, +84 %). Soil infiltration rates 
declined after land-use changed from grassland to cropland ( -45 %), shrubland to 
cropland (-64 %), and forest to cropland (54 %, 42 %). Yimer et al. (2008), in a study 
in Ethiopia, found that in cultivated and grazed land compared with forest, infiltration 
capacities were 70 and 45 % smaller, respectively. In the study in Indonesia, Har et al. 
(2021) demonstrated that the land-use change caused a substantial change in the 
infiltration capacity.

Besides measurement methods and land-use, soil properties have considerable effects 
on the infiltration process (Angelaki et al., 2013). The soil textural class was found to 
be the most influential predictor, with measurement method and land-use in 80 % of 
cases for Horton and Mezencev infiltration models (Figures 3 and 4). It may be concluded 
that differences in model performance under the same infiltration measurement 
technique could be attributed to differences in soil conditions. Robin and Bora (2019) 
reported that the Horton model’s better performance compared with the Modified 
Kostiakov model with data from the cultivated lands on hillslope and plain surface in 
Meghalaya, India. Dexter (2004) stated that soil cultivation affects the soil’s physical 
properties and increases the pore structure and porosity, influencing the passage of 
water through the soil surface and changing the soil’s ability to hold water. On the 
other hand, Zhang and Fang (2007) stated that soil infiltration increased as soil bulk 
density decreased with deep plowing.

Soil structure and soil structure-related attributes such as soil organic carbon, bulk 
density, and initial water content affect infiltration (Figure 3, Tables 5 and 6). Estimates 
of the infiltration equation parameters can be more accurate if they have been developed 
for the same MM. The measurement method was the most influential predictor due to 
infiltrometers having different contact areas. An increase in the infiltrometer diameter 
increases the infiltration rate and the cumulative infiltration (Wu and Pan, 1997). Li et al. 
(2019a) performed a series of double-ring infiltration tests with different diameters. 
In this work, the scale effect was observed in the experimental data and caused scale 
dependence in infiltration models’ parameters.

Table 6. Most important variables to build the trees given missing data command imputation for Horton and Mezencev models 

Horton Dataset b1 b2 b3

H all
Method Landuse Ksat Method TClas Landuse Method Landuse TClas

54 18 11 32 21 19 90 5 5

H the best
Method TClas Landuse Method TClas Landuse Method TClas Landuse

43 25 18 29 22 17 59 19 11

H MDI
TClas Landuse Ksat TClas Ksat Db TClas OC Db

26 20 20 27 24 20 36 30 19
Mezencev Dataset b1 b2 b3

M all
Method TClas Landuse Method TClas Landuse Method Landuse TClas

50 22 20 51 42 7 45 23 19

M the best
Method Landuse TClas TClas Method Landuse TClas Method Db

62 17 16 48 26 14 34 28 12

M MDI
Landuse TClas OC Landuse TClas OC TClas Landuse OC

42 21 20 36 23 21 38 33 24
H: Horton model; M: Mezencev model; OC: organic carbon content; Db: soil bulk density; TClas: texture clas; MDI: Minidisc infiltrometer; b1, b2, and 
b3 are empirical parameters of the models.
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CONCLUSIONS 
This study compared the effect of some soil properties and related attributes on selected 
infiltration models’ performance. The database SWIG encompasses approximately 
5000 data across the world. The Horton and the Mezencev models performed the best. 
Measurement method, land-use, and soil texture were the most influential independent 
variables controlling the models’ performance. Lack of knowledge of the model parameters 
for different soils and conditions makes the use of these models difficult. Different models 
may be preferred for different measurement techniques and land-use. 
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