Acessibilidade / Reportar erro

Protective effect of divalent cations against aluminum toxicity in soybean

Efeito protetor de cátions divalentes contra a toxidez de alumínio em soja

A large proportion of soybean fields in Brazil are currently cultivated in the Cerrado region, where the area planted with this crop is growing considerably every year. Soybean cultivation in acid soils is also increasing worldwide. Since the levels of toxic aluminum (Al) in these acid soils is usually high it is important to understand how cations can reduce Al rhizotoxicity in soybean. In the present study we evaluated the ameliorative effect of nine divalent cations (Ca, Mg, Mn, Sr, Sn, Cu, Zn, Co and Ba) in solution culture on Al rhizotoxicity in soybean. The growth benefit of Ca and Mg to plants in an acid Inceptisol was also evaluated. In this experiment soil exchangeable Ca:Mg ratios were adjusted to reach 10 and 60 % base saturation, controlled by different amounts of CaCl2 or MgCl2 (at proportions from 100:0 up to 0:100), without altering the soil pH level. The low (10 %) and adequate (60 %) base saturation were used to examine how plant roots respond to Al at distinct (Ca + Mg)/Al ratios, as if they were growing in soils with distinct acidity levels. Negative and positive control treatments consisted of absence (under native soil or undisturbed conditions) or presence of lime (CaCO3) to reach 10 and 60 % base saturation, respectively. It was observed that in the absence of Aluminum, Cu, Zn, Co and Sn were toxic even at a low concentration (25 µmol L-1), while the effect of Mn, Ba, Sr and Mg was positive or absent on soybean root elongation when used in concentrations up to 100 µmol L-1. At a level of 10 µmol L-1 Al, root growth was only reverted to the level of control plants by the Mg treatment. Higher Tin doses led to a small alleviation of Al rhizotoxicity, while the other cations reduced root growth or had no effect. This is an indication that the Mg effect is ion-specific and not associated to an electrostatic protection mechanism only, since all ions were divalent and used at low concentrations. An increased exchangeable Ca:Mg ratio (at constant soil pH) in the acid soil almost doubled the soybean shoot and root dry matter even though treatments did not modify soil pH and exchangeable Al3+. This indicates a more efficient alleviation of Al toxicity by Mg2+ than by Ca2+. The reason for the positive response to Mg2+ was not the supply of a deficient nutrient because CaCO3 increased soybean growth by increasing soil pH without inducing Mg2+ deficiency. Both in hydroponics and acid soil, the reduction in Al toxicity was accompanied by a lower Al accumulation in plant tissue, suggesting a competitive cation absorption and/or exclusion of Al from plant tissue stimulated by an Mg-induced physiological mechanism.

heavy metals; cation amelioration; soil acidity; Ca:Mg ratio


Sociedade Brasileira de Ciência do Solo Secretaria Executiva , Caixa Postal 231, 36570-000 Viçosa MG Brasil, Tel.: (55 31) 3899 2471 - Viçosa - MG - Brazil
E-mail: sbcs@ufv.br