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ABSTRACT: Film mulching is an effective water-saving and yield-increasing measure for 
potato production in Northwest China. However, the response mechanism of microbial 
communities to mulching films in the soil is still unclear. In this study, polyethylene 
film mulching (PM), biodegradable film mulching (BM), liquid film mulching (LM), and 
non-mulching (NM) were applied on the drip-irrigated soil to investigate the effects of 
mulching films on soil bacterial and fungal communities through DNA sequencing, Pearson 
correlation analysis, and redundancy analysis. The results showed that LM treatment 
significantly increased the contents of soil mineral N (SMN), dissolved organic carbon 
(DOC), and dissolved organic nitrogen (DON) (p<0.05) in comparison with NM. The soil 
treated with LM presented high bacterial OTUs (operational taxonomic units), Chao1, 
ACE, and Shannon indices; however, the same indexes of fungi were low in LM and BM 
treatments. At the phylum level, Proteobacteria, Actinobacteria, and Chloroflexi were 
dominant bacterial communities. The LM treatment increased the OTUs of Proteobacteria; 
PM treatment increased the OTUs of Actinobacteria and Chloroflexi. Ascomycota was 
the dominant fungal community, which were decreased in soil under mulching films. In 
terms of soil properties, DON was closely correlated (p<0.05) with the microbial OTUs, 
Chao1, and ACE indices. The DOC and SWC (soil water content) contributed 51.2 % to 
the change of bacterial structure; however, the fungal structure was less sensitive to the 
variation of soil properties. Our results indicate that liquid film mulching favors increasing 
the diversity and abundance of dominant bacterial species, which were associated with 
the variation of soil properties.

Keywords: microbial community, carbon and nitrogen contents, DNA sequencing, potato 
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INTRODUCTION
The combination of drip irrigation and film mulching is an effective water-saving and 
yield-increasing measure for potato production in Northwest China (Hou et al., 2010; 
Zhang et al., 2017; Gao et al., 2019). Previous studies showed that film mulching was 
able to inhibit evaporation of water on the soil surface (Adhikari et al., 2016; Ding et al., 
2018), increase soil surface temperature (Wu et al., 2017; Zhang et al., 2017), accelerate 
the mineralization of C and N nutrients (Luo et al., 2015; Ma et al., 2018; Fu et al., 
2019), and decrease the soil pH (Wang et al., 2017a) and C/N ratio (Wang et al., 2021). 
Some studies pointed out that the alteration of soil environment induced the change of 
bacterial and fungal communities (Liu et al., 2016; Ren et al., 2018; Walker  et al., 2018; 
Preusser et al., 2019). Several studies reported that plastic film mulching improved soil 
microbial population (Zhu et al., 2018) and altered the structure of bacteria (Chen et al., 
2014) and fungi (Wang et al., 2020).

Currently, the mulching films used for potato planting are mainly made of polyethylene, 
which is difficult to degrade under natural conditions but easy to accumulate in the soil, 
thus destroying soil structure and impairing soil quality (Steinmetz et al., 2016; Jiang et al., 
2017; Sintim and Flury, 2017). In recent years, the application area of environment-friendly 
mulching films (e.g., degradable plastic film, liquid plastic film) in potato production has 
been gradually expanding in Northwest China. Some studies reported that environment-
friendly mulching films were conducive to improving soil environments (Xue et al., 2019; 
Yin et al., 2019), such as regulating hydrothermal conditions of soil (Gu et al., 2017; 
Wang et al., 2019a) and maintaining C and N availability (Li et al., 2014; Hou et al., 2019; 
Chen et al., 2020a). Bandopadhyay et al. (2018) reported that degradable plastic films 
stimulated the microbial activity in the soil, which affected the variation of soil organic 
matters. However, so far, the response mechanism of microbial communities to film 
mulching in soil has not been sufficiently researched. 

As a contrast to bare land without mulching, in our study three mulching materials 
were applied on a drip-irrigated potato field. It is hypothesized that the diversity and 
structure of soil bacterial and fungal communities under environment-friendly mulching 
films might be different from that under polyethylene mulching film and in bare land, 
which might be associated with the alteration of soil physicochemical properties. This 
study aimed to (1) clear the alterations of soil physicochemical properties in different 
treatments; (2) ascertain the variations in diversity and structure of soil bacterial and 
fungal communities; and (3) reveal the response mechanism of soil microorganisms to 
soil properties. Our results will provide some theoretical knowledge for evaluating the 
environmental effects of degradable film and liquid film on drip-irrigated soil.

MATERIALS AND METHODS

Site description 

The field experiment was conducted at the Modern Agricultural Science and Technology 
Demonstration Park, Yuyang District, Yulin City, Shaanxi Province (38° 23’ N, 109° 43’ E, 
1080 m a.s.l.). The site belongs to a semi-arid continental climate with an annual mean 
temperature, precipitation, and evaporation of 8.6 ℃, 410 mm, and 1900 mm, respectively 
(Wang et al., 2021). The annual accumulated temperature (≥10 ℃) is 3300 ℃. The soil is 
aeolian sandy type, with pH(CaCl2) value of 7.6, available nitrogen (AN) content of 38.76 mg 
kg-1, organic carbon (SOC) content of 12.50 g kg-1, total nitrogen (TN) content of 1.41 g kg-1.

Experimental design

The experiment was set up with four treatments, i.e., polyethylene f﻿ilm mulching (PM), 
biodegradable film mulching (BM, made of 70 % butylene adipate-co-terephthalate 

https://www.sciencedirect.com/science/article/pii/S0167198716302252#!
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and 30 % polylactic acid), liquid film mulching (LM, made of humic acid, soluble starch, 
surfactant, and polymer compounds), and non-mulching (NM). Each treatment was 
set up with three replicates, and each replicate was a plot with an area of 5.4 × 7 m. 
Potatoes (variety “Zihuabai”) were sown on May 5, 2018, and harvested on September 
23, with 141 days of growth. One row of potatoes was buried 0.08-0.10 m deep in 
each ridge, and six ridges constituted a plot, where the ridge height, row spacing, 
and plant spacing were 0.30, 0.90, and 0.20 m, respectively. After that, drip irrigation 
hoses were placed in the ridges. Finally, mulching films were covered on the ridges. 
For PM and BM treatments, the films had a width of 1.2 m and thickness of 0.008 mm. 
The liquid film was made for LM treatment by mixing 60 kg of water with 10 kg of 
dry powder (powder dosage was 150 kg ha-1) and evenly sprayed by an agricultural 
sprayer (spraying pressure: 2 kg cm-2) on the ridge surface after potatoes being planted. 
The plants were fertilized with water-soluble fertilizer five times, with the dosage of 
150 kg ha-1 each time (N : P : K = 14 : 6 : 15). The irrigation amount for each treatment 
was 2095 m3 ha-1 during the entire growth period. After the potatoes were harvested, 
their yield in each plot was measured.

Collection and analysis of soil samples 

Soil samples were collected before the last potato harvest on September 15, 2018. 
Five soil samples (0.00-020 m soil layer) were randomly collected from each plot 
using a soil auger and mixed. A 2 mm screen sieved one part of the fresh soil samples 
to analyze the contents of mineral nitrogen (SMN), dissolved organic carbon (DOC), 
and dissolved organic nitrogen (DON). Another part of the samples was air-dried, 
ground, and passed through a 0.25 mm sieve to determine the contents of SOC and 
TN. The remaining samples were stored at -80 ℃ for measuring the contents of soil 
microbial biomass carbon and nitrogen (MBC and MBN) and for the analyses of soil 
microbial communities.

The organic carbon content was analyzed using a spectrophotometer (UV-1800, 
Shimadzu, Kyoto, Japan) according to the oxidation method with K2Cr2O7 (Bao, 2000). 
The total nitrogen content was determined using a Kjeldahl analyzer (K9860, Hanon, 
Jinan, China) with the semi-micro Kjeldahl method (Bao, 2000). The NH4

+-N and NO3
--N 

contents were determined by the indophenol-blue colorimetric and phenol-disulfonic 
acid colorimetric methods, respectively (Rayment and Higginson, 1992). Dissolved 
organic carbon was analyzed by the dichromate oxidation method (Jenkinson and 
Powlson, 1976). Dissolved organic nitrogen was obtained from the difference of total 
dissolved nitrogen (TDN) minus the dissolved inorganic nitrogen (DIN). The TDN content 
was measured according to the method of Hagedorn and Schleppi (2000), and the DIN 
content was measured using the UV spectrophotometer (Mulvaney, 1996). The MBC 
and MBN were determined by the chloroform fumigation-K2SO4 extraction method 
(Brookes, 1985; Vance et al., 1987). The pH value was determined by a pH meter 
(PHS-25, REX, Shanghai, China) with 1:2.5 soil:CaCl2 extractant (w/v). The soil C/N 
ratio was the ratio of SOC to TN.

Soil water content (SWC, %) and soil temperature (TS, %) was measured, in the 0.00-0.20 m 
soil layer, by the oven-drying method and the L-shaped thermometers, respectively.

Analysis of microbial communities in soil

Soil DNA was extracted using the E.Z.N.A.® Soil DNA Kit (MO BIO Laboratories, Inc., USA) 
from 0.5 g of soil samples; each sample was repeated three times. Polymerase chain 
reaction (PCR) amplification system was 25 μL mixture containing 12.5 μL 2×Taq Plus 
Master Mix, 3 μL BSA, 1 μL Forward Primer, 1 μL Reverse Primer, 2 μL DNA, and 5.5 μL 
dd H2O. The V3-V4 region of the bacterial 16S rRNA gene was amplified by primers 336F 
(5′-GTACTCCTACGGGAGGCAGCA-3′) and 806R (5′-GTGGACTACHVGGGTWTCTAAT-3′). 
The reaction conditions were pre-denaturation at 94 °C for 5min, denaturation at 
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94 °C for 30 s, annealing at 50 °C for 30 s, extension at 72 °C for 60 s, 30 cycles (the 
above four steps constitute a cycle), and extension at 72 ℃ for 10 min. The fungal 
ITS1 region was amplified by primers ITS1-F (5′-CTTGGTCATTTAGAGGAAGTAA-3′) and 
ITS2 (5′-TGCGTTCTTCATCGATGC-3′). The reaction conditions were pre-denaturation at 
94 °C for 5 min, denaturation at 94 °C for 30 s, annealing at 55 °C for 30 s, extension 
at 72 °C for 60 s, 34 cycles (the above four steps constitute a cycle), and extension 
at 72 °C for 10 min.

The PCR product was detected by 1 % agarose gel electrophoresis and quantified with a 
fluorometer (QuantiFluor™-ST, Promega, Madison, Wisconsin, USA). The Illumina MiSeq 
PE300 high throughput sequencing platform (Illumina, San Diego, CA, United States) was 
used for paired-end sequencing. The original sequencing data were uploaded to NCBI 
SRA database (http://www.ncbi.nlm.nih. gov/bioproject/611029).

Bioinformatics and statistical analysis 

Raw sequencing data were filtered and spliced using Pear software (version 0.9.6). 
After splicing, VSearch software (version 2.7.1) was used to remove sequences shorter 
than 230 bp, and the Uchime method (Edgar et al., 2011) was used to remove chimeric 
sequences. The high-quality sequences were used to performed OTU (Operational 
Taxonomic Units) clustering at 97 % identity threshold using the Uparse algorithm (Edgar, 
2013). Taxonomy was assigned at 70 % confidence level using the RDP (Ribosomal 
Database Project) classifier (Wang et al., 2007). The alpha diversity indices (including 
Chao1, ACE, Shannon, and Simpson) were calculated using QIIME1 software (version 1.8.0) 
(Caporaso et al., 2010). Intergroup differences were analyzed using Mothur software 
(version 1.30.1) (Schloss et al., 2009), and LEfSe (LDA Effect Size) analysis was performed 
using Python software (version 2.7) (Segata et al., 2011).

The measured data was tested by one-way ANOVA using SPSS software (version 22.0). 
Duncan’s New Multiple Range Test at 0.05 significance level was applied for multiple 
comparisons. Pearson correlation coefficient between soil microbial diversities (including 
observed OTUs, Chao1, ACE, Shannon, and Simpson) and soil physiochemical properties 
were calculated by SPSS. Response of soil microbial communities (the relative abundance 
of bacteria and fungi at the phylum level ≥1 %) to soil physicochemical properties was 
determined by redundancy analysis (RDA) using Canoco software (version 5.0) (ter Braak 
and Šmilauer, 2012).

RESULTS

Changes in soil properties

The carbon and nitrogen contents (except for SOC content) of the soil treated with 
three mulching films were higher than that of the NM (Table 1). Regarding TN, SMN, 
DON, and DOC contents, the treatments followed the order LM > BM > PM > NM. 
Compared with NM, the LM and BM treatments significantly increased the contents 
of DON and DOC by 22.49 to 31.89 % (p-value from 0.0003 to 0.0248), and the LM 
and PM treatments significantly increased the contents of MBC and MBN by 16.51 
to 32.09 % (p-value from 0.0030 to 0.0176). However, the three film mulching 
treatments reduced the values of SOC, C/N, and pH. In terms of soil temperature 
and water content, the treatments were PM > BM > LM > NM. The TS (20.45 ℃) and 
SWC (13.31 %) in PM treatment were significantly higher than that in LM and NM 
treatments (p-value from 0.0009 to 0.0228).

Diversity of bacterial and fungal communities

After removing the unqualified data, a total of 1,558,782 bacterial 16S rRNA gene 
sequences, and 1,115,200 fungal ITS sequences were obtained from the 12 soil samples. 
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The sequences were grouped into 32,622 bacterial OTUs and 9,219 fungal OTUs at the 
97 % similarity level. The degrees of coverage were higher than 96 % for bacteria and 
99 % for fungi, indicating that the data had enough representativeness to express the 
diversity of bacteria and fungi under the sequencing depth in this study.

For the bacterial community, LM and BM treatments increased the OTU abundance 
(2912 and 2754) and the Shannon index (9.56 and 9.57), but decreased the Simpsons 
index (0.0045 and 0.0042) (Table 2). In terms of Chao1 and ACE indices, the treatments 
were LM > PM > BM > NM; compared with NM, the LM treatment significantly increased 
the index of Chao1 (3907.18, p = 0.0431) and ACE (4021, p = 0.0361). For the fungal 
community, the abundance of OTU (869, p = 0.0195), the indices of Chao1 (1125.65, 
p = 0.0315), and ACE (1147.68, p = 0.0166) in NM were significantly higher than that 
in LM. The LM treatment decreased the Shannon index (5.24) but significantly increased 
the Simpsons index (0.0957, p-value from 0.0304 to 0.0382).

Structure of bacterial and fungal communities

At the phylum level, the relative abundance of Proteobacteria, Actinobacteria, and 
Chloroflexi accounted for 68.24-74.28 % in all bacterial communities (Figure 1a). The LM 

Table 1. Changes in soil properties at 0.00-0.20 m layer under different treatments in a drip-irrigated potato soil

Soil properties PM BM LM NM
SOC (g kg-1) 10.46 ± 0.96 b 11.76 ± 0.87 ab 11.57 ± 0.86 ab 12.80 ± 0.55 a
TN (g kg-1) 1.43 ± 0.05 bc 1.49 ± 0.04 b 1.59 ± 0.06 a 1.40 ± 0.03 c
SMN (mg kg-1) 18.43 ± 1.77 b 19.16 ± 0.87 ab 21.23 ± 1.14 a 17.02 ± 1.23 b
DOC (mg kg-1) 203.86 ± 22.45 b 246.11 ± 10.09 a 268.00 ± 11.90 a 187.85 ± 18.56 b
DON (mg kg-1) 54.78 ± 4.59 a 56.78 ± 3.48 a 64.62 ± 6.70 a 44.01 ± 7.13 b
MBC (mg kg-1) 313.14 ± 8.70 a 291.40 ± 19.86 ab 327.32 ± 38.78 a 243.30 ± 36.42 b
MBN (mg kg-1) 60.37 ± 5.24 a 51.93 ± 5.73 ab 62.86 ± 7.09 a 42.68 ± 5.35 b
C/N ratio 7.33 ± 0.44 b 7.87 ± 0.40 b 7.26 ± 0.25 b 9.16 ± 0.20 a
pH value 7.51 ± 0.04 c 7.70 ± 0.03 b 7.59 ± 0.04 bc 7.87 ± 0.10 a
TS (℃) 20.45 ± 1.38 a 19.39 ± 0.57 ab 18.34 ± 0.78 bc 17.49 ± 0.74 c
SWC (%) 13.31 ± 0.85 a 12.07 ± 0.37 ab 11.36 ± 0.86 bc 10.35 ± 0.62 c

The soil physicochemical properties shown are SOC (soil organic carbon), TN (total soil nitrogen), SMN (soil mineral N), DOC (dissolved organic C), DON 
(dissolved organic N), MBC (microbial biomass C), MBN (microbial biomass N), C/N ratio (SOC/TN ratio), pH(CaCl2) (pH value), TS (soil temperature), 
and SWC (soil water content). The values are the means ± SE (standard error) of three replicates, and the same lowercase letters in a row are not 
significantly different at 0.05 level. PM: polyethylene film mulching; BM: biodegradable film mulching; LM: liquid film mulching; NM: non-mulching.

Table 2. Changes in OTU abundance and alpha diversity of bacteria and fungi under different treatments in a drip-irrigated potato soil

Species Treatment OTUs Chao1 ACE Shannon Simpson

Bacteria

PM 2715 ± 81.38 ab 3591.82 ± 184.60 ab 3668.67 ± 176.52 ab 9.43 ± 0.03 a 0.0048 ± 0.0003 a
BM 2754 ± 258.43 ab 3525.15 ± 340.31 ab 3605.19 ± 367.17 ab 9.57 ± 0.15 a 0.0042 ± 0.0009 a
LM 2912 ± 167.15 a 3907.18 ± 107.40 a 4021.93 ± 95.98 a 9.56 ± 0.15 a 0.0045 ± 0.0012 a
NM 2494 ± 61.22 b 3213.03 ± 76.13 b 3252.63 ± 108.94 b 9.28 ± 0.19 a 0.0064 ± 0.0015 a

Fungi

PM 795 ± 110.53 ab 1056.74 ± 90.98 a 1162.56 ± 64.61 a 6.04 ± 0.25 a 0.0437 ± 0.0092 b
BM 750 ± 55.76 ab 956.96 ± 30.54 ab 1006.33 ± 31.96 ab 5.93 ± 0.17 a 0.0433 ± 0.0085 b
LM 659 ± 109.29 b 844.88 ± 108.97 b 854.77 ± 101.69 b 5.24 ± 0.34 a 0.0957 ± 0.0234 a
NM 869 ± 61.10 a 1125.65 ± 45.90 a 1147.68 ± 57.30 a 6.03 ± 0.36 a 0.0462 ± 0.0096 b

The values are the means ± SE (standard error) of three replicates, and the same lowercase letters in a column are not significantly different at 
0.05 level. PM: polyethylene film mulching; BM: biodegradable film mulching; LM: liquid film mulching; NM: non-mulching.
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treatment increased the OTUs of Proteobacteria. The PM treatment increased the OTUs 
of Actinobacteria and Chloroflexi but significantly decrease the OTUs of Proteobacteria 
(p-value ranging from 0.0017 to 0.0282). The LM and BM treatments significantly 
increased the OTUs of Gemmatimonadetes (p-value from 0.0001 to 0.0001). For the 
fungal communities, Ascomycota and Basidiomycota predominated in the fungal phyla; 
the relative abundance accounted for 55.89-71.19 % and 6.14-13.21 %, respectively 
(Figure 1b). The NM showed the highest relative abundance of Ascomycota (71.19 %) 
and the lowest relative abundance of Basidiomycota (6.14 %). The Kickxellomycota 
OTUs in BM treatment were 23- to 129-fold higher than that in other treatments, but 
the difference was not significant.

The LEfSe analysis showed that 41 taxonomic biomarkers of 7 bacterial phyla (Figure 2a) 
and 38 taxonomic biomarkers of five fungal phyla (Figure 2b) were sensitive to different 
mulching films (p<0.05; LDA score >3). Those biomarkers were equal to 2.03 % of 
all bacterial taxa retrieved and 4.62 % of all fungal taxa. The maximum bacterial 
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Figure 1. Relative abundance of soil bacteria (a) and fungi (b) at phylum level in different treatments. PM: polyethylene film mulching, 
BM: degradable film mulching, LM: liquid film mulching, NM: non-mulching.
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Figure 2. Bacterial (a) and fungal (b) LEfSe analysis results in different treatments. PM: polyethylene film mulching; BM: biodegradable 
film mulching; LM: liquid film mulching; and NM: non-mulching. There are five circular rings in the cladogram; each circular ring 
deposits all taxa within a taxonomic level; the circular rings from inside to outside represent kingdom, phylum, class, order, and 
family, respectively. The node on the circular ring represents a taxon affiliating at the taxonomic level. Taxa that had significantly 
higher relative abundance in a certain treatment within each soil type were color-coded within the cladogram according to the Protist 
Ribosomal Reference taxonomy. _X represents unidentified lower taxonomic ranks within the corresponding category.
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biomarkers appeared in LM treatment, involving 14 biomarkers of 3 bacterial phyla. 
The maximum fungal biomarkers appeared in PM treatment, involving 19 biomarkers 
of 4 fungal phyla.

Response of bacteria and fungi to soil properties

Pearson analysis (Figure 3) showed that in 0.00-0.20 m soil layer, soil temperature and 
moisture, carbon (except for SOC), and nitrogen nutrients were positively correlated with 
the bacterial OTUs and alpha diversity (except for Simpson). The SOC, C/N ratio, and 
pH(CaCl2) were negatively correlated with the above diversity indices. The correlation 
between diversity and soil properties for fungi was contrary to that for bacteria. The DON 
was closely correlated with the OTUs, Chao1, and ACE indices (P from 0.0060 to 0.0411) 
of bacterial and fungal communities. Redundancy analysis (RDA) showed that DOC and 
SWC explained 29.2 and 22 % changes in bacterial structure, respectively (Figure 4a 
and Table 3), and they also explained 13.2 and 20.7 % changes of fungal structure, 
respectively (Figure 4b, Table 3).

DISCUSSION

Ef﻿﻿fects of mulching films on soil properties

Film mulching increased temperature and water content in 0.00-0.20 m soil layer 
(Table 1) which was conducive to accelerating the mineralization rate of organic matter 
(Curtin et al., 2012), thus increasing SMN (NH4

+-N and NO3
--N) contents (Wang et al., 

2017a; Chen et al., 2020a). However, mulching films obstructed the entrance of plant 
residues in the soil, reduced SOC content, eventually resulting in a relatively low C/N 
ratio and pH value (Table 1). In particular, SMN content in PM treatment was lower than 
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Figure 3. Pearson correlations between microbial abundance and diversity vs. soil physicochemical 
properties. Soil properties include TS (soil temperature), SWC (soil water content), SOC (soil organic 
carbon), TN (soil total nitrogen), SMN (soil mineral N), DOC (dissolved organic C), DON (dissolved 
organic N), MBC (microbial biomass C), MBN (microbial biomass N), C/N (SOC/TN), and pH(CaCl2) 
(pH value); bacterial (B-) and fungal (F-) abundance and diversity include OTUs, Chao1, ACE, 
Shannon, and Simpson indices; r is the Pearson correlation coefficient; * and ** indicate a significant 
correlation at the 0.05 and 0.01 level, respectively.
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in LM and BM treatments (Table 1). It may be because polyethylene film kept the highest 
water content and aggravated the risk of mineral nitrogen leaching to the deep soil layer 
(Steinmetz et al., 2016; Ma et al., 2018; Gao et al., 2019). In the experiment, humic acid 
was added to the liquid plastic film, which contained functional groups such as carboxyl 
groups with strong adsorption capacity to N nutrients (Di et al., 2019; Liu et al., 2019), 
thus increasing the DON content. Also, LM treatment showed the maximum DOC content 
(Table 1), and that may be because there was soluble starch in the LM film (Xue et al., 

Table 3. Results of redundancy analysis (RDA) between microbial communities and soil properties in a drip-irrigated potato soil

Bacterial community vs soil properties Fungal community vs soil properties
Name Explains % Pseudo-F p-value Explains % Pseudo-F p-value
SOC 4.2 0.8 0.482 4.4 0.5 0.664
TN 2.5 <0.1 0.952 10.1 <0.1 0.967
MSN 7.7 3.1 0.274 5.6 0.6 0.560
DOC 29.2 4.1 0.026 13.2 1.5 0.226
DON 3.4 0.8 0.496 4.7 0.6 0.601
MBC 12.5 2.8 0.086 6.4 0.8 0.532
MBN 4.3 0.9 0.418 10.7 1.4 0.248
C/N 5.6 1.3 0.288 5.6 0.7 0.556
pH 5.4 1.2 0.266 11.0 1.4 0.294
SWC 22.0 4.1 0.020 20.7 2.7 0.080
TS 3.3 0.7 0.540 7.5 0.7 0.486

Soil properties include SOC (soil organic carbon), TN (soil total nitrogen), SMN (soil mineral N), DOC (dissolved organic C), DON (dissolved organic 
N), MBC (microbial biomass C), MBN (microbial biomass N), C/N (SOC/TN), pH(CaCl2) (pH value), SWC (soil water content), and TS (soil temperature). 
Explanatory variables account for 100 % of microbial communities.

Figure 4. Redundancy analysis of (a) bacterial phyla vs. soil properties and (b) fungal phyla vs. soil properties. The relative abundance 
of bacteria and fungi ≥1 % in each treatment. At the RDA biplots, the position, angle, and length of arrows indicate the direction, 
degree, and scope of the response of the microbial communities to soil properties. Soil properties include TS (soil temperature), 
SWC (soil water content), SOC (soil organic carbon), TN (soil total nitrogen), SMN (soil mineral N), DOC (dissolved organic C), DON 
(dissolved organic N), MBC (microbial biomass C), MBN (microbial biomass N), C/N (SOC/TN), pH (pH value); PM: polyethylene film 
mulching; BM: biodegradable film mulching; LM: liquid film mulching; NM: non-mulching.
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2019) and sufficient organic substrates (Ai et al., 2018; Walker et al., 2018) contributed 
to the increase of microbial biomass C and N.

Effect of mulching films on bacterial community

Bacterial OTU abundance and alpha diversity (except for Simpson index) in film mulching 
soil were higher than those in bare soil (Table 2). Chen et al. (2014) and Wang et al. 
(2020) also reported that mulching practice improved the abundance and diversity of 
soil bacteria. Film mulching enhanced nutrient availability in topsoil, and abundant labile 
organic C and N provided labile substrates for bacteria (Waring et al., 2013; Ai et al., 
2018), which was conducive to thriving bacteria. 

This study found that the DON content was closely related to the bacterial OTUs, 
Chao1, and ACE indices (p<0.05; Figure 3); meanwhile, DOC content contributed 29.2 % 
changes of bacterial structure (Figure 4a and Table 3), topsoil under LM treatment 
contained the highest DON and DOC contents (Table 1), and that partly explained 
why the LM treatment had the highest bacterial diversity indices (Table 2) as well as 
the most specific biomarkers (Figure 2a). The structuring effect of polymer materials 
on bacterial communities was demonstrated by Zhang et al. (2019) and Tian et al. 
(2020). Specifically, Gemmatimonadetes was sensitive to the change of DON and DOC 
contents (Figure 4a); thus, there was abundant Gemmatimonadetes in the soil under 
BM and LM treatments (Figure 1a). He et al. (2020) observed that Gemmatimonadetes 
was closely related to the labile organic matter in arable land. In this study, the C/N 
ratio was closely negatively associated with the bacterial OTUs, Chao1and ACE indices 
(Figure 3). The C/N ratio is a predictor of the decomposition degree of organic matter in 
the soil (Liang et al., 2017; Novair et al., 2020), and the low C/N ratio in film mulching 
soil indicated the increase of bacterial diversity. The pH value represents the cumulative 
effects of physiochemical properties (Ostrowska and Porębska, 2015). The pH value 
varied only 0.36 in the drip irrigated soil (Table 1), with a very slight influence on 
bacterial diversity. Bottrill et al. (2020) and Li et al. (2020) discovered that the small 
changes in soil pH had no apparent influence on bacterial diversity. Interestingly, the 
positive relationship of Proteobacteria to pH and C/N ratio was observed in this study 
(Figure 4a), indicating that the soil under PM treatment with low pH and C/N ratio was 
unfavorable for Proteobacteria.

Contrary to Ren et al. (2018), the RDA biplot showed the SOC was negatively correlated to 
the bacterial diversity (except for Simpson index; Figure 4a). The bare soil contained the 
highest SOC, but the lowest DOC, implying the recalcitrant organic C in NM might be higher 
than that in film mulching treatments. Zhong et al. (2018), Preusser et al. (2019), and 
Wang et al. (2020) verified that the bacteria presented the poor utilization of recalcitrant 
C directly from plant residues. This study noted that the SWC had a contribution rate 
of 22.0 % to the change of bacterial structure (Figure 4a and Table 3). Chloroflexi and 
Actinobacteria were significantly positively associated with the soil moisture, and both 
were abundant in the moist soil environment under PM treatment (Figure 1a). Previous 
research suggested that soil moisture was the main factor driving the alteration of soil 
bacterial community structure (Araujo et al., 2020; Dong et al., 2021).

Effect of mulching films on fungal community

In the potato field, fungal OTUs and alpha diversity indices (except for Simpson index) 
in LM and BM treatments were lower than those in NM; meanwhile, such values of 
the bacterial community were 3-5 times higher than those in the fungal community 
(Table 2). At the phylum level, this study found no apparent difference in fungal structure 
(Figure 1b). This phenomenon indicated that the bacterial activities might be higher 
than that of fungi in the agricultural soil. However, in the forest (Ren et al., 2019) 
and grassland (French et al., 2017; Chen et al., 2020b), fungi were often reported to 
be more active than bacteria. The niche segregation between soil fungi and bacteria 
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was confirmed by Bahram et al. (2018). They reported that fungi had a competitive 
advantage over bacteria in topsoil because the soil environment with a high C/N ratio 
induces fungal metabolism to produce antimicrobial substances, which is conducive to 
the enrichment of fungi. However, in agricultural soil with high N input, the eutrophic 
soil environment, accompanied by the lower C/N ratio, may be more suitable for the 
growth of bacteria. 

Pearson analysis (Figure 3) showed that the fungal OTU abundance and alpha diversity 
decreased with the increase of N content (TN, DON, MBN, MSN); especially, DON was 
significantly negatively correlated to the abundance and diversity of the fungal community 
(p<0.05), suggesting that although high N availability in the drip-irrigated soil under 
LM and BM treatments was a key factor enhancing bacterial diversity, it also reduced 
the fungal diversity. A similar phenomenon had been reported by French et al. (2017). 
In addition, we found the fungal OTUs and alpha diversity increased with the increase 
of SOC and C/N ratio (Figure 3), previous literature reported that in the environment 
of high SOC (Li et al., 2015; Wang et al., 2017b; Li et al., 2020) and high C/N ratio 
(Montiel-Rozas et al., 2018; Wang et al., 2019b), fungi tended to decompose recalcitrant 
organic C in soil. Ascomycota and Basidiomycota in the drip-irrigated soil were dominant 
phyla (Figure 1b), and RDA biplot showed that the Ascomycota OTUs were negatively 
associated with C and N contents. In contrast, the Basidiomycota OTUs had a positive 
association with C and N nutrients (Figure 4b). The nutritional niches between Ascomycota 
and Basidiomycota were described in the researches of Bastida et al. (2016) and Li et al. 
(2017). Porras-Alfaro et al. (2007) and Liu et al. (2016) argued that Ascomycota contained 
mycorrhizal fungi, enriched under conditions of low N content. Therefore, the soil in 
NM had the highest Ascomycota abundance but the lowest Basidiomycota abundance. 
Moreover, this study observed that the PM treatment displayed the most fungal biomarkers 
(Figure 2b).

The results suggest that BM and LM treatments may increase the bacterial diversity but 
decrease the fungal diversity. This study found that fungal structure is less sensitive to 
soil properties than bacterial structure. This finding is partly inconsistent with our initial 
hypothesis (the diversity and structure of soil bacteria and fungi under environment-friendly 
mulching films were different from other treatments) since structuring effects were only 
observed for the bacterial community under the LM and BM treatments.

CONCLUSIONS
Compared with bare land, the soil under film mulching treatment increased the carbon 
(except for SOC) and nitrogen contents , which were highest under the liquid film. 
Environment-friendly mulching films increased soil bacterial OTUs abundance and 
diversity but decreased fungal abundance and diversity. The liquid plastic film contributed 
more to the alteration of bacterial diversity and structure than the degradable film. The 
change of bacterial structure was closely associated with dissolved organic carbon and 
soil moisture, whereas the fungal structure was less sensitive to the variation of the soil 
environment. These findings indicate bacteria community occupied important ecological 
niches, since bacteria are more active than fungi in the drip-irrigated soil. The long-term 
response mechanism of mulching films to key soil microorganisms should be further 
studied in the future.
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