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SUMMARY

Is it possible to build predictive models (PMs) of soil particle-size distribution
(psd) in a region with complex geology and a young and unstable land-surface?
The main objective of this study was to answer this question. A set of 339 soil
samples from a small slope catchment in Southern Brazil was used to build PMs of
psd in the surface soil layer. Multiple linear regression models were constructed
using terrain attributes (elevation, slope, catchment area, convergence index, and
topographic wetness index). The PMs explained more than half of the data variance.
This performance is similar to (or even better than) that of the conventional soil
mapping approach. For some size fractions, the PM performance can reach 70 %.
Largest uncertainties were observed in geologically more complex areas. Therefore,
significant improvements in the predictions can only be achieved if accurate
geological data is made available. Meanwhile, PMs built on terrain attributes are
efficient in predicting the particle-size distribution (psd) of soils in regions of
complex geology.

Index terms: digital soil mapping, terrain attributes, multiple linear regression,
cross-validation, additive log-ratio.

RESUMO: CONSTRUCAO DE MODELOS PREDITIVOS DA DISTRIBUICAO
DO TAMANHO DE PARTICULAS DO SOLO

E posstvel construir modelos preditivos (MPs) da distribuicdo do tamanho de particulas
do solo (DTP) em uma regido que possua geologia complexa e uma superficie geomorfica
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Jovem e instdvel? O principal objetivo deste trabalho foi responder a essa questao. Um conjunto
de 339 amostras de solo de uma pequena bacia hidrogrdfica de encosta do sul do Brasil foi
usado para construir MPs da DTP na camada superficial do solo. Modelos de regressdo linear
multiplos foram construidos com atributos de terreno (elevacgdo, declividade, drea de captacdo,
indice de convergéncia, indice de umidade topogrdfica). Os MPs explicaram mais da metade da
varidncia dos dados. Esse desempenho é semelhante (se ndo melhor) ao da abordagem tradicional
de mapeamento de solos. Para algumas fragoes de tamanho, o desempenho dos MPs pode chegar
a 70 %. As maiores incertezas ocorrem nas dreas de maior complexidade geoldgica. Assim,
melhorias significativas nas predicdes somente poderdo ser alcancadas se dados geoldgicos
acurados forem disponibilizados. Enquanto isso, MPs construidos a partir de atributos de
terreno sdo eficientes em estimar a DTP de solos de regides com geologia complexa.

Termos de indexagdo: mapeamento digital de solos, atributos de terreno, regressdo linear
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miultipla, validagdo cruzada, log-razdo aditiva.

INTRODUCTION

The particle-size distribution (psd) is one of the
most important soil attributes. It determines and
influences most soil properties. These properties are
essential when attempting to determine an appropriate
soil use. For this purpose, the psd of soils must be
known on a worldwide basis. However, to carry out
this task by conventional soil mapping techniques
would be too difficult and expensive, for requiring
sampling and analyses of an all too large set of soil
data. The main alternative is to build quantitative
predictive models (PMs) (McBratney et al., 2003),
based on the relation between psd and environmental
co-variates, such as terrain attributes (Bishop &
Minasny, 2006).

However, the relation between psd and terrain
attributes is not evident in all land surfaces: it can be
strong in one but weak in another (Grunwald, 2006).
Therefore, it will never be possible to construct a single,
globally valid PM of soil psd (Grunwald, 2009). Studies
must be developed in a broad range of land surfaces
(McKenzie et al., 2000), as for example in the region
of Serra Geral in southern Brazil. The regional geology
is complex and includes several igneous and
sedimentary rocks (Sartori, 2009), which define
hydrology and topography. The relief ranges from plain
to mountainous and periodic landslides occur in the
steepest areas (Pinheiro & Soares, 2004). Despite the
soil fragility, the region was deforested in the late XIX
century and soils were used for agriculture during
several decades, resulting in high rates of soil erosion
(Samuel-Rosa et al., 2011).

The above-mentioned aspects show that the Serra
Geral region is geologically complex and has a young
and unstable land-surface. Is it possible to develop PMs
of soil psd in this situation? Should the region be
stratified into less heterogeneous domains before
building the PMs? In general, any region should be
stratified into distinct geology-based, physiographic
domains before developing PMs (Gessler et al., 1995).
However, a geology-based stratification in the Serra
Geral region would be extremely time-consuming since

the accuracy of the geologic information available is
limited. Many recent sedimentary bodies, such as fluvial
and colluvial deposits, are not represented in the maps.
Therefore, the region can only be stratified into two
physiographic domains: the first where igneous rocks
prevail and the second where sedimentary rocks
prevail. Does this stratification allow the development
of PMs with a greater predictive capacity? The purpose
of this study was to answer these questions.

MATERIAL AND METHODS

Study site

The study was carried out in a catchment (18.92 km?)
which is assumed to be representative of the whole region
of Serra Geral (Figure 1). Central UTM coordinates
are 22 J 229489 m E and 6718530 m S. The climate is
classified as Cfa (humid subtropical climate without
a defined dry season), with a mean annual
temperature of 19.2 °C and mean annual precipitation
of 1,708 mm (Maluf, 2000). The relief varies from plain
to mountainous, at elevations between 139 and 475
m asl.

The geology of the catchment is complex (Sartori,
2009): the Superior Sequence of the Serra Geral
formation (igneous rocks - rhyolite-rhyodacite) is found
at +350 m and the Inferior Sequence of the Serra Geral
formation (igneous rocks - basalt-andesite and
sedimentary rocks - intertrapped aeolian sandstone)
between £200 and +350 m. Below it lies the Botucatu
formation (sedimentary rocks - aeolian sandstone) and
at elevations below £200 m the Caturrita formation
(sedimentary rocks - fluvial sandstone). Colluvial
deposits (material from the Serra Geral and Botucatu
formations) are found between +250 and +300 m.
Colluvial deposits (material from the Caturrita and
Botucatu formations) can also be found at +200 m.
Close to the drainage channels, recent fluvial deposits
are common.

Based on geological information, digital elevation
models (DEM) and on the experience of field
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Figure 1. The study catchment: sampling points, delimitation of the upslope and downslope domains and

elevation.

expeditions, the catchment was divided into two
physiographic domains: an upslope (>300 m), where
igneous rocks prevail, and downslope domain (<300 m),
with mostly sedimentary rocks (Figure 1). Therefore,
aside from the PMs developed for the whole catchment,
PMs were also built for each physiographic domain.

Soil sampling and analysis

Soil samples to construct the PMs were collected
in earlier studies of soil and land use survey of the
area (Miguel, 2010; Samuel-Rosa et al., 2011) (Figure
1). Expert knowledge was used to select the 339
sampling sites, at which three soil pits were opened
within an area of 100 m2. Samples were taken from
the surface layer (0-20 cm or the whole A horizon when
the soil was shallower than 20 cm). A composite
sample was obtained from the mixture of the three
subsamples and the parent material of the soil was
identified visually. Composite samples were taken to
the laboratory and passed through a 2-mm sieve after
they had been air-dried. Particle-size distribution
(Figure 2) was determined by the pipette method after
removal of the organic matter with HyO5 (30 % v/v)
in those samples containing more than 5 % of organic
matter (Embrapa, 1997). Sodium hydroxide was the
dispersing agent in the analysis.

Digital elevation models and predictor
variables

A 10-m resolution digital elevation models (DEM)
was derived from contour lines digitized from
topographic maps of the geographic service of the
Brazilian army (1:25,000). The DEM resolution was
selected using the method described by Hutchinson
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Figure 2. The particle-size distribution of the soils
according to its parent material (black - igneous
rocks, gray - sedimentary rocks).

(1996). Interpolation was carried out in ArcGIS 9.3
using the Topo to raster command. Fifteen terrain
attributes were derived from the DEM using SAGA
GIS. The attributes were selected according to 1) their
relation with processes that influence soil psd and 2)
the frequency of use in similar studies. They comprised:
catchment area, catchment slope, convergence index,
curvature, elevation, elevation above channel network,
land surface ruggedness index, LS-factor, northerness
(1180° - aspect | ), plan curvature, profile curvature,
slope, slope length, stream power index, and
topographic wetness index. The information on the



BUILDING PREDICTIVE MODELS OF SOIL PARTICLE-SIZE DISTRIBUTION

terrain attributes was sampled from the 339
georeferenced observations using the nearest neighbor
algorithm. Descriptive statistics and histograms of
frequency were obtained using the package fitdistrplus
(Delignette-Muller et al., 2010) in R (R Development
Core Team, 2011). Variables with skewness > 1.0 were
transformed to the natural logarithmic scale or to its
square root to approach a normal distribution. The
degree of multicollinearity was evaluated using linear
correlation and principal component analysis with the
package stats in R. In the end, only five terrain
attributes were used for the PMs: elevation (ELEV),
natural logarithm of catchment area (CATCH_A), slope
(SLOPE), convergence index (CONV) and natural
logarithm of topographic wetness index (WET).

Development of predictive models (PMs)

Multiple linear regression models were built to
estimate the psd of the soils. Before building the PMs,
the three size fractions (sand, silt and clay) were
transformed to additive log-ratios (alr), according to
recommendations of Aitchison (1986):

[yi"‘ym]:{ln%}nln(xz;ﬂ, foralli=1,2,...,D-1(1)

where xp is the value of the remaining Dth variable.
In this study D = 3; therefore, x; = x; = clay, xp_; = x5
= silt, and xp = x5 = sand. In this way, two alr-
transformed variables were obtained: In (clay/sand)
and In (silt/sand). The PMs built to predict the soil
psd in the entire catchment are henceforth called PMs-
1. They were developed from a subset of 300 randomly
sampled observations (seed=123) from the complete
dataset (n=339). Terrain attributes were subjected to
forward selection and backward elimination.
Predictions of In(clay/sand) and In(silt/sand) were
back-transformed as follows:

[‘xl Xy -x,)]=[exp(yl) o eXp (y,)fl)l]/{exp(yl)nL o ‘eXp(kal) +1} (2)

The psd predictions made by PMs-1 were plotted
against measured values, and the residuals kriged to
evaluate the performance of PMs-1. A 10-fold cross-
validation was performed using the complete dataset
(339 observations) and repeated 100 times to validate
the PMs-1 using the package chemometrics
(Filzmoser & Varmuza, 2011). The folds were selected
randomly (seed=1234). On each occasion, after back-
transformation by equation 2 for each size fraction,
four statistics were calculated: root mean square error
(RMSE), normalized root mean square error
(NRMSE = RMSE/data range), bias and adjusted
coefficient of determination (R?,)). For each statistics,
the 2.5 percentile, median and 97.5 percentile were
calculated. These statistics were also obtained
separately for each physiographic domain (upslope and
downslope).

Multiple linear regression models were built on
alr-transformed variables from observations located
downslope (< 300 m; n=165) and upslope (= 300 m;
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n=174) (Figure 1), to verify if predictions are improved
by the stratification of the area into two physiographic
domains. These PMs are henceforth called PMs-2 and
PMs-3, respectively. A set of 150 observations was
randomly selected (seed = 123) from each subset and
used to build the PMs. The same five predictor
variables were used. The PMs were subjected 10-
fold cross-validation using the complete datasets (165
and 174 observations) repeated 50 times, where the
folds were randomly selected (seed=1234). On each
occasion, after the predictions were back-
transformed, the above statistics were calculated to
evaluate PMs-2 and PMs-3.

RESULTS

Since PMs-1 had a better performance than PMs-
2 and PMs-3, only the former is shown (Table 1). The
results show that clay and silt-size fractions increase
with increasing ELEV while the sand-size fraction
increases with increasing SLOPE, WET and CONV.
Terrain attribute ELEV explains the largest
proportion of variance (60 %), followed by the attribute
SLOPE. Terrain attributes CONV and WET explained
only a minor proportion of variance while CATCH_A
was not used in PMs-1.

Cross-validation statistics showed that more than
half of the variance was explained by PMs-1 (Table
2). Of the sand-size fraction, 70 % of the variance was
explained, but only 55 % of the variance of the clay-
size fraction. However, the prediction errors of the
clay-size fraction represented only 13 % of the total
range of the data. The prediction errors of the silt-
size fraction were largest with almost 18 % of the
total data range. In general, PMs-1 overpredicted the
sand-size fraction, while the clay and silt-size fractions
were underpredicted (comparison of the predicted with
the measured values in figure 3). The point dispersion
around the 1:1 line was high but more pronounced at
intermediate values. Besides, the formation of two
clusters was noted, which is closely related to the
parent material of the soils (Figure 2).

The residuals of PMs-1 were larger in three of the
geological sectors of the study area (Figure 4). The
first was the northern sector, where the silt-size
fraction was overpredicted at the cost of the clay-size
fraction. In this sector, ELEV was highest and soils
are derived from igneous rocks. The second was the
southern sector where the sand-size fraction was
overpredicted at the cost of the clay and silt-size
fractions. In this sector, ELEV was lowest and WET
largest, with soils derived from colluviums and recent
fluvial deposits. The third comprises the area around
the 300-m contour line. At some points, the silt and
clay-size fractions were overpredicted at the cost of
the sand-size fraction, while in other places the sand-
size fraction was overpredicted at the cost of the other
two. In these areas, soils derived from sedimentary
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Table 1. Regression coefficients for predictive models PMs-1 built to predict the particle-size distribution

(%) of the soils of the entire catchment

Estimate Standard error t P
In(clay/sand)
Intercept -1.0027474 0.8440731 -1.188 0.2358
ELEV 0.0081838 0.0003939 20.777 < 2e-16
SLOPE -0.0413414 0.0067446 -6.130 2.82e-09
WET -0.9702653 0.3397474 -2.856 0.0046
CONV -0.0107230 0.0047712 -2.247 0.0253
In(silt/sand)
Intercept -0.9136230 0.9775466 -0.935 0.350755
ELEV 0.0090393 0.0004562 19.815 < 2e-16
SLOPE -0.0278960 0.0078111 -3.571 0.000415
CONV -0.0151896 0.0055256 -2.749 0.006348
WET -0.9682048 0.3934717 -2.461 0.014441

* ELEV: elevation (m), SLOPE: slope (%), WET: natural logarithm of topographic wetness index (dimensionless), CONV:

convergence index (dimensionless).

Table 2. Cross-validation statistics (10-fold; 100 repetitions) for prediction of particle-size distribution based

on application of the predictive models PMs-1

Particle-size fraction Statistic” 2.5 percentile Median 97.5 percentile
Sand RMSE (%) 14.33 14.43 14.55
NRMSE 0.165 0.166 0.167
Bias (%) 1.42 1.48 1.55
R, 0.744 0.748 0.752
Silt RMSE (%) 11.49 11.56 11.65
NRMSE 0.177 0.178 0.179
Bias (%) -1.14 -1.07 -1.03
R?, 0.671 0.674 0.679
Clay RMSE (%) 6.61 6.65 6.70
NRMSE 0.130 0.130 0.131
Bias (%) -0.43 -0.40 -0.37
R? 0.546 0.551 0.555

aj

@ RMSE: root mean square error, NRMSE: normalized RMSE, Rzaj: adjusted coefficient of determination.

and igneous rocks were mixed. Several discontinuities
occurred in the parent material, markedly
differentiating soil formation. The residuals were
lowest at intermediate positions of both downslope and
upslope domains.

When PMs were developed for each domain, all
five terrain attributes were used. However, the
performance was better in the upslope domain (Table
3). For downslope points, PMs-2 explained less than
15 % of the variance and the predictions were best for
the sand size-fraction. For upslope points, PMs-3
explained almost 50 % of the clay size-fraction and
40 % of the sand size-fraction variance. The worst
predictions were those based on the silt size-fraction.
Table 4 shows the statistics of the PMs-1 performance
in each domain. The statistics show that PMs-1 had
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a better performance than PMs-2 and PMs-3 and that
the performance was always better in the upslope.

DISCUSSION

Prediction of particle-size distribution

Ten Caten et al. (2011a) proved that PMs of soil
classes can be developed in the Serra Geral region.
Now it is known that it is also possible to build PMs
of soil properties such as psd. The two factors of soil
forming with major influence are parent material and
topography. Parent material influence is reproduced
by ELEV, since igneous rocks prevail in upslope and
sedimentary rocks in downslope positions. Soils
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Figure 3. Measured and predicted particle size-fractions using the predictive models PMs-1: (a) sand, (b)

silt, and (c) clay.

derived from igneous rocks have a finer psd. Since
ELEV explains the largest part of the variance, the
influence of the parent material is stronger than that
of the topography.

The possibility of developing PMs in the Serra
Geral region is supported by the heterogeneity in the
terrain attributes (Sumfleth & Duttmann, 2008).
However, due to the highly variable nature of psd
and the errors associated to the methods used it is
unlikely to expect that multiple linear regression
models could explain more than about 70 % of the
variance (Moore et al., 1993). Even traditional soil
maps (based on soil classes with sharp boundaries)
usually explain only about half of the variance in
soil attributes such as psd in a region (Webster &
Oliver, 1990). Therefore, from the point of view of
the pedometrician, the performance of the PMs built
in this study can be considered satisfactory.
However, the real usefulness of the PMs (and maps
produced) can only be evaluated by the user of soil
information, especially if soil mapping is to be user-
driven (Basher, 1997). Besides, one must bear in
mind that the statistics of the cross-validation
procedure used here can be biased since the sampling
locations were selected purposively (Brus et al., 2011).

Factors affecting predictive model
performance

Due to the complex geology of the Serra Geral
region it was expected that stratification into two
physiographic domains would improve PM
performance. However, the results showed that this
is not the case: the PMs developed separately for each
domain had the worst performance. One possible
reason for this inferior performance is the larger
homogeneity of the terrain attributes due to the
stratification (Sumfleth & Duttmann, 2008). However,
the PMs performed differently in each domain.
Predictions were always more accurate in the upslope
domain. This suggests that the greater homogeneity
of the terrain attributes is not the main factor affecting
PM performance.

Actually, the upslope and downslope domains

differed in the larger geologic homogeneity of the first.
Igneous rocks prevail in upslope. Only small areas of
soils derived from sandstone occur in its lower
boundary. Besides, this physiographic domain is a
more stable land surface. Under these conditions, the
relation between psd and the terrain attributes is more
evident, and PMs with a satisfactory performance from
the pedometrician’s viewpoint can be constructed. On
the other hand, the major part of the downslope
domain is a younger land surface (depositional area)
with greater geologic heterogeneity. Despite the mostly
sedimentary origin of the parent materials, they belong
to five types: aeolian sandstones (Botucatu Formation),
fluvial sandstones (Caturrita Formation), colluviums
of Botucatu and Serra Geral Formations, colluviums
of Botucatu and Caturrita Formations, and recent
fluvial deposits. Soils developed on colluviums and
recent fluvial deposits are younger than those formed
under the stable conditions of the upslope domain.
Besides, soils developed on sandstones were strongly
altered by the high erosion rates caused by the
inadequate agricultural practices used in the region
for several decades (Samuel-Rosa et al., 2011). As a
result, the psd is poorly related with most terrain
attributes. The performance of PMs built under these
conditions cannot be expected to be better than of
that in the present study.

Another factor affecting the PM performance is
the occurrence of soils derived from igneous and
sedimentary rocks in the transition between the
domains. The occurrence of these soils in the landscape
does not follow a clear pattern. Besides, the parent
material layers are not parallel to the horizontal plane.
Although ELEV describes the parent material
influence, it fails to describe this variation. As a result,
the PM performance in the area around the 300-m
contour line is severely affected. Also, the occurrence
of high residuals at the points of lowest (Southern
sector) and highest (Northern sector) ELEV suggests
that the relation of this terrain attribute with the psd
cannot be described by the same linear model over
the entire area. At both sites, the curve describing
the relation between ELEV and psd is less steep, i.e.,
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Figure 4. Quantiles of the kriged residuals of the particle-size distribution: (a) sand, (b) silt, and (c¢) clay, of
the soils predicted using the predictive models PMs-1.

Table 3. Cross-validation statistics (10-fold; 50 repetitions) for prediction of particle-size distribution based
on application of predictive models PMs-2 and PMs-3

Particle-size Downslope (PMs-2) Upslope (PMs-3)

Statistic”

fraction
2.5 percentile Median 97.5 percentile 2.5 percentile Median 97.5 percentile
Sand RMSE (%) 14.79 14.97 15.31 13.41 13.64 13.93
NRMSE 0.19 0.20 0.20 0.16 0.16 0.16
Bias (%) 2.10 2.19 2.44 0.21 0.32 0.43
R?, 0.125 0.139 0.154 0.384 0.394 0.409
Silt RMSE (%) 10.58 10.72 10.97 11.26 11.38 11.62
NRMSE 0.19 0.19 0.20 0.18 0.18 0.18
Bias (%) -1.99 -1.82 -1.75 -0.07 0.11 0.25
R?, 0.119 0.169 0.183 0.225 0.242 0.260
Clay RMSE (%) 5.12 5.16 5.28 7.57 7.66 7.82
NRMSE 0.18 0.18 0.19 0.15 0.15 0.15
Bias (%) -0.43 -0.37 -0.33 -0.56 -0.41 -0.33
Rz . 0.119 0.129 0.141 0.449 0.463 0.477

a

@ RMSE: root mean square error; NRMSE: normalized RMSE (dimensionless); Bias: bias or mean error; R%y: adjusted coefficient
of determination (dimensionless).

Table 4. Cross-validation statistics (10-fold; 100 repetitions) for prediction of psd in downslope and upslope
positions based on application of predictive models PMs-1

tl;:;l(':t:ic:;-sme Statistic® Downslope Upslope
2.5 percentile Median 97.5 percentile 2.5 percentile Median 97.5 percentile
Sand RMSE (%) 15.57 16.48 18.36 14.02 20.46 23.31
NRMSE 0.20 0.22 0.24 0.16 0.24 0.27
Bias (%) 0.90 1.12 141 1.17 1.30 1.71
R2aj 0.155 0.163 0.169 0.537 0.545 0.553
Silt RMSE (%) 10.84 11.62 13.02 11.70 14.13 16.34
NRMSE 0.19 0.21 0.23 0.18 0.22 0.25
Bias (%) -1.00 -0.77 -0.62 -1.30 -1.07 -0.89
R?, 0.143 0.152 0.159 0.366 0.375 0.383
Clay RMSE (%) 5.47 5.78 6.17 8.32 11.00 12.76
NRMSE 0.19 0.20 0.22 0.16 0.22 0.25
Bias (%) -0.44 -0.34 -0.27 -0.49 -0.29 -0.09
Rz . 0.157 0.163 0.169 0.240 0.246 0.249

aj
@ RMSE: root mean square error; NRMSE: normalized RMSE (dimensiooless); Bias: bias or mean error; R2aj: adjusted coefficient
of determination (dimensionless).
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the psd varies less with varying ELEV. One possible
reason for this behavior is that these sites are more
similar in terms of physiographic features to the
adjacent physiographic domains (the Planalto in the
North and the Depressao Central in the South) than
to the Serra Geral itself.

Improving the predictions

The performance of the PMs developed in this study
can be considered satisfactory form the point of view
of pedometricians. However, is it satisfactory for users
of the soil information? Unfortunately, this question
cannot be answered yet, although it will have to be
answered soon. Otherwise, digital soil mapping could
be faced with the same problems as the conventional
soil mapping approach, well-described in Basher,
1997, ‘Is pedology dead and buried?. Although the
above question was not answered, it is believed that
the predictions can be improved significantly. One
alternative is to use nonlinear and more complex PMs,
since the relation between soil properties and terrain
attributes is not perfectly linear (Grunwald, 2006).
However, this may result in building less generally
applicable and thus less useful PMs (Gessler et al.,
1996). Besides, more complex PMs are harder to
develop and understand, which may lead to a lack of
basic pedological and environmental interpretation of
the results (Grunwald, 2009). An example is given by
Park & Vlek (2002), who compared artificial neural
networks, regression trees and generalized linear
regression models to predict the silt-size fraction. The
generalized linear models were chosen due to their
structure simplicity, which allows a direct and easy
interpretation of the relation between the soil
properties and terrain attributes.

Another alternative is related to the predictor
variables used to develop the PMs. Principal
component regression was suggested by Ten Caten et
al. (2011b) to reduce the number of predictor variables,
although the authors argue that a loss in the predictive
capacity of the PMs may occur. Besides, the result
interpretation is very laborious. There is also the
possibility of using more complex terrain attributes
that describe the underlying physics of the processes
that influence the psd (Moore et al., 1993; Bohner &
Selige, 2006). However, the derivation of these complex
attributes depends on land surface source data with
high resolution and accuracy, which are not available
for most of the Brazilian territory. Another alternative
is to use predictor variables related to the other soil
forming factors, mainly the parent material, which
was the most important in determining the psd of the
soils. However, the accuracy of the geologic maps
available for the region is limited since they were based
on the information contained in small-scale
topographic maps. The more recent colluvial and
fluvial deposits were not represented in these maps.
Consequently, to improve the predictions of psd and
other soil properties, accurate geologic and land-
surface data are urgently needed.
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CONCLUSIONS

1. Predictive models built on terrain attributes can
be developed in regions with complex geology to
estimate the psd of the soils. From the point of view of
a pedometrician, their performance is considered
satisfactory. However, the geologic complexity can
reduce the predictive accuracy of the PMs for some of
the particle-size fractions.

2. In geologically more homogenous areas, the
terrain attributes are better correlated to the psd.
However, stratifying the land surfaces according to
the origin of the parent materials (sedimentary or
igneous) does not ensure an improved PM performance.
Improvements could be achieved using accurate
geologic and land-surface data (not yet available).

3. Although the PM performance was satisfactory
from the pedometrician’s viewpoint, no feedback from
the potential users of the soil information was taken
into consideration. These potential users should define
quality standards to influence the soil information
produced by pedometricians. Otherwise digital soil
mapping may be affected by the same problems as
the conventional soil mapping approach.
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